Literatura académica sobre el tema "Tilapia – Diseases"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Tilapia – Diseases".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Tilapia – Diseases"

1

Bian, Chao, Jia Li, Xueqiang Lin, Xiyang Chen, Yunhai Yi, Xinxin You, Yiping Zhang, Yunyun Lv y Qiong Shi. "Whole Genome Sequencing of the Blue Tilapia (Oreochromis aureus) Provides a Valuable Genetic Resource for Biomedical Research on Tilapias". Marine Drugs 17, n.º 7 (28 de junio de 2019): 386. http://dx.doi.org/10.3390/md17070386.

Texto completo
Resumen
Blue tilapia (Oreochromis aureus) has been an economically important fish in Asian countries. It can grow and reproduce in both freshwater and brackish water conditions, whereas it is also considered as a significant invasive species around the world. This species has been widely used as the hybridization parent(s) for tilapia breeding with a major aim to produce novel strains. However, available genomic resources are still limited for this important tilapia species. Here, we for the first time sequenced and assembled a draft genome for a seawater cultured blue tilapia (0.92 Gb), with 97.8% completeness and a scaffold N50 of 1.1 Mb, which suggests a relatively high quality of this genome assembly. We also predicted 23,117 protein-coding genes in the blue tilapia genome. Comparisons of predicted antimicrobial peptides between the blue tilapia and its close relative Nile tilapia proved that these immunological genes are highly similar with a genome-wide scattering distribution. As a valuable genetic resource, our blue tilapia genome assembly will benefit for biomedical researches and practical molecular breeding for high resistance to various diseases, which have been a critical problem in the aquaculture of tilapias.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Faruk, MAR, N. Rahman y ZP Patwary. "Risk factors associated with tilapia and pangasius diseases". Journal of the Bangladesh Agricultural University 15, n.º 2 (29 de diciembre de 2017): 325–31. http://dx.doi.org/10.3329/jbau.v15i2.35083.

Texto completo
Resumen
Tilapia (Oreochromis niloticus) and pangasius (Pangasianodon hypophthalmus) are currently very important and popular species for aquaculture inBangladesh. They are cultured commercially in high stocking densities which are accompanied by several risk factors leading to disease outbreaks. The present study was carried out to investigate diseases of these two species under farming condition with special emphasis on risk factors analysis and their health management strategies. Data were collected through questionnaire interview and focus group discussion with farmers. Altogether 50 farmers were interviewed of which 25 were tilapia farmers and 25 were pangus farmers in Trishal upazila of Mymensingh district. Possible risks were assessed using certain parameters like season of disease occurrence, presence of predators in farms, contact with livestock, maintenance of farm hygiene, sharing of farming tools, feeding of fish and pond management measures. It was found that presence of predatory birds, maintenance of good farm hygiene, sharing of tools, increased stocking densities and improper pond management were the major risks of disease outbreak. The most prevalent clinical signs of diseased fish included anal protrusion and red spot on body surface in case of pangus while pop and red eye and gas problems were common in both pangasius and tilapia. Generally, pangus were found more susceptible to disease than tilapia. Predatory birds were a big problem in the study area. They act as a potential carrier of infectious organisms among farms from farm to farm.J. Bangladesh Agril. Univ. 15(2): 325-331, December 2017
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Waiyamitra, Pitchaporn, Chutchai Piewbang, Somporn Techangamsuwan, Woei Chang Liew y Win Surachetpong. "Infection of Tilapia tilapinevirus in Mozambique Tilapia (Oreochromis mossambicus), a Globally Vulnerable Fish Species". Viruses 13, n.º 6 (9 de junio de 2021): 1104. http://dx.doi.org/10.3390/v13061104.

Texto completo
Resumen
Tilapia tilapinevirus, or tilapia lake virus (TiLV), is a highly contagious virus found in tilapia and its hybrid species that has been reported worldwide, including in Asia, the Americas, and Africa. In this study, we experimentally challenged Mozambique tilapia (Oreochromis mossambicus) with a virulent TiLV strain, VETKU-TV01, at both low (1 × 103 TCID50/mL) and high (1 × 105 TCID50/mL) concentration. After the challenge, the Mozambique tilapia showed pale skin with some hemorrhage and erosion, lethargy, abdominal swelling, congestion around the eye, and exophthalmos; there was a cumulative mortality rate at 48.89% and 77.78% in the groups that received the low and high concentration, respectively. Quantitative PCR and in situ hybridization confirmed the presence of TiLV in the internal organs of moribund fish. Notably, severe histopathological changes, including glycogen depletion, syncytial hepatic cells containing multiple nuclei and intracytoplasmic inclusion bodies, and infiltration of melanomacrophage into the spleen, were frequently found in the Mozambique tilapia challenged with high TiLV concentration. Comparatively, the infectivity and pathology of the TiLV infection in Mozambique tilapia and red hybrid tilapia (Oreochromis spp.) were found to be similar. Our results confirmed the susceptibility of Mozambique tilapia, which has recently been determined to be a vulnerable species, to TiLV infection, expanding knowledge that the virus can cause disease in this fish species.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Justo, M. C. N., L. G. A. Nascimento, Y. C. Meneses, T. Trombeta y S. C. Cohen. "Monogenoidea parasites of Oreochromis niloticus submitted to ractopamine supplemented diet from cultivated system". Arquivo Brasileiro de Medicina Veterinária e Zootecnia 72, n.º 5 (septiembre de 2020): 1980–88. http://dx.doi.org/10.1590/1678-4162-11652.

Texto completo
Resumen
ABSTRACT Oreochromis niloticus (Linnaeus) (Perciformes: Cichlidae), commonly named “tilapia”, is the second most cultivated species in the world. Among the diseases that affect tilapia are parasitic diseases caused by parasites of the class Monogenoidea. The aim of the present study was to analyze parasitism rates among specimens of O. niloticus in farming systems, after dietary supplementation with ractopamine, a growth promoter that is used for fattening fish. The action of this substance on the quantitative parameters of infestation by Monogenoidea was evaluated. Samples of O. niloticus were obtained from a fish farm in Brasília, Federal District, Brazil. Their gills were removed and fixed. Four species of monogenoideans were collected: Cichlidogyrus halli, C. sclerosus, C. thurstonae and Scutogyrus longicornis. The results from this study indicate that the monogenoidean parasites of tilapias examined here presented different behaviors in relation to the ractopamine concentrations that were added to the food. The parasitological indexes did not present significant reductions through using ractopamine, thus leading to the conclusion that administration of ractopamine is not efficient as a method for controlling infestations of monogenoidean parasites.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Mugimba, Kizito Kahoza, Shlomit Tal, Saurabh Dubey, Stephen Mutoloki, Arnon Dishon, Øystein Evensen y Hetron M. Munang’andu. "Gray (Oreochromis niloticus x O. aureus) and Red (Oreochromis spp.) Tilapia Show Equal Susceptibility and Proinflammatory Cytokine Responses to Experimental Tilapia Lake Virus Infection". Viruses 11, n.º 10 (24 de septiembre de 2019): 893. http://dx.doi.org/10.3390/v11100893.

