Siga este enlace para ver otros tipos de publicaciones sobre el tema: Terramechanics.

Artículos de revistas sobre el tema "Terramechanics"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Terramechanics".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Gonzalez, Ramon, and Lutz Richter. "Journal of Terramechanics special section on “Artificial intelligence applied to terramechanics”." Journal of Terramechanics 96 (August 2021): 117–18. http://dx.doi.org/10.1016/j.jterra.2021.04.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kiss, Peter, David Gorsich, and Vladimir Vantsevich. "Terramechanics: Real-time applications." Journal of Terramechanics 81 (February 2019): 1. http://dx.doi.org/10.1016/j.jterra.2018.11.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Chatterjee, Saurabh, and K. Kurien Isaac. "Terramechanics and Path Finding." IFAC-PapersOnLine 49, no. 1 (2016): 183–88. http://dx.doi.org/10.1016/j.ifacol.2016.03.050.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Dwyer, M. J. "Terramechanics and off-road vehicles." Soil and Tillage Research 22, no. 1-2 (1992): 189–90. http://dx.doi.org/10.1016/0167-1987(92)90031-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Dwyer, M. J. "Terramechanics and off-road vehicles." Journal of Terramechanics 30, no. 1 (1993): 59–60. http://dx.doi.org/10.1016/0022-4898(93)90031-r.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Li, Zhengcai, and Yang Wang. "Coordinated Control of Slip Ratio for Wheeled Mobile Robots Climbing Loose Sloped Terrain." Scientific World Journal 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/396382.

Texto completo
Resumen
A challenging problem faced by wheeled mobile robots (WMRs) such as planetary rovers traversing loose sloped terrain is the inevitable longitudinal slip suffered by the wheels, which often leads to their deviation from the predetermined trajectory, reduced drive efficiency, and possible failures. This study investigates this problem using terramechanics analysis of the wheel-soil interaction. First, a slope-based wheel-soil interaction terramechanics model is built, and an online slip coordinated algorithm is designed based on the goal of optimal drive efficiency. An equation of state is estab
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Guo, Xiao Lin, Jie Liu, Guo Qiang Liu, and Yan Zhao. "Summarization of Terramechanics Research on Screw-Propelled Vehicle." Applied Mechanics and Materials 551 (May 2014): 84–89. http://dx.doi.org/10.4028/www.scientific.net/amm.551.84.

Texto completo
Resumen
It is of great significance for screw-propelled vehicles to solve the problem of driving on the soft ground. In this paper, the development of screw-propelled vehicles both at home and abroad is reviewed; the domestic and foreign propulsion theory research results of scholars are summarized based on terramechanics; the deficiency of the modern research methods is analyzed. At last, some discussions on study methods are made in particular.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Li, Guang Bu, Li Dai, Ming Hua Xu, and Feng Ying Shi. "Track Link-Terrain Interaction Simulation Based on Terramechanics." Key Engineering Materials 572 (September 2013): 640–43. http://dx.doi.org/10.4028/www.scientific.net/kem.572.640.

Texto completo
Resumen
A review of terramechanics terrain models and discuss on their application in link-terrain, wheel-terrain and tire-terrain interaction are taken. Three kinds of pressure–sinkage relationship proposed by Bekker and Reece are studied. The loading and unloading is introduced in the model. And the relationship between the maximum shear stress and applied normal pressure is derived. The link tractive effort and drawbar pull at a given slip of an assumed shape and mass are deduced. Also the link moves in two dimensions. At last, the relationship of terrain sinkage vs. time, terrain pressure vs. sink
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Muro, Tatsuro. "Special issue. Earth & Robot. Terramechanics and Robotics." Journal of the Robotics Society of Japan 12, no. 7 (1994): 920–23. http://dx.doi.org/10.7210/jrsj.12.920.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Li, Weihua, Liang Ding, Haibo Gao, Zongquan Deng, and Nan Li. "ROSTDyn: Rover simulation based on terramechanics and dynamics." Journal of Terramechanics 50, no. 3 (2013): 199–210. http://dx.doi.org/10.1016/j.jterra.2013.04.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Sitkei, G., G. Pillinger, L. Máthé, L. Gurmai, and P. Kiss. "Methods for generalization of experimental results in terramechanics." Journal of Terramechanics 81 (February 2019): 23–34. http://dx.doi.org/10.1016/j.jterra.2018.05.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Song, Xingguo, Haibo Gao, Liang Ding, Pol D. Spanos, Zongquan Deng, and Zhijun Li. "Locally supervised neural networks for approximating terramechanics models." Mechanical Systems and Signal Processing 75 (June 2016): 57–74. http://dx.doi.org/10.1016/j.ymssp.2015.12.028.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Lopez-Arreguin, A. J. R., and S. Montenegro. "Improving engineering models of terramechanics for planetary exploration." Results in Engineering 3 (September 2019): 100027. http://dx.doi.org/10.1016/j.rineng.2019.100027.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Lei, Jiang, and Su Bo. "Research and Implementation of Small Mobile Robot Technology." Applied Mechanics and Materials 602-605 (August 2014): 1047–51. http://dx.doi.org/10.4028/www.scientific.net/amm.602-605.1047.

