Artículos de revistas sobre el tema "Thermoelectric tension"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 47 mejores artículos de revistas para su investigación sobre el tema "Thermoelectric tension".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
PLEVACHUK, YURIY, VASYL SKLYARCHUK, GERNOT POTTLACHER, THOMAS LEITNER, PETER ŠVEC SR., PETER ŠVEC, LUBOMIR OROVCIK, MARTA DUFANETS y ANDRIY YAKYMOVYCH. "The liquid AlCu4TiMg alloy: thermophysical and thermodynamic properties". High Temperatures-High Pressures 49, n.º 1-2 (2020): 61–73. http://dx.doi.org/10.32908/hthp.v49.847.
Texto completoDobosz, A., Yu Plevachuk, V. Sklyarchuk, B. Sokoliuk y T. Gancarz. "The influence of Li on the thermophysical properties of liquid Ga–Sn–Zn eutectic alloys". Journal of Materials Science: Materials in Electronics 30, n.º 20 (27 de septiembre de 2019): 18970–80. http://dx.doi.org/10.1007/s10854-019-02254-4.
Texto completoLi, Guodong, Qi An, Sergey I. Morozov, Bo Duan, Pengcheng Zhai, Qingjie Zhang, William A. Goddard III y G. Jeffrey Snyder. "Determining ideal strength and failure mechanism of thermoelectric CuInTe2 through quantum mechanics". Journal of Materials Chemistry A 6, n.º 25 (2018): 11743–50. http://dx.doi.org/10.1039/c8ta03837f.
Texto completoKumar, Pawan, Meenu Gupta y Vineet Kumar. "Microstructural analysis and multi response optimization of WEDM of Inconel 825 using RSM based desirability approach". Journal of the Mechanical Behavior of Materials 28, n.º 1 (1 de octubre de 2019): 39–61. http://dx.doi.org/10.1515/jmbm-2019-0006.
Texto completoPrice, J. M. y F. R. Wilmoth. "Elevated body temperature and increased blood vessel sensitivity in spontaneously hypertensive rats". American Journal of Physiology-Heart and Circulatory Physiology 258, n.º 4 (1 de abril de 1990): H946—H953. http://dx.doi.org/10.1152/ajpheart.1990.258.4.h946.
Texto completoZou, Chunpeng, Chihou Lei, Daifeng Zou y Yunya Liu. "Uniaxial Tensile Strain Induced the Enhancement of Thermoelectric Properties in n-Type BiCuOCh (Ch = Se, S): A First Principles Study". Materials 13, n.º 7 (9 de abril de 2020): 1755. http://dx.doi.org/10.3390/ma13071755.
Texto completoTakayama, Yoshimasa, T. Abe, T. Yashiro, Hideo Watanabe y Hajime Kato. "Fabrication of Structural Composite Accompanied with a Function of Thermoelectric Conversion". Materials Science Forum 561-565 (octubre de 2007): 743–46. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.743.
Texto completoBera, Jayanta y Satyajit Sahu. "Strain induced valley degeneracy: a route to the enhancement of thermoelectric properties of monolayer WS2". RSC Advances 9, n.º 43 (2019): 25216–24. http://dx.doi.org/10.1039/c9ra04470a.
Texto completoLv, H. Y., W. J. Lu, D. F. Shao, H. Y. Lu y Y. P. Sun. "Strain-induced enhancement in the thermoelectric performance of a ZrS2monolayer". Journal of Materials Chemistry C 4, n.º 20 (2016): 4538–45. http://dx.doi.org/10.1039/c6tc01135g.
Texto completoKonabe, Satoru, Shiro Kawabata y Takahiro Yamamoto. "Thermoelectric properties of bilayer phosphorene under tensile strain". Surface and Interface Analysis 48, n.º 11 (27 de julio de 2016): 1231–34. http://dx.doi.org/10.1002/sia.6094.
Texto completoVidakis, Nectarios, Markos Petousis, Lazaros Tzounis, Emmanuel Velidakis, Nikolaos Mountakis y Sotirios A. Grammatikos. "Polyamide 12/Multiwalled Carbon Nanotube and Carbon Black Nanocomposites Manufactured by 3D Printing Fused Filament Fabrication: A Comparison of the Electrical, Thermoelectric, and Mechanical Properties". C 7, n.º 2 (23 de abril de 2021): 38. http://dx.doi.org/10.3390/c7020038.
Texto completoWang, Ning, Menglu Li, Haiyan Xiao, Hengfeng Gong, Zijiang Liu, Xiaotao Zu y Liang Qiao. "Optimizing the thermoelectric transport properties of Bi2O2Se monolayer via biaxial strain". Physical Chemistry Chemical Physics 21, n.º 27 (2019): 15097–105. http://dx.doi.org/10.1039/c9cp02204j.