Texto completo
Resumen
Tilapia is the second most farmed fish species after carp in the world. However, the production has come under threat due to emerging diseases such as tilapia lake virus (TiLV) that causes massive mortalities with high economic losses. It is largely unknown whether different tilapia strains are equally susceptible to TiLV infection. In the present study we compared the susceptibility of gray (Oreochromis niloticus x O. aureus) and red tilapia (Oreochromis spp.) to experimental TiLV infection. Virus was injected intraperitoneally at a concentration of 104 TCID50/mL. Our findings show that gray tilapia had a lower mortality, 86.44%, but statistically not significantly different (p = 0.068) from red tilapia (100%). The duration of the mortality period from onset to cessation was similar for the two species, starting at 2–3 days post challenge (dpc) with a median at 10–11 dpi and ending on 20–22 dpi. In addition, there was no difference between species in mean viral loads in brain, liver and headkidney from fish collected soon after death. As for host response, expression levels of IL-1β and TNFα were equally high in brain and headkidney samples while levels in liver samples were low for both red and gray tilapia, which coincides with lower viral loads in liver compared to brain and headkidney for both species. We find that red and gray tilapia were equally susceptible to TiLV infection with similar post challenge mortality levels, equal virus concentration in target organs and similar proinflammatory cytokine responses in target and lymphoid organs at time of death. Nonetheless, we advocate that the search for less susceptible tilapia strains should continue with the view to reduce losses from TiLV infection in aquaculture.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Cai, Wan-qi, Si-fa Li y Jiang-yao Ma. "Diseases resistance of Nile tilapia (Oreochromis niloticus), blue tilapia (Oreochromis aureus) and their hybrid (female Nile tilapia×male blue tilapia) to Aeromonas sobria". Aquaculture 229, n.º 1-4 (enero de 2004): 79–87. http://dx.doi.org/10.1016/s0044-8486(03)00357-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Abu Nor, Nadirah, Mohd Zamri-Saad, Ina-Salwany Md Yasin, Annas Salleh, Farina Mustaffa-Kamal, Mohd Fuad Matori y Mohd Noor Amal Azmai. "Efficacy of Whole Cell Inactivated Vibrio harveyi Vaccine against Vibriosis in a Marine Red Hybrid Tilapia (Oreochromis niloticus × O. mossambicus) Model". Vaccines 8, n.º 4 (4 de diciembre de 2020): 734. http://dx.doi.org/10.3390/vaccines8040734.

Texto completo
Resumen
Vibrio harveyi causes vibriosis in various commercial marine fish species. The infection leads to significant economic losses for aquaculture farms, and vaccination is an alternative approach for the prevention and control of fish diseases for aquaculture sustainability. This study describes the use of formalin-killed Vibrio harveyi (FKVh) strain Vh1 as a vaccine candidate to stimulate innate and adaptive immunities against vibriosis in a marine red hybrid tilapia model. Tilapia are fast growing; cheap; resistant to diseases; and tolerant to adverse environmental conditions of fresh water, brackish water, and marine water and because of these advantages, marine red hybrid tilapia is a suitable candidate as a model to study fish diseases and vaccinations against vibriosis. A total of 180 healthy red hybrid tilapias were gradually adapted to the marine environment before being divided into two groups, with 90 fish in each group and were kept in triplicate with 30 fish per tank. Group 1 was vaccinated intraperitoneally with 100 µL of FKVh on week 0, and a booster dose was similarly administered on week 2. Group 2 was similarly injected with PBS. Skin mucus, serum, and gut lavage were collected weekly for enzyme-linked immunosorbent assay (ELISA) and a lysozyme activity assay from a total of 30 fish of each group. On week 4, the remaining 60 fish of Groups 1 and 2 were challenged with 108 cfu/fish of live Vibrio harveyi. The clinical signs were monitored while the survival rate was recorded for 48 h post-challenge. Vaccination with FKVh resulted in a significantly (p < 0.05) higher rate of survival (87%) compared to the control (20%). The IgM antibody titer and lysozyme activities of Group 1 were significantly (p < 0.05) higher than the unvaccinated Groups 2 in most weeks throughout the experiment. Therefore, the intraperitoneal exposure of marine red hybrid tilapia to killed V. harveyi enhanced the resistance and antibody response of the fish against vibriosis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Rocha, Rafael dos Santos, Lana Oliveira Leite, Oscarina Viana de Sousa y Regine Helena Silva dos Fernandes Vieira. "Antimicrobial Susceptibility ofEscherichia coliIsolated from Fresh-Marketed Nile Tilapia (Oreochromis niloticus)". Journal of Pathogens 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/756539.

Texto completo
Resumen
The contamination of seafood by bacteria of fecal origin, especiallyEscherichia coli, is a widely documented sanitary problem. The objective of the present study was to isolateE. colistrains from the gills, muscle, and body surface of farmed Nile tilapias (Oreochromis niloticus) fresh-marketed in supermarkets in Fortaleza (Ceará, Brazil), to determine their susceptibility to antibiotics of different families (amikacin, gentamicin, imipenem, cephalothin, cefotaxime, ciprofloxacin, aztreonam, ampicillin, nalidixic acid, tetracycline, and sulfametoxazol-trimetoprim), and to determine the nature of resistance by plasmid curing. Forty-four strains (body surface = 25, gills = 15, muscle = 4) were isolated, all of which were susceptible to amikacin, aztreonam, cefotaxime, ciprofloxacin, gentamicin, and imipenem. Gill and body surface samples yielded 11 isolates resistant to ampicillin, tetracycline, and sulfametoxazol-trimetoprim, 4 of which of plasmidial nature. The multiple antibiotic resistance index was higher for strains isolated from body surface than from gills. The overall high antibiotic susceptibility ofE. colistrains isolated from fresh-marketed tilapia was satisfactory, although the occasional finding of plasmidial resistance points to the need for close microbiological surveillance of the farming, handling, and marketing conditions of aquaculture products.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Pulpipat, Theeraporn, Shun Maekawa, Pei-Chi Wang y Shih-Chu Chen. "Immune Responses and Protective Efficacy of a Formalin-Killed Francisella Noatunensis Subsp. Orientalis Vaccine Evaluated through Intraperitoneal and Immersion Challenge Methods in Oreochromis Niloticus". Vaccines 8, n.º 2 (3 de abril de 2020): 163. http://dx.doi.org/10.3390/vaccines8020163.