Texto completo
Resumen
Due to mission requirements in the field of deep space exploration, emergency relief, intelligent mobile etc., based on the cross research with vehicle terramechanics, vehicle engineering and mobile robotics, this paper carried out researches of lunar rover, lightly wheeled unmanned ground platform, quadruped mobile platform etc., and proposals application prospect in future.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Olmedo, Nicolas A., Martin Barczyk, Hong Zhang, Ward Wilson, and Michael G. Lipsett. "A UGV-based modular robotic manipulator for soil sampling and terramechanics investigations." Journal of Unmanned Vehicle Systems 8, no. 4 (2020): 364–81. http://dx.doi.org/10.1139/juvs-2020-0003.

Texto completo
Resumen
Unmanned vehicles are a natural choice for accessing challenging or hazardous terrains, for instance oil sands tailings ponds, and performing tasks such as soil sampling and terramechanics investigations. In previously published work, an unmanned ground vehicle (UGV) named RTC-I was designed and built for this task by part of our group. The present article covers the design choices and technical details of a custom-built robotic manipulator, a soil sampler, and an instrumented wheel deployed onboard a second-generation UGV named RTC-II. The robotic manipulator is designed to provide the reach,
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

MIZUKAMI, Noriaki, Tetsuo YOSHIMITSU, and Takashi KUBOTA. "Proposal of Terramechanics-Based Wheel Model for Dynamic Sinkage." TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series C 78, no. 788 (2012): 1109–18. http://dx.doi.org/10.1299/kikaic.78.1109.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Jia, Zhenzhong, William Smith, and Huei Peng. "Fast analytical models of wheeled locomotion in deformable terrain for mobile robots." Robotica 31, no. 1 (2012): 35–53. http://dx.doi.org/10.1017/s0263574712000069.

Texto completo
Resumen
SUMMARYHazardous terrains pose a crucial challenge to mobile robots. To operate safely and efficiently, it is necessary to detect the terrain type and modify operation strategies in real-time. Fast analytical models of wheeled locomotion on deformable terrains are thus important. Based on classic terramechanics, a closed-form wheel–soil interaction model was derived by quadratic approximation of stresses along the wheel–soil interface. The bulldozing resistance and the effects of grousers were also added for more accurate prediction of wheel contact forces. A non-iterative method was proposed
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Zhao, Yi Bing, Lie Guo, Lin Hui Li, and Ming Heng Zhang. "Research of Semi-Step Walking Wheel Based on Vehicle-Terramechanics." Applied Mechanics and Materials 409-410 (September 2013): 1435–40. http://dx.doi.org/10.4028/www.scientific.net/amm.409-410.1435.

Texto completo
Resumen
One new structure of Semi-step Walking Wheel Modeled on Impeller is constructed based on Vehicle-Terramechanics. Based on Passive earth pressure of soil mechanics put forward by C.A.Coulomb, the front force formula of the vane of Semi-step Walking Wheel modeled on Impeller is reduced and the wheel traction force when a set of vanes insert the earth is derived. Some Kinematics Simulations are conducted for installing Lunar rover model with ADAMS software. The simulation results show that the wheel can travel smoothly on straight road, climb over bump obstacles. Also, the ability of the lunar ro
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Vantsevich, Vladimir. "Dr. Ramon Gonzalez – New Editor of the Journal of Terramechanics." Journal of Terramechanics 79 (October 2018): 97. http://dx.doi.org/10.1016/j.jterra.2018.08.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Olmedo, Nicolas A., Martin Barczyk, and Michael G. Lipsett. "An improved terramechanics model for a robotic soil surface sampler." Journal of Terramechanics 91 (October 2020): 257–71. http://dx.doi.org/10.1016/j.jterra.2020.07.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