Texto completoTzounis, Lazaros, Markos Petousis, Sotirios Grammatikos y Nectarios Vidakis. "3D Printed Thermoelectric Polyurethane/Multiwalled Carbon Nanotube Nanocomposites: A Novel Approach towards the Fabrication of Flexible and Stretchable Organic Thermoelectrics". Materials 13, n.º 12 (26 de junio de 2020): 2879. http://dx.doi.org/10.3390/ma13122879.
Texto completoChatterjee, Arindom, Emigdio Chavez-Angel, Belén Ballesteros, José Manuel Caicedo, Jessica Padilla-Pantoja, Victor Leborán, Clivia M. Sotomayor Torres, Francisco Rivadulla y José Santiso. "Large thermoelectric power variations in epitaxial thin films of layered perovskite GdBaCo2O5.5±δ with a different preferred orientation and strain". Journal of Materials Chemistry A 8, n.º 38 (2020): 19975–83. http://dx.doi.org/10.1039/d0ta04781c.
Texto completoHynynen, Jonna, Emmy Järsvall, Renee Kroon, Yadong Zhang, Stephen Barlow, Seth R. Marder, Martijn Kemerink, Anja Lund y Christian Müller. "Enhanced Thermoelectric Power Factor of Tensile Drawn Poly(3-hexylthiophene)". ACS Macro Letters 8, n.º 1 (26 de diciembre de 2018): 70–76. http://dx.doi.org/10.1021/acsmacrolett.8b00820.
Texto completoFunahashi, Ryoji, Yoko Matsumura, Tomoyuki Urata, Hiroyo Murakami, Hitomi Ikenishi, Shinya Sasaki y Shigeaki Sugiyama. "Relationship Between Tensile Strength and Durability of Oxide Thermoelectric Modules". Journal of Electronic Materials 50, n.º 7 (20 de abril de 2021): 3996–4005. http://dx.doi.org/10.1007/s11664-021-08934-4.
Texto completoNayeb Sadeghi, Safoura, Mona Zebarjadi y Keivan Esfarjani. "Non-linear enhancement of thermoelectric performance of a TiSe2 monolayer due to tensile strain, from first-principles calculations". Journal of Materials Chemistry C 7, n.º 24 (2019): 7308–17. http://dx.doi.org/10.1039/c9tc00183b.
Texto completoKientzl, Imre, Imre Norbert Orbulov, János Dobránszky y Árpád Németh. "Mechanical Behaviour Al-Matrix Composite Wires in Double Composite Structures". Advances in Science and Technology 50 (octubre de 2006): 147–52. http://dx.doi.org/10.4028/www.scientific.net/ast.50.147.
Texto completoHung, Fei-Yi, Chih-Jung Wang, Sung-Min Huang, Li-Hui Chen y Truan-Sheng Lui. "Thermoelectric characteristics and tensile properties of Sn–9Zn–xAg lead-free solders". Journal of Alloys and Compounds 420, n.º 1-2 (agosto de 2006): 193–98. http://dx.doi.org/10.1016/j.jallcom.2005.11.011.
Texto completoSun, Min, Guowu Tang, Bowen Huang, Zhongjia Chen, Yu-Jun Zhao, Hanfu Wang, Ziwen Zhao, Dongdan Chen, Qi Qian y Zhongmin Yang. "Tailoring microstructure and electrical transportation through tensile stress in Bi2Te3 thermoelectric fibers". Journal of Materiomics 6, n.º 3 (septiembre de 2020): 467–75. http://dx.doi.org/10.1016/j.jmat.2020.02.004.
Texto completoYeganeh, M. y F. Kafi. "Stability and thermoelectric properties of the MgO monolayers under tensile and compressive strain". Physica E: Low-dimensional Systems and Nanostructures 123 (septiembre de 2020): 114176. http://dx.doi.org/10.1016/j.physe.2020.114176.
Texto completode Resende, Domingos Sávio, Herbet Radispiel Filho, José Genário Keles, Augusto Cesar da Silva Bezerra, Maria Teresa Paulino Aguilar y Antonio Maria Claret de Gouveia. "Eucalyptus Chip Ashes in Cementitious Composites". Materials Science Forum 775-776 (enero de 2014): 205–9. http://dx.doi.org/10.4028/www.scientific.net/msf.775-776.205.