Texto completo
Resumen
Francisella noatunensis subsp. orientalis (Fno), an intracellular bacterium, causes systemic granulomatous diseases, resulting in high mortality and huge economic losses in Taiwanese tilapia farming. In this study, we tested the efficacy of a formalin-killed Fno vaccine in cultured tilapia. Fno was isolated from diseased tilapia, inactivated with formalin, and mixed with the mineral oil base adjuvant (MontanideTM ISA 763 AVG). A total of 300 tilapia were divided into two groups. The experimental group was intraperitoneally injected with 0.1 mL of vaccine, which was substituted with phosphate-buffered saline (PBS) in the control group. A booster was administered at 2 weeks post-immunization. Tilapia were challenged at 6 weeks post primary immunization by intraperitoneal (IP) injection and immersion methods. Mortality was recorded at 21 and 60 days. The results revealed that the vaccine induced a greater antibody titer and led to 71% and 76% of relative percent survival (RPS) after the IP and immersion challenge. The transcripts of proinflammatory cytokines and immune-related genes, including interleukin-1β (IL-1β), tumor necrosis factor alpha (TNFα), C-X-C motif chemokine ligand 8 (CXCL8), and interleukin-17C (IL-17C), were significantly upregulated after vaccination. Additionally, vaccinated fish had lower bacterial loads in the blood and lower granuloma intensities in the kidney, spleen, liver, and gill than control fish. The results in this study demonstrate that the inactivated Fno vaccine could be an essential resource in Taiwanese tilapia farming.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Eissa, Alaa Eldin, Marwa M. Attia, Mamdouh Y. Elgendy, Gehad A. Ismail, Nader M. Sabry, Abdelbary Prince, Mahmoud A. Mahmoud, Ghada O. El-Demerdash, Mohamed Abdelsalam y Hassan I. M. Derwa. "Streptococcus, Centrocestus formosanus and Myxobolus tilapiae concurrent infections in farmed Nile tilapia (Oreochromis niloticus)". Microbial Pathogenesis 158 (septiembre de 2021): 105084. http://dx.doi.org/10.1016/j.micpath.2021.105084.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Tilapia – Diseases"

1

Wongsathein, Dilok. "Factors affecting experimental Streptococcus agalactiae infection in tilapia, Oreochromis niloticus". Thesis, University of Stirling, 2012. http://hdl.handle.net/1893/10375.

Texto completo
Resumen
Streptococcus agalactiae infection is one of the major disease problems affecting farmed tilapia (Oreochromis niloticus) worldwide. Tilapia are highly susceptible to this disease which results in mortality of up to 70% over a period of around 7 days and significant economic losses for farmers. Affected tilapia commonly present with an irregular behaviour associated with meningoencephalitis and septicaemia. Currently, factors affecting the virulence and transmission of S. agalactiae in fish including tilapia are poorly understood. Reports from natural outbreaks of S. agalactiae infection on tilapia farms have suggested larvae and juvenile or fish smaller than 20 g are not susceptible. In addition, there is variability in individual response to experimental inflammatory challenge associated with coping styles (bold, shy) in common carp (Cyprinus carpio). The central hypotheses of this thesis were that weight, age and coping style might affect the development and progression of this bacterial disease. This study investigated these three factors with experimental S. agalactiae infection in Nile tilapia. A range of bacterial isolates recovered from farmed tilapia, presenting with clinical sign of streptococcosis during natural disease outbreaks were identified and characterised as S. agalactiae by standard conventional methods, biochemical characteristic tests, Lancefield serogrouping and species-specific PCR assay. These isolates were Gram-positive cocci, either β- or non-haemolytic (γ), non-motile, oxidase negative and all of serogroup B. In addition, they were able to grow on Edwards medium (modified) agar as blue colonies and growth was observed in broth from 22 to 37 oC and with 0.5-5% NaCl. The biochemical profiles showed some differences in reactions while all the PCR samples showed similarities to the S. agalactiae type strain. These data confirmed that these strains were identified as group B S. agalactiae. A challenge model for S. agalactiae in Nile tilapia was developed and the LD50 estimated prior to performing subsequent experimental challenge studies. Two exposure routes, immersion and intraperitoneal injection (i.p.), were tested with various concentrations of S. agalactiae. Only i.p. injection produced significant mortalities (9 × 108 CFU/ml = 48% mortality, 9 × 107 = 48% and 8 × 106 = 26%). Streptococcus agalactiae was recovered and identified from all the dead and moribund fish during these experiments, where affected fish showed similar clinical signs and pathology to those reported from natural S. agalactiae infections. The study results showed that an experimental i.p. challenge model for S. agalactiae infection had successfully infected healthy Nile tilapia. In the immersion challenges, only 1 fish died despite testing a range of bacterial concentrations, exposure times, stocking density, water system and bacterial preparations. The experimental studies were conducted to investigate the association between weight or age of fish and susceptibility to S. agalactiae infection in Nile tilapia. This was performed under experimental conditions including control groups and a single population of 8 months old fish from one set of parents divided into 7 weight categories. These fish received a single i.p. injection of 6 × 107 CFU/ml of S. agalactiae. Controls and fish of 4 or 8 months old with a mean weight of 5 g received an i.p. injection of 7 × 107 CFU/ml of S. agalactiae. Clinical signs, lesions and histopathological changes in the affected fish were consistent with those reported in natural infection. Streptococcus agalactiae was recovered and identified from all moribund or dead fish. The mortality in the study of different weights varied from 0 to 33% between the groups but the association with weight was weak (R2 = 0.02). In the study of different ages the 4 months old fish group had a total mortality of 24%, and the 8 months old fish group a total mortality of 4%. This study produced no evidence for an association between the weight and susceptibility to S. agalactiae infection but suggested an association between the age or growth rate of fish and this disease. Different coping styles and susceptibility to S. agalactiae infection in Nile tilapia was examined. Fish were screened and scored depending on their risk-taking behavioural responses to a range of different environmental conditions. Individual differences in behavioural responses were evident but only consistent across behavioural trials for some individuals. A selection of fish with consistent responses across trials was exposed to the 6 × 107 CFU/ml of S. agalactiae by i.p. injection. Fewer bold than shy fish died suggesting that the bold fish might be less susceptible to the infection than shy fish. In conclusion, this study characterised a number of S. agalactiae isolates and developed an experimental bacterial challenge model. Subsequent experiments suggested that age (or growth rate) and coping style in fish but not the fish weight may affect susceptibility to S. agalactiae infection in Nile tilapia.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Featherstone, Zoe L. "Investigations into the pathogenesis of aquatic Streptococcus agalactiae and Streptococcus iniae in Nile tilapia (Oreochromis niloticus)". Thesis, University of Stirling, 2014. http://hdl.handle.net/1893/21633.