SUZUKI, Hirotaka, and Shingo OZAKI. "Proposal of field modeling method and seamlessization to terramechanics analysis." Proceedings of The Computational Mechanics Conference 2019.32 (2019): 087. http://dx.doi.org/10.1299/jsmecmd.2019.32.087.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Xu, Shuo, Yinan Gu, Jing Sun, and Dawei Tu. "Unique and accurate soil parameter identification for air-cushioned robotic vehicles." Robotica 35, no. 3 (2015): 613–35. http://dx.doi.org/10.1017/s0263574715000739.

Texto completo
Resumen
SUMMARYOn-line identification of soil parameters is a pre-condition of operating performance optimization and control for unmanned ground vehicles (UGV). Inverse calculation from measured vehicular operating parameters is a prevalent methodology. However, it inherently suffers from a multiple-solution problem caused by the coupling of soil parameters in terramechanics equations and an accuracy problem caused by the influences of state noise and measurement noise. These problems in tractive-force-related soil parameters identification were addressed here for air-cushioned vehicles (ACV) by taki
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Xu, Rui Liang, and Tao Yang. "Mechanical Properties of Soil under Vehicle Load." Applied Mechanics and Materials 633-634 (September 2014): 1095–99. http://dx.doi.org/10.4028/www.scientific.net/amm.633-634.1095.

Texto completo
Resumen
Based on the analysis of relevant characteristics of the traffic load, explores the impact of static and dynamic vehicle type, shaft type factors,and cars on the road, down to analyze the stress level in the soil loads -deformation relationship Through theoretical analysis, research, and future prospects, the measures proposed to solve the problem, come to study the mechanical properties of the program under the vehicle load soil and make the outlook for future work in this area terramechanics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

MIZUKAMI, Noriaki, Tetsuo YOSHIMITSU, and Takashi KUBOTA. "1A2-C08 Terramechanics-based Wheel Dynamics Model on Lunar Gravel Surface." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2010 (2010): _1A2—C08_1—_1A2—C08_4. http://dx.doi.org/10.1299/jsmermd.2010._1a2-c08_1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

SUZUKI, Hirotaka, Shingo OZAKI, Hiroki YAMAMOTO, Kazuki KURE, and Takashi Noda. "RFT-based terramechanics analysis of traveling behavior of single caterpillar track." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2016 (2016): 2A2–18a7. http://dx.doi.org/10.1299/jsmermd.2016.2a2-18a7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Zheng, Junqiang, Haibo Gao, Baofeng Yuan, et al. "Design and terramechanics analysis of a Mars rover utilising active suspension." Mechanism and Machine Theory 128 (October 2018): 125–49. http://dx.doi.org/10.1016/j.mechmachtheory.2018.05.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

He, Rui, Corina Sandu, Aamir K. Khan, A. Glenn Guthrie, P. Schalk Els, and Herman A. Hamersma. "Review of terramechanics models and their applicability to real-time applications." Journal of Terramechanics 81 (February 2019): 3–22. http://dx.doi.org/10.1016/j.jterra.2018.04.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Ishigami, Genya, Masatsugu Otsuki, and Takashi Kubota. "B105 Terramechanics-based Model for Flexible/Rigid Wheels in Rough Terrain." Proceedings of the Symposium on the Motion and Vibration Control 2011.12 (2011): 90–95. http://dx.doi.org/10.1299/jsmemovic.2011.12.90.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

SUZUKI, Hirotaka, and Shingo OZAKI. "Multistage terramechanics analysis: From terrain field modeling to wheel traveling analysis." Proceedings of the Symposium on the Motion and Vibration Control 2019.16 (2019): A102. http://dx.doi.org/10.1299/jsmemovic.2019.16.a102.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Huang, Wei Dong, Jin Song Bao, and You Sheng Xu. "Terramechanics Model and Motion Control Strategy Simulation for down-Slope Travel of a Lunar Rover." Applied Mechanics and Materials 215-216 (November 2012): 1291–97. http://dx.doi.org/10.4028/www.scientific.net/amm.215-216.1291.