Texto completoKonabe, Satoru y Takahiro Yamamoto. "Significant enhancement of the thermoelectric performance of phosphorene through the application of tensile strain". Applied Physics Express 8, n.º 1 (10 de diciembre de 2014): 015202. http://dx.doi.org/10.7567/apex.8.015202.
Texto completoKusagaya, K., H. Hagino, S. Tanaka, K. Miyazaki y M. Takashiri. "Structural and Thermoelectric Properties of Nanocrystalline Bismuth Telluride Thin Films Under Compressive and Tensile Strain". Journal of Electronic Materials 44, n.º 6 (4 de noviembre de 2014): 1632–36. http://dx.doi.org/10.1007/s11664-014-3496-4.
Texto completoMa, Weiliang, Marie-Christine Record, Jing Tian y Pascal Boulet. "Strain Effects on the Electronic and Thermoelectric Properties of n(PbTe)-m(Bi2Te3) System Compounds". Materials 14, n.º 15 (22 de julio de 2021): 4086. http://dx.doi.org/10.3390/ma14154086.
Texto completoKalakonda, Parvathalu, Pranay Bhasker Kalakonda y Sreenivas Banne. "Studies of electrical, thermal, and mechanical properties of single-walled carbon nanotube and polyaniline of nanoporous nanocomposites". Nanomaterials and Nanotechnology 11 (1 de enero de 2021): 184798042110011. http://dx.doi.org/10.1177/18479804211001140.
Texto completoMészáros, István y Bálint Bögre. "Complex Study of Eutectoidal Phase Transformation of 2507-Type Super-Duplex Stainless Steel". Materials 12, n.º 13 (9 de julio de 2019): 2205. http://dx.doi.org/10.3390/ma12132205.
Texto completoGuo, San-Dong y Yan Wang. "Small compressive strain-induced semiconductor–metal transition and tensile strain-enhanced thermoelectric properties in monolayer PtTe2". Semiconductor Science and Technology 32, n.º 5 (28 de marzo de 2017): 055004. http://dx.doi.org/10.1088/1361-6641/aa62bf.
Texto completoKaralis, George, Christos Mytafides, Anastasia Polymerou, Kyriaki Tsirka, Lazaros Tzounis, Leonidas N. Gergidis y Alkiviadis S. Paipetis. "Hierarchical Reinforcing Fibers for Energy Harvesting Applications - A Strength Study". Key Engineering Materials 827 (diciembre de 2019): 252–57. http://dx.doi.org/10.4028/www.scientific.net/kem.827.252.
Texto completoKusagaya, K., H. Hagino, S. Tanaka, K. Miyazaki y M. Takashiri. "Erratum to: Structural and Thermoelectric Properties of Nanocrystalline Bismuth Telluride Thin Films Under Compressive and Tensile Strain". Journal of Electronic Materials 44, n.º 4 (18 de febrero de 2015): 1253–54. http://dx.doi.org/10.1007/s11664-015-3690-z.
Texto completoAlavi-Rad, Hosein, Azadeh Kiani-Sarkaleh, Saeed Rouhi y Abbas Ghadimi. "Investigation of the electronic and thermoelectric properties of hydrogenated monolayer germanene under biaxial tensile and compressive strains by DFT approach". Physica E: Low-dimensional Systems and Nanostructures 124 (octubre de 2020): 114339. http://dx.doi.org/10.1016/j.physe.2020.114339.
Texto completoGonçalves, Jordana, Patrícia Lima, Beate Krause, Petra Pötschke, Ugo Lafont, José Gomes, Cristiano Abreu, Maria Paiva y José Covas. "Electrically Conductive Polyetheretherketone Nanocomposite Filaments: From Production to Fused Deposition Modeling". Polymers 10, n.º 8 (18 de agosto de 2018): 925. http://dx.doi.org/10.3390/polym10080925.
Texto completoTang Van, Lam, Dien Vu Kim, Hung Ngo Xuan, Tho Vu Dinh, Boris Bulgakov y Sophia Bazhenova. "Effect of Aluminium Powder on Light-weight Aerated Concrete Properties". E3S Web of Conferences 97 (2019): 02005. http://dx.doi.org/10.1051/e3sconf/20199702005.
Texto completoLuceño-Sánchez, José A., Ana Charas y Ana M. Díez-Pascual. "Effect of HDI-Modified GO on the Thermoelectric Performance of Poly(3,4-ethylenedioxythiophene):Poly(Styrenesulfonate) Nanocomposite Films". Polymers 13, n.º 9 (7 de mayo de 2021): 1503. http://dx.doi.org/10.3390/polym13091503.