Texto completo
Resumen
The bacterial pathogens Streptococcus agalactiae and S. iniae have the capacity to infect a wide range of fish species throughout the world, with Nile tilapia (Oreochromis niloticus) being particularly susceptible. Global tilapia aquaculture production was estimated to be 3.5 million tonnes in 2008, and has a significant contribution in the global farmed fish market. Due to their ability to adapt to a wide range of culture systems the commercialisation of tilapia production has occurred in more than 100 countries. However, countries such as China have suffered from severe and extensive outbreaks of streptococcosis in cultured tilapia continuously for many years. Such large-scale outbreaks in China have resulted in a loss of approximately US$0.4 billion in 2011. Fish are permanently exposed to a plethora of pathogens and natural disease outbreaks are complex host-pathogen interactions that seldom involve single pathogen infections. As a consequence, simultaneous infections, alternatively called concurrent or co-infections, are starting to receive interest from aquatic disease researchers. Streptococcus agalactiae and S. iniae infections can both occur in the same geographic area and both S. agalactiae and S. iniae have been found to be present on the same farm in a single disease outbreak. It has been found that a disease outbreak caused by one these pathogens can be followed by another outbreak from the other. These two pathogens have serious effects on the tilapia aquaculture industry yet there is no information regarding S. agalactiae and S. iniae co-infections. Such information would be valuable for understanding epidemiology and the development of improved treatment and control of aquatic streptococcosis infections. The overall aim of this study was to investigate the pathogenesis of S. agalactiae and S. iniae in Nile tilapia. One important aspect of investigating simultaneous infections was to examine if there was any competition or synergy between S. agalactiae and S. iniae in vitro or in vivo. It was found that competition between S. agalactiae and S. iniae in vitro was inconsistent between different experimental systems. Results indicated that there was either no interaction between bacterial species or they coexisted during in vitro competition assays. Whereas, an in vivo model utilising wax moth larvae (Galleria mellonella) suggested that during a simultaneous infection with S. agalactiae and S. iniae the total levels of larval mortality were lower than expected indicating that the pathogens may have interacted with one another in a competitive manner. Investigations were also conducted to identify the expression of virulence factors in vitro for S. agalactiae and S. iniae. Comparisons were then made to ascertain any inter- and intra-species variation. Results demonstrated that both S. agalactiae and S. iniae strains possessed a capsule but varied in their haemolytic activity, blood survival and resistance to complement-mediated killing. These variations suggested that the two bacterial species differed in their mechanisms of pathogenicity where aquatic S. agalactiae strains may initially have a more systemic spread of infection and aquatic S. iniae strains may utilise a more localised spread of infection within the host. This hypothesis was tested through the development of a robust and reliable challenge model for S. agalactiae and S. iniae in Nile tilapia. Through this work it was apparent that fish infected with S. iniae experienced an acute infection with morbidity/mortality occurring 1 – 3 days after exposure. Whereas, the S. agalactiae challenged fish showed a more chronic infection with morbidity/mortality occurring from 1 – 6 days after exposure. Findings clearly demonstrated a more systemic spread of infection during a S. agalactiae challenge with high bacterial loads in all the organs examined. Streptococcus iniae was observed in fewer organs of infected fish and bacterial numbers were substantially lower. Concurrent infections are complex in natural conditions and in experimental studies. As a result a substantial amount of research will be required to fully understand the nature of co-infection with these two streptococci. This study has provided a solid foundation upon which to base future work.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Shahin, Khalid Elsayed Kamal Elsayed. "Development of control strategies for Francisella noatunensis subsp. orientalis in Nile tilapia, Oreochromis niloticus". Thesis, University of Stirling, 2018. http://hdl.handle.net/1893/28046.