Texto completo
Resumen
Slopes are a typical terrain of the rugged lunar surface. Using a modified model for wheel-terrain interaction, a terramechanics model for down-slope travel of a lunar rover is established. In order to describe the soil sinkage of different wheels more accurately, soil deformation by the front wheels is taken into account and the front and rear wheel sinkages are calculated separately. Finally, a motion control strategy for rover descent is proposed based upon analysis of its descending course, and validated by simulation in a 3D lunar rover visual simulation platform.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Bai, Yidong, Lingyu Sun, and Minglu Zhang. "Terramechanics Modeling and Grouser Optimization for Multistage Adaptive Lateral Deformation Tracked Robot." IEEE Access 8 (2020): 171387–96. http://dx.doi.org/10.1109/access.2020.3024977.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

NAGAOKA, Kenji, Noriaki MIZUKAMI, Masatsugu OTSUKI, and Takashi KUBOTA. "2P1-F14 Study on Terramechanics Application to Wheeled Robot in Rough Terrain." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2010 (2010): _2P1—F14_1—_2P1—F14_4. http://dx.doi.org/10.1299/jsmermd.2010._2p1-f14_1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Gao, Haibo, Junlong Guo, Liang Ding, et al. "Longitudinal skid model for wheels of planetary exploration rovers based on terramechanics." Journal of Terramechanics 50, no. 5-6 (2013): 327–43. http://dx.doi.org/10.1016/j.jterra.2013.10.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Shamrao, Chandramouli Padmanabhan, Sayan Gupta, and Annadurai Mylswamy. "Estimation of terramechanics parameters of wheel-soil interaction model using particle filtering." Journal of Terramechanics 79 (October 2018): 79–95. http://dx.doi.org/10.1016/j.jterra.2018.07.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Endo, Masafumi, Shogo Endo, Kenji Nagaoka, and Kazuya Yoshida. "Terrain-Dependent Slip Risk Prediction for Planetary Exploration Rovers." Robotica 39, no. 10 (2021): 1883–96. http://dx.doi.org/10.1017/s0263574721000035.

Texto completo
Resumen
SUMMARYWheel slip prediction on rough terrain is crucial for secure, long-term operations of planetary exploration rovers. Although rough, unstructured terrain hampers mobility, prediction by modeling wheel–terrain interactions remains difficult owing to unclear terrain conditions and complexities of terramechanics models. This study proposes a vision-based approach with machine learning for predicting wheel slip risk by estimating the slope from 3D information and classifying terrain types from image information. It considers the slope estimation accuracy for risk prediction under sharp incre
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Wang, Hong, Qiang Song, Shengbo Wang, and Pu Zeng. "Dynamic Modeling and Control Strategy Optimization for a Hybrid Electric Tracked Vehicle." Mathematical Problems in Engineering 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/251906.

Texto completo
Resumen
A new hybrid electric tracked bulldozer composed of an engine generator, two driving motors, and an ultracapacitor is put forward, which can provide high efficiencies and less fuel consumption comparing with traditional ones. This paper first presents the terramechanics of this hybrid electric tracked bulldozer. The driving dynamics for this tracked bulldozer is then analyzed. After that, based on analyzing the working characteristics of the engine, generator, and driving motors, the power train system model and control strategy optimization is established by using MATLAB/Simulink and OPTIMUS
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Wasfy, Tamer M., and Paramsothy Jayakumar. "Next-generation NATO reference mobility model complex terramechanics – Part 2: Requirements and prototype." Journal of Terramechanics 96 (August 2021): 59–79. http://dx.doi.org/10.1016/j.jterra.2021.02.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

JIAO, Zhen, Haibo GAO, Zongquan DENG, and Liang DING. "Lunar Rover Wheel-Terrain Interaction Model for Climbing-up-Slope Based on Terramechanics." ROBOT 32, no. 1 (2010): 70–76. http://dx.doi.org/10.3724/sp.j.1218.2010.00070.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

DING, Liang. "Terramechanics Model for Wheel-terrain Interaction of Lunar Rover Based on Stress Distribution." Journal of Mechanical Engineering 45, no. 07 (2009): 49. http://dx.doi.org/10.3901/jme.2009.07.049.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

HUANG, Weidong. "Terramechanics Model and Movement Performance Analysis of a Lunar Rover for Slope Travel." Journal of Mechanical Engineering 49, no. 05 (2013): 17. http://dx.doi.org/10.3901/jme.2013.05.017.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