Texto completoNguyen, Tuan Anh, Quang Tung Nguyen, Xuan Canh Nguyen y Van Hoan Nguyen. "Study on Fire Resistance Ability and Mechanical Properties of Composites Based on Epikote 240 Epoxy Resin and Thermoelectric Fly Ash: An Ecofriendly Additive". Journal of Chemistry 2019 (16 de junio de 2019): 1–8. http://dx.doi.org/10.1155/2019/2635231.
Texto completoLuceño Sánchez, José, Rafael Peña Capilla y Ana Díez-Pascual. "High-Performance PEDOT:PSS/Hexamethylene Diisocyanate-Functionalized Graphene Oxide Nanocomposites: Preparation and Properties". Polymers 10, n.º 10 (20 de octubre de 2018): 1169. http://dx.doi.org/10.3390/polym10101169.
Texto completoKusagaya, Kyosuke y Masayuki Takashiri. "Investigation of the effects of compressive and tensile strain on n-type bismuth telluride and p-type antimony telluride nanocrystalline thin films for use in flexible thermoelectric generators". Journal of Alloys and Compounds 653 (diciembre de 2015): 480–85. http://dx.doi.org/10.1016/j.jallcom.2015.09.039.
Texto completoMohamed-Noriega, N., E. López Cuéllar y A. Martinez de la Cruz. "Thermoelectric Power Changes of Low Strength Steel Induced by Hydrogen Embrittlement Tests". MRS Proceedings 1243 (2009). http://dx.doi.org/10.1557/proc-1243-15.
Texto completoBozzi, George J. "Thermoelectric Energy Harvesting Snow Pants: Turning Body Heat Into Usable Energy". Journal of Student Science and Technology 8, n.º 1 (1 de abril de 2015). http://dx.doi.org/10.13034/jsst.v8i1.44.
Texto completoMansouri, Nariman, Edward J. Timm, Harold J. Schock, Dipankar Sahoo y Adam Kotrba. "Development of a Circular Thermoelectric Skutterudite Couple Using Compression Technology". Journal of Energy Resources Technology 138, n.º 5 (10 de marzo de 2016). http://dx.doi.org/10.1115/1.4032619.
Texto completoEgbu, RN. "Effect of Temperature on the Tensile Strength and Thermoelectric e.m.f. Values of Aluminium Alloy". Journal of Applied Sciences and Environmental Management 11, n.º 2 (1 de junio de 2010). http://dx.doi.org/10.4314/jasem.v11i2.54999.
Texto completoAl-Jothery, H. K. M., Thar M. Albarody, P. S. M. Megat-Yusof, N. Al-Shaibani y H. G. Mohammed. "Experimental Investigations on Microwave-Current Assisted Sintering Process and Oxidation of Graphite Die at High Temperature". International Journal of Automotive and Mechanical Engineering 18, n.º 2 (18 de junio de 2021). http://dx.doi.org/10.15282/ijame.18.2.2021.16.0672.
Texto completoRanjan, Ram, Joseph E. Turney, Charles E. Lents y Virginia H. Faustino. "Design of Thermoelectric Modules for High Heat Flux Cooling". Journal of Electronic Packaging 136, n.º 4 (19 de septiembre de 2014). http://dx.doi.org/10.1115/1.4028118.
Texto completoUchida, N., Y. Ohishi, K. Kurosaki, S. Yamanaka, T. Tada y T. Kanayama. "Reduction of thermal conductivity in semiconducting composite films consisting of silicon and transition-metal silicide nanocrystals". MRS Proceedings 1456 (2013). http://dx.doi.org/10.1557/opl.2013.533.
Texto completoOta, Shinya, Ken-ichi Uchida, Ryo Iguchi, Pham Van Thach, Hiroyuki Awano y Daichi Chiba. "Strain-induced switching of heat current direction generated by magneto-thermoelectric effects". Scientific Reports 9, n.º 1 (13 de septiembre de 2019). http://dx.doi.org/10.1038/s41598-019-49567-2.
Texto completo"Effect of Printing Parameters on Tensile, Dynamic Mechanical, and Thermoelectric Properties of FDM 3D Printed CABS/ZnO Composites". Materials 11, n.º 4 (22 de marzo de 2018): 466. http://dx.doi.org/10.3390/ma11040466.
Texto completoZhang, Yichuan, Liang Deng, Haicai Lv y Guangming Chen. "Toward improved trade-off between thermoelectric and mechanical performances in polycarbonate/single-walled carbon nanotube composite films". npj Flexible Electronics 4, n.º 1 (2 de octubre de 2020). http://dx.doi.org/10.1038/s41528-020-00089-2.
Texto completo