Texto completo
Resumen
Nile tilapia, Oreochromis niloticus, is one of the most important farmed fish globally. One of the most serious bacterial diseases constraining global tilapia production is Francisellosis caused by Francisella noatunensis subsp. orientalis (Fno). Although outbreaks of Fno are increasing worldwide, there are no licenced commercial vaccines to prevent the disease for use on tilapia farms. Thus, the current treatment of choice is the use of antibiotics combined with increasing water temperature up to 30°C. Studies investigating the diversity of circulating Fno isolates and the immune response of tilapia elicited by vaccination against piscine francisellosis are lacking. In addition, the current conventional and molecular tools used for detection of Fno have many drawbacks, making detection of Fno a challenging process. In this study, five clinical isolates of Fno from diverse geographical locations (UK, Costa Rica, Mexico, Japan and Austria), previously characterised by morphology, genotype, antimicrobial susceptibility and virulence, were used in a proteomic study. The whole proteomic cell profile of the five isolates were homogenous by one-dimension sodium dodecyl polyacrylamide gel electrophoresis (1D-SDS-PAGE), while minor differences in the intensity of 15 proteins between the strains were observed by two-dimension SDS-PAGE (2DE), including some important virulence related proteins. The UK isolate was the most significantly different isolate when compared to the other Fno isolates in the current study. The Fno UK isolate had significantly higher abundance of 10/15 of the significantly expressed proteins including four of the essential pathogenicity and virulence related proteins (IglC, GroEL, DnaK, ClpB) compared to the other used Fno isolates. The antigenic profiles of the five Fno isolates were studied by 1D western blotting using tilapia hyper immune sera which recognised an immunodominant band of a molecular weight of ~ 17-28 kDa in all tested Fno isolates. Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI/MS/MS) identified 47 proteins in this antigenic band. Some of the identified proteins are associated with Fno pathogenicity. 2D western blot analysis of the vaccine isolate (Fno UK) revealed differential antigen recognition between sera from vaccinated and non-vaccinated fish following experimental challenge (26 antigenic spots recognised by sera from vaccinated fish; 31 antigenic spots recognised by sera from vaccinated and challenged fish and 30 antigenic spots recognised by non-vaccinated and challenged fish). The identity of these proteins was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and some of them are known Francisella virulence related proteins. Bioinformatics analyses revealed diverse categories of proteins with high biological functions, however the vast majority of these proteins are involved in energy production and metabolic pathways of the bacteria. This detailed analysis will facilitate the development of cross-strain protective subunit Fno vaccines and antigen-targeted Fno diagnostics. The outer membrane proteins (OMPs) of the same five Fno isolates were extracted using the ionic detergent sarkosyl. The OMP fraction of the different isolates were separated via 1D-SDS PAGE and the digested peptides of the UK isolate were analysed by LC/ESI/MS/MS. High degree of similarity was observed in the OMP profile of the five Fno isolates with an abundant protein band at 17-28 kDa, which was found to be antigenic by 1D western blot using convalescent tilapia sera. LC/ESI/MS/MS analysis of the OMPs of the Fno UK isolate identified 239 proteins, including 44 proteins in the antigenic band (17-28 kDa). Comparison between the proteins identified in the immunogenic band of whole cell lysate and OMP fraction of the Fno UK isolate showed 30 common proteins between the two preparations, 17 proteins were identified only in the whole cell extract and 14 were identified only in OMP fraction. Outer membrane proteins (e.g. Omp-A), virulence related proteins such (e.g. IglC) and other stress related proteins (e.g. AhpC/TSA family peroxiredoxin) were more abundant in the OMP fraction than the whole cell lysate. In silico analysis enabled prediction of the function and location of the OMPs identified by Mass-spectrometry. The findings of this study provide preliminary data on bacterial surface proteins that exist in direct contact with the host immune defence during infection and offering an insight into their potential role as novel targets for Fno diagnostics and vaccine development. The efficacy of an injectable whole cell oil-adjuvanted vaccine was evaluated against challenge with heterologous Fno isolates in Nile tilapia, Oreochromis niloticus. Three duplicate groups of 130 healthy Nile tilapia (~15 g) were intraperitoneally (i.p.) injected with the vaccine, adjuvant-alone or PBS followed by an i.p. challenge with three Fno isolates from geographically distinct locations. The vaccine provided significant protection to all immunised tilapia groups with a significantly higher relative percent survival (RPS) of 82.3% against homologous challenge, compared to 69.8% and 65.9% after heterologous challenge. Protection correlated with significantly elevated specific antibody responses and western blot analysis demonstrated cross-isolate antigenicity with sera from fish post-vaccination and post-challenge. Moreover, a significantly lower bacterial burden was detected by quantitative real-time polymerase chain reaction (qPCR) in conjunction with significantly greater expression of IgM, IL-1β, TNF-a and MHCII 72 hours post-vaccination (hpv) in spleen samples from vaccinated tilapia compared to those of adjuvant-alone and control fish. The latter results suggested stimulation of protective immune responses following vaccination. In addition, a whole cell formalin killed autogenous immersion vaccine against Fno was developed using the same isolate used for the injectable vaccine. Duplicate tanks of 35 tilapia fry were immersed in the vaccine or in sterile Modified Muller Hinton broth (MMHB) diluted in tank water (1:10 dilution) for 30 s and at 30 days post-vaccination (dpv), all fish groups were immersion challenged with the homologous Fno isolate and monitored for 21 days. A moderate RPS of 43.7% was provided by the vaccine. Serum IgM levels were below the threshold in 30 % of the vaccinated fry 30 dpv. Also, the IgM levels of the vaccinated fry were not significantly different from control fry 21 days-post challenge. A recombinase polymerase amplification (RPA) assay was developed and validated for rapid detection of Fno. The RPA reaction was performed at a constant temperature of 42°C for 20 min. The RPA assay was performed using a quantitative plasmid standard containing a unique Fno gene sequence. Validation of the assay was performed not only by using DNA from Fno, closely related Francisella species and other common bacterial pathogens in fish farms, but also by screening 78 Nile tilapia and 5 water samples collected from UK and Thailand. All results were compared with those obtained by previously established real-time qPCR. The developed RPA showed high specificity in detection of Fno with no cross-detection of either the closely related Francisella spp. or the other species of bacteria tested. The Fno-RPA performance was highly comparable to the published qPCR with detection limits at 15 and 11 DNA molecules detected, respectively. The Fno-RPA was rapid, giving results in approximately 6 min in contrast to the qPCR that required approximately 90 min to reach the same detection limits. Moreover, the RPA was more tolerant to reaction inhibitors than qPCR when tested with field samples. The fast reaction, simplicity, cost-effectiveness, sensitivity and specificity make the RPA an attractive diagnostic tool that will contribute to control the infection through prompt on-site detection of Fno. The overall results of this study indicated that Fno isolates from different origins share a high degree of homology in their proteomic and antigenic profile. Proteomic characterisation data of Fno isolates has contributed to understanding the diversity of Fno isolates and assisted in identifying suitable candidates for developing an effective Fno vaccine.
Moreover, this study has proven the efficacy of a cross protective Fno injection vaccine in tilapia fingerlings, with further optimisation needed for immersion vaccination of fry, and given insights into the immune response of tilapia to vaccination against francisellosis. In addition, it provided a rapid, sensitive, specific and robust molecular tool for detection of Fno that can assist surveillance and control of piscine francisellosis on tilapia farms.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Djainal, Winarti Achmad Sarmin. "Effect of algal-derived compounds on growth and survival of the fish pathogen Francisella noatunensis subsp. orientalis". Thesis, University of Stirling, 2018. http://hdl.handle.net/1893/27682.