El Gindy, Moustafa, Mirwais Sharifi, Zeinab El Sayegh, and Fatemeh Gheshlaghi. "Prediction and validation of terramechanics models for estimation of tyre rolling resistance coefficient." International Journal of Vehicle Systems Modelling and Testing 14, no. 1 (2020): 71. http://dx.doi.org/10.1504/ijvsmt.2020.10030673.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Gheshlaghi, Fatemeh, Zeinab El Sayegh, Mirwais Sharifi, and Moustafa El Gindy. "Prediction and validation of terramechanics models for estimation of tyre rolling resistance coefficient." International Journal of Vehicle Systems Modelling and Testing 14, no. 1 (2020): 71. http://dx.doi.org/10.1504/ijvsmt.2020.108658.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Griffith, G. Meirion, and M. Spenko. "Simulation and experimental validation of a modified terramechanics model for small-wheeled vehicles." International Journal of Vehicle Design 64, no. 2/3/4 (2014): 153. http://dx.doi.org/10.1504/ijvd.2014.058499.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Ishigami, Genya, Akiko Miwa, Keiji Nagatani, and Kazuya Yoshida. "Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil." Journal of Field Robotics 24, no. 3 (2007): 233–50. http://dx.doi.org/10.1002/rob.20187.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Wasfy, Tamer, and Paramsothy Jayakumar. "Next-generation NATO reference mobility model complex terramechanics – Part 1: Definition and literature review." Journal of Terramechanics 96 (August 2021): 45–57. http://dx.doi.org/10.1016/j.jterra.2021.02.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Li, Jie, Jun He, Yan Xing, and Feng Gao. "Dimensional optimization of rocker-bogie suspension for planetary rover based on kinetostatics and terramechanics." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 236, no. 1 (2021): 246–62. http://dx.doi.org/10.1177/09544062211027200.

Texto completo
Resumen
Dimensional optimization is important for planetary rovers to reach good performance, such as high mobility, stability, and low energy consumption. The paper presents a dimensional optimization for a planetary rover with rocker-bogie suspension. During the optimization process, the influence of dimensions on the actuation requirements is studied based on kinetostatics and terramechanics. The objective function is built considering the average driving torque requirements in the most common type of windblown terrain in Mars called megaripples. The optimal dimension design is reached through the
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Higa, Shoya, Yumi Iwashita, Kyohei Otsu, et al. "Vision-Based Estimation of Driving Energy for Planetary Rovers Using Deep Learning and Terramechanics." IEEE Robotics and Automation Letters 4, no. 4 (2019): 3876–83. http://dx.doi.org/10.1109/lra.2019.2928765.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Eltayeb Ahmed, Ahmed Elawad, Alaa El Hariri, and Péter Kiss. "Soil strength and load bearing capacity measurement techniques." Hungarian Agricultural Engineering, no. 40 (2021): 16–27. http://dx.doi.org/10.17676/hae.2021.40.16.

Texto completo
Resumen
In this research, the interest will be given to studying the load bearing capacity and strength of soil terrain, resulting from machine-soil interaction. A small introduction will define terramechanics studies and its importance when dealing with machine-terrain interaction. The axial load acting on a terrain will lead to the sinkage of the machine, thus considering this load will help in studying the load bearing capacity of the soil and ending up with results that are beneficial to terramechnaics studies, so improvement in the machine design or choosing the suitable machine for specific terr
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Ou, Yi, Si Ji Huang, Hu Tian Feng, and Wei Jun Tao. "Modeling and Analysis of the Steering Resistance Moment in Small Tracked Robot." Advanced Materials Research 201-203 (February 2011): 1939–48. http://dx.doi.org/10.4028/www.scientific.net/amr.201-203.1939.

Texto completo
Resumen
A modeling method for steering resistance moment in small tracked robot is studied. First of all, Classical steering resistance torque modeling with uniform resistance is studied in low speed and high speed. Then the steering resistance torque modeling while lateral resistance and the pressure are linearly distributed is proposed. After that steering resistance moment modeling based on the stress-strain theory is used to describe the robot's steering resistance above different soil. Among them, the lateral resistance is nonlinear distribution. The driving experiments in three different vehicle
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Xue, Long, Zhaolong Dang, Baichao Chen, Jianqiao Li, and Meng Zou. "Pressure-Bearing Parameter Identification for Martian Soil Based on a Terramechanics Model and Genetic Algorithm." Journal of Aerospace Engineering 31, no. 2 (2018): 04017104. http://dx.doi.org/10.1061/(asce)as.1943-5525.0000810.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!