Texto completo
Resumen
Piscine francisellosis, caused by Francisella noatuenensis subsp orientalis (Fno), is an emerging infectious disease in the tilapia industry, but no effective commercial treatments or vaccines are available. The use of immunostimulants is a promising method to control diseases in aquaculture, and various algae and algal-derived compounds are potent immunostimulants for improving immune status. Algae produce a great variety of secondary metabolites that exert a broad spectrum of biological activities. The aim of this thesis was to evaluate the effectiveness of algal compounds against Fno in vitro and in vivo and determine their potential to control francisellosis infection in Nile tilapia Oreochromis niloticus L. under experimental conditions, and in an alternative host, namely the greater wax moth Galeria mellonella. Some of the algae and their compounds (Chlorella sp., alginic acid, and ß-glucan) exerted antimicrobial activity in vitro against Fno, Aeromonas hydrophila and Streptococcus agalactiae and stimulated responses of Nile tilapia macrophages (Chapter 2). An immersion challenge model for Fno STIR-GUS-F2f7 was developed in two genetic groups of Nile tilapia, and the homo gold strain was more susceptible to infection than wild type (Chapter 3). In vivo trials were conducted in Nile tilapia homo gold where fish were fed diets supplemented with 10% Scenedesmus quaricauda, 10% Haematococcus pluvialis, and 0.1% or 0.2% alginic acid or ß-glucan, and then challenged with Fno and co-infected with S. agalactiae (Chapter 4). The Fno challenge failed to produce mortality; however, co-infection resulted in high mortalities in all groups. As the in vivo trial in tilapia could not be to repeated, a G. mellonella model for Fno was validated. Fno doses between 0.7–1.7 x 108 CFU mL-1 killed G. mellonella, while tetracycline, alginic acid and ß-glucan rescued the wax moth from lethal doses of bacteria (Chapter 5).
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ramirez, Paredes J. G. "The fish pathogen Francisella orientalis : characterisation and vaccine development". Thesis, University of Stirling, 2015. http://hdl.handle.net/1893/21822.

Texto completo
Resumen
Piscine francisellosis in an infectious emerging bacterial disease that affects several marine and fresh water fish species worldwide, including farmed salmon, wild and farmed cod, farmed tilapia and several ornamental species, for which no commercial treatment or vaccine exists. During 2011 and the first semester of 2012, chronic episodes of moderate to high levels of mortality with nonspecific clinical signs, and widespread multifocal white nodules as the most consistent gross pathological lesion were experienced by farmed tilapia fingerlings at two different locations in Northern Europe. In this study such outbreaks of granulomatous disease were diagnosed as francisellosis with a genus-specific PCR, and 10 new isolates of the bacterium including the one named STIR-GUS-F2f7, were recovered on a new selective “cysteine blood-tilapia” agar and cysteine heart agar with bovine haemoglobin. Ultrastructural observations of the pathogen in Nile tilapia (O. niloticus) tissues suggested the secretion of outer membrane vesicles (OMVs) by the bacterial cells during infection in these fish. This represented the first documented report of isolation of pathogenic Francisella strains from tilapia in Europe. The phenotypic characterisation indicated that isolates recovered were able to metabolise dextrin, N-acetyl-D glucosamine, D-fructose, α-D-glucose, D-mannose, methyl pyruvate, acetic acid, α-keto butyric acid, L-alaninamide, L-alanine, L-alanylglycine, L-asparagine, L-glutamic acid, L-proline, L-serine, L-threonine, inosine, uridine, glycerol, D L-α-glycerol phosphate, glucose-1-phosphate and glucose-6-phosphate. The predominant structural fatty acids of the isolates were 24:1 (20.3%), 18:1n-9 (16.9%), 24:0 (13.1%) 14:0 (10.9%), 22:0 (7.8%), 16:0 (7.6%) and 18:0 (5.5%). Anti-microbial resistance analyses indicated that STIR-GUS-F2f7 was susceptible to neomycin, novobiocin, amikacin, ciprofloxacin, imipenem, gatifloxacin, meropenem, tobramycin, nitrofurantoin, and levofloxacin using the quantitative broth micro-dilution method, while the qualitative disc diffusion method indicated susceptibility to enrofloxacin, kanamycin, gentamicin, tetracycline, oxytetracycline, florfenicol, oxolinic acid and streptomycin. The use of the following housekeeping genes: mdh, dnaA, mutS, 16SrRNA-ITS-23SrRNA, prfB putA rpoA, rpoB and tpiA indicated 100% similarity with other isolates belonging to the subspecies F. noatunensis orientalis (Fno). Koch’s postulates were successfully fulfilled by establishing an intraperitoneal injection (IP) challenge model with STIR-GUS-F2f7 in Nile tilapia. Moreover, the challenge model was used to investigate the susceptibility of 3 genetic groups of tilapia to STIR-GUS-F2f7. The lowest amount of bacteria required to cause mortality was 12 CFU/ml and this was seen as early as only 24 hours post infection in the red Nile tilapia and in the wild type after 26 days, no mortalities were seen in the species O. mossambicus with this dose. The mortality in red O. niloticus was significantly higher than that of the other two tilapia groups when 12 and 120 CFU/fish were injected. It was also observed that when a dose of 1200 CFU/ml was used, the mortality in O. niloticus wild type was significantly lower than that of the other two tilapia groups and no differences were seen among the 3 groups when the highest dose (1.2 x105 CFU/fish) was used. The median lethal dose (LD50) of O. niloticus wild type was the most stable during the experiment (values around 104 CFU/ml) and the highest of the three groups after day 25 post infection. At the end of the experiment (day 45) the LD50 was 30 CFU/ml in the red Nile tilapia, 2.3x104 CFU/ml for the wild type and 3.3x102 CFU/ml for O. mossambicus. This pattern, where the LD50 of the red tilapia was lower than that of the other two groups, was observed during the whole experiment. The outcomes of these experiments suggested that the red Nile tilapia family appeared to be the most susceptible while the wild type Nile tilapia family the most resistant. The complete genome of STIR-GUS-F2f7 was sequenced using next generation sequencing (NGS) Illumina Hi-Seq platform™, and the annotation of the assembled genome predicted 1970 protein coding sequences and 63 non-coding rRNA sequences distributed in 328 sub-systems. The taxonomy of the species Francisella noatunensis was revised using genomic-derived parameters form STIR-GUS-F2f7 and other strains in combination with a polyphasic approach that included ecologic, chemotaxonomic and phenotypic analyses. The results indicated that STIR-GUS-F2f7 and all the other strains from warm water fish represent a new bacterial species for which the name Francisella orientalis was assigned. Moreover the description of F. noatunensis was emended and the creation of a new subspecies within this taxon i.e. Francisella noatunensis subsp. chilense was proposed. The results of this study led to the development of a highly efficacious vaccine to protect tilapia against francisellosis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Sayeed, Sayema. "A comparison of immune responses and disease resistance in clonal lines of Nile tilapia Oreochromis niloticus L". Thesis, University of Stirling, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.720352.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Lima, Carlos Henrique de Azeredo. "Estomatite Vesicular Alagoas: estudo da transmissão entre tilápias nilóticas (Oreochromis niloticus) experimentalmente inoculadas e cobaios (Cavia porcellus) através da água e desenvolvimento de um método diagnóstico". Universidade de São Paulo, 2003. http://www.teses.usp.br/teses/disponiveis/10/10134/tde-03052004-155516/.

Texto completo
Resumen
Diante da necessidade de responder algumas indagações relacionadas a epidemiologia da Estomatite Vesicular, principalmente aquelas que dizem respeito a ocorrência de surtos em locais onde existem coleções d\'água, foi desenvolvido um modelo de transmissão do VSA utilizando a água como via de transmissão, a tilápia nilótica, inoculada intraperitonealmente, como fonte de infecção e o cobaio como hospedeiro susceptível. O objetivo da utilização deste modelo biológico de transmissão do Vírus da Estomatite Vesicular foi de avaliar o papel desempenhado pelos peixes no ciclo epidemiológico, propor um modelo de ciclo epidemiológico do VSA, destacando o papel da água como via de transmissão e padronizar uma técnica de RT-PCR para a detecção do VSA, em amostra de tecidos. Através do modelo desenvolvido, fica demonstrado que estes peixes eliminaram partículas virais na água, decorridos 13 dias pós-inoculação e que esta última se caracteriza como via de transmissão, possibilitando a infecção dos hospedeiros susceptíveis (cobaios) através de inoculações experimentais em coxim plantar. A tilápia nilótica pode ser considerada como uma fonte de infecção, por ser capaz de eliminar um agente infeccioso no meio ambiente e através de uma via de transmissão este agente alcançou o hospedeiro susceptível; os peixes podem ser inseridos no ciclo epidemiológico da Estomatite Vesicular como fonte de infecção, sendo capazes de eliminar na água partículas virais infectantes, destacando o papel da água como via de transmissão; fica padronizada uma técnica de RT-PCR dirigida ao gene codificador da proteína RNA-polimerase, útil para a detecção direta do Vírus da Estomatite Vesicular Alagoas e Indiana em amostras de tecidos.
A model of transmission of Vesicular Stomatitis was developed to Vesicular Stomatitis Alagoas (VSA) serotype employing water as a way of transmission, the Nile tilapia intraperitoneal inoculated as a source of infection and guinea pigs as susceptible hosts aiming to answer many questions concerning Vesicular Estomatitis epidemiology, as the risk of disease on farms with dose relationship with riverine areas and the role of fishes in the epidemiological cycle of the disease. Furthermore, a RT-PCR assay was developed to detect VSA in tissue samples. According to the experimental transmission, fishes eliminated virus into the water after 13 days pos-infection and a model to VSA epidemiological cycle is proposed in which water was characterized as a way of transmission, carrying the virus to the susceptible host through experimental inoculation and the Nile tilapia should be thought as a source of infection, once it was able to eliminate the infective agent into the environment. A useful tool to the diagnosis of both Indiana and Alagoas serotypes was developed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

LeaMaster, Brad R. "The determination of the factors related to the pathology of vibriosis in cultured tilapia". Thesis, 1991. http://hdl.handle.net/10125/9989.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Anguiano, Maritza. "Effects of Dietary Nucleotides on Growth, Immunology, and Disease Resistance of Juvenile Nile Tilapia (Oreochromis niloticus)". Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-12-10403.

Texto completo
Resumen
In order to improve production efficiency and profitability in tilapia aquaculture, further research is needed to develop methods to improve weight gain, feed utilization, and immune function of these fish. In this regard, numerous studies with several fish species have reported that dietary nucleotides can enhance growth performance, immune responses and disease resistance. Therefore, two feeding experiments were conducted to investigate the effects of a purified nucleotide mix on juvenile Nile tilapia, Oreochromis niloticus. A basal diet was formulated to contain 34% crude protein from fishmeal and soybean meal. A nucleotide mix containing salts of cytidine, uridine, adenosine, inosine, guanosine, and thymine was supplemented to the basal diet at 0.5, 1 and 2% of dry weight. In the first experiment, three replicate groups of 15 fish were fed the experimental diets. At the end of 8 weeks, weight gain, feed efficiency and survival were computed. Blood samples were analyzed for neutrophil oxidative radical production and plasma lysozyme activity. In the second trial, three replicate groups of 20 fish were fed the same experimental diets. At the end of 4 weeks, blood and kidney samples were analyzed for macrophage extracellular and intracellular superoxide anion production, blood neutrophil oxidative radical production, plasma lysozyme activity, and peripheral blood lymphocyte proliferation. Then, 12 fish per treatment were challenged with Streptococcus iniae, via intraperitoneal injection, and mortality was recorded for 21 days. Results showed that none of the nucleotide-supplemented diets induced significant (P < 0.05) effects on growth performance. On the other hand, the 0.5% treatment produced significantly (P < 0.05) higher intracellular superoxide anion (O2-) production and both the 0.5 and 1% treatments significantly (P < 0.05) increased lymphocyte proliferation. The disease challenge failed to show significant survival differences among treatments; however, the 2% nucleotide treatment tended to produce higher survivability. Results from both experiments lead to the conclusion that this particular nucleotide mix does not provide marked improvements in growth performance and disease resistance; however, dietary nucleotide supplementation did affect some components of the immune system of Nile tilapia.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Nhật, Phạm Hồng y 范紅日. "Hepcidin family genes associated microsatellites exert potentially molecular markers for selective breeding of disease-resistant tilapia". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/5dv6a2.

Texto completo
Resumen
碩士
國立臺灣海洋大學
水產養殖學系
106
Tilapia are among the world's most important aquaculture finfish. In recent years, streptococcus is recognized as major infectious disease causing significant economic loss in tilapia aquaculture in various countries. The hepatic antimicrobial peptide hepcidin/HAMP was reported to defend against various bacterial pathogens and viruses. According to newly released genome assembly of Nile tilapia, we identified 18 hepcidin genes including 12 HAMP1 genes composed of 7 HAMP1 genes, 1 HAMP2 gene, 1 HAMP3 gene, 3 HAMP4 genes in LG11 of Nile tilapia. Identification of DNA markers associated with disease resistance may facilitate the breeding selection for disease resistance. Hence the study aimed to investigate the association of genotype of microsatellites/SSRs related to hepcidin genes and disease resistance of resistant NT1, sensitive NT2 and NT1xNT2 hybrid Nile tilapia strains. We discovered 17 hepcidin-related SSRs and designed SSR-specific PCR primer sets by WebSat to detect these Type I DNA markers. Twelve polymorphic hepcidin-related microsatellites were used to do genotyping of 276 tilapia fish (95, 90 and 91 tilapia samples of NT1, NT2 and hybrid populations), and the associations between their genotypes and disease resistance were also examined. We found that eight genotypes of eight hepcidin-related SSRs (SSR5, SSR7, SSR8, SSR9, SSR10, SSR13, SSR16), especially 3 specific genotypes in SSR7, SSR9 and SSR16 could be potential DNA markers for marker-assisted selection of tilapia with disease resistance to Streptococcus in NT1 strain. Association of disease resistance and genotype of SSRs related with hepcidin genes of tilapia will be further evaluated in NT1xNT2 hybrid, commercial tilapia strains, and their offspring to establish useful molecular markers applied in the marker-assisted selection of disease-resistant Nile tilapia for sustainable and profitable tilapia aquaculture industry.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Tilapia – Diseases"

1

Tang, Kathy F. J. Identification, control, and prevention of diseases on fish farms in Guam. [Guam]: University of Guam Marine Laboratory, 1998.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Tilapia – Diseases"

1

Surachetpong, Win y Kwanrawee Sirikanchana. "Orthomyxovirosis (tilapia lake virus)." En Climate change and infectious fish diseases, 142–56. Wallingford: CABI, 2020. http://dx.doi.org/10.1079/9781789243277.0142.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

El-Sayed, Abdel-Fattah M. "Stress and diseases". En Tilapia Culture, 205–43. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-816509-6.00009-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Tonguthai, Kamonporn y Supranee Chinabut. "Diseases of Tilapia". En Dynamics of POND Aquaculture, 263–87. CRC Press, 2017. http://dx.doi.org/10.1201/9780203759028-12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

"Tilapia Bacterial Diseases". En Health Maintenance and Principal Microbial Diseases of Cultured Fishes, 445–63. Oxford, UK: Wiley-Blackwell, 2011. http://dx.doi.org/10.1002/9780470958353.ch16.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Velappan, Muralidharan y Deecaraman Munusamy. "Occurrence of Mycotoxins in Certain Freshwater Fish Species and the Impact on Human Health: A General Review". En Aflatoxins [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97286.

Texto completo
Resumen
Mycotoxins are toxic secondary metabolites produced by organisms of the fungus kingdom, which are capable of causing disease and death in humans and animals when present in food. Recent studies evinces fish consumption might become another way for mycotoxins to enter the human food chain. Although the increasing research publications related to the occurrence and prevention of mycotoxin contamination in fish feeds, there was limited studies on bioaccumulation of mycotoxins research in common freshwater fish species. Further this was assumed fish species of salmonid and cyprinids are very sensitive to feed-borne mycotoxins so far. Studies have demonstrated, fish may also carry mycotoxins residue along the food chain, thus compromising human health. This review describes mainly mycotoxin contaminations in certain freshwater fish species and the impact on human health due to their potential proven toxicity. This review also provided comprehensive information on mycotoxins contamination levels in muscle and liver tissue of some freshwater fish species such as Nile tilapia, Labeo rohita, and Catla catla during capturing in fresh water lakes and also fish sold at wet market and hypermarket in Chennai, Tamilnadu.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Tilapia – Diseases"

1

Hamdan, Ruhil Hayati, T. L. Peng, B. L. Ong, M. Y. S. Suhana, N. H. Hamid, M. N. F. Afifah y M. S. Raina. "Antibiotics Resistance of Vibrio spp. Isolated from Diseased Seabass and Tilapia in Cage Culture". En Proceedings of International Seminar on Livestock Production and Veterinary Technology. Indonesian Center for Animal Research and Development (ICARD), 2016. http://dx.doi.org/10.14334/proc.intsem.lpvt-2016-p.554-560.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Dygert, Joseph P., Melissa L. Morris, Erik M. Messick y Patrick H. Browning. "Feasibility of an Energy Efficient Large-Scale Aquaponic Food Production and Distribution Facility". En ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/es2014-6567.

Texto completo
Resumen
Today the United States is plagued by societal issues, economic insecurity, and increasing health problems. Societal issues include lack of community inclusion, pollution, and access to healthy foods. The high unemployment coupled with the rising cost of crude oil derivatives, and the growing general gap between cost of living and minimum wage levels contribute to a crippled consumer-driven US economy. Health concerns include increasing levels of obesity, cardiovascular disease, cancer, and diabetes. These epidemics lead to staggering economic burdens costing Americans hundreds of billions of dollars each year. It is well-known that many of the health issues impacting Americans can be directly linked to the production, availability, and quality of the food. Factors contributing to the availability of food include reduction of United States farmland, an increase in food imported from overseas, and the cost of goods to the consumer. The quality of food is influenced by the method of growth as well as imposed preservation techniques to support food transportation and distribution. At the same time, it has become increasingly common to implement biotechnology in genetically modified crops for direct human food or indirectly as a livestock feed for animals consumed by humans. Crops are also routinely dosed with pesticides and hormones in an attempt to increase productivity and revenue, with little consideration or understanding of the long term health effects. Research shows that community gardens positively impact local employment, community involvement and inclusivity, and the diets of not only those involved in food production, but all members of their households. The purpose of this work is to determine the feasibility of an energy efficient large-scale aquaponic food production and distribution facility which could directly mitigate growing socioeconomic concerns in the US through applied best practices in sustainability. Aquaponics is a symbiotic relationship between aquaculture and hydroponics, where fish and plants grow harmoniously. The energy efficient facility would be located in an urban area, and employ solar panels, natural lighting, rain water reclamation, and a floor plan optimized for maximum food yield and energy efficiency. Examples of potential crops include multiple species of berries, corn, leafy vegetables, tomatoes, peppers, squash, and carrots. Potential livestock include responsibly farmed tilapia, shrimp, crayfish, and oysters. The large scale aquaponic facility shows a lengthy period for financial return on investment whether traditional style construction of the building or a green construction style is used. However many forms of federal government aid and outside assistance exist for green construction to help drive down the risk in the higher initial investment which in the long run could end up being more profitable than going with a traditionally constructed building. Outside of financial return there are many proven, positive impacts that a large-scale aquaponic facility would have. Among these are greater social involvement and inclusivity, job creation, increased availability of fresh food, and strengthening of America’s agriculture infrastructure leading to increased American independence.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía