Literatura académica sobre el tema "Time-aware recommender systems"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Time-aware recommender systems".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Time-aware recommender systems"
Yang, Dan, Jing Zhang, Sifeng Wang y XueDong Zhang. "A Time-Aware CNN-Based Personalized Recommender System". Complexity 2019 (18 de diciembre de 2019): 1–11. http://dx.doi.org/10.1155/2019/9476981.
Texto completoBeheshti, Amin, Shahpar Yakhchi, Salman Mousaeirad, Seyed Mohssen Ghafari, Srinivasa Reddy Goluguri y Mohammad Amin Edrisi. "Towards Cognitive Recommender Systems". Algorithms 13, n.º 8 (22 de julio de 2020): 176. http://dx.doi.org/10.3390/a13080176.
Texto completoYang, Dan, Zheng Tie Nie y Fajun Yang. "Time-Aware CF and Temporal Association Rule-Based Personalized Hybrid Recommender System". Journal of Organizational and End User Computing 33, n.º 3 (mayo de 2021): 19–34. http://dx.doi.org/10.4018/joeuc.20210501.oa2.
Texto completoJaved, Umair, Kamran Shaukat, Ibrahim A. Hameed, Farhat Iqbal, Talha Mahboob Alam y Suhuai Luo. "A Review of Content-Based and Context-Based Recommendation Systems". International Journal of Emerging Technologies in Learning (iJET) 16, n.º 03 (12 de febrero de 2021): 274. http://dx.doi.org/10.3991/ijet.v16i03.18851.
Texto completoCampos, Pedro G., Fernando Díez y Iván Cantador. "Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols". User Modeling and User-Adapted Interaction 24, n.º 1-2 (15 de febrero de 2013): 67–119. http://dx.doi.org/10.1007/s11257-012-9136-x.
Texto completoAhn, Hyun Chul y Kyoung Jae Kim. "Context-Aware Recommender System for Location-Based Advertising". Key Engineering Materials 467-469 (febrero de 2011): 2091–96. http://dx.doi.org/10.4028/www.scientific.net/kem.467-469.2091.
Texto completoSundermann, Camila, Marcos Domingues, Roberta Sinoara, Ricardo Marcacini y Solange Rezende . "Using Opinion Mining in Context-Aware Recommender Systems: A Systematic Review". Information 10, n.º 2 (28 de enero de 2019): 42. http://dx.doi.org/10.3390/info10020042.
Texto completoAl-Ghossein, Marie, Talel Abdessalem y Anthony BARRÉ. "A Survey on Stream-Based Recommender Systems". ACM Computing Surveys 54, n.º 5 (junio de 2021): 1–36. http://dx.doi.org/10.1145/3453443.
Texto completoLi, Hongzhi y Dezhi Han. "A Novel Time-Aware Hybrid Recommendation Scheme Combining User Feedback and Collaborative Filtering". Mobile Information Systems 2020 (22 de octubre de 2020): 1–16. http://dx.doi.org/10.1155/2020/8896694.
Texto completoLozano Murciego, Álvaro, Diego M. Jiménez-Bravo, Adrián Valera Román, Juan F. De Paz Santana y María N. Moreno-García. "Context-Aware Recommender Systems in the Music Domain: A Systematic Literature Review". Electronics 10, n.º 13 (27 de junio de 2021): 1555. http://dx.doi.org/10.3390/electronics10131555.
Texto completoTesis sobre el tema "Time-aware recommender systems"
Grönberg, David y Otto Denesfay. "Comparison and improvement of time aware collaborative filtering techniques : Recommender systems". Thesis, Linköpings universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160360.
Texto completoRibacki, Guilherme Haag. "Uma abordagem de recomendação de colaborações acadêmicas através da análise de séries temporais". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/141965.
Texto completoThe advance of technology in recent years made possible the creation of Information Systems with access to large databases, opening many applications possibilities. There’s the Internet, for example, where a vast amount of data is generated and published all the time by users around the world. In this sense, the need for methods to filter the available content to enable users to focus only on their interests slowly emerged. In this context, Recommender Systems and Social Networks appeared, where, recently, works reporting approaches to provide recommendations in the academic context appeared, increasing the productivity of research groups. New ways to employ temporal information in Recommender Systems to make better recommendations are also being explored. The present work proposes an approach to academic collaborations recommendation using Time Series Analysis, aiming to improve results reported on previous and current works. An offline experiment was done to evaluate the proposed approach in comparison with other works and a user study was done to make a deeper analysis from user feedback. Known metrics from the Information Retrieval and Recommender Systems fields were used, and in some cases the results obtained were lower compared to the current methods but similar in others. Some evaluation metrics from Recommender Systems were also used, and the results were similar to all approaches.
Barreau, Baptiste. "Machine Learning for Financial Products Recommendation". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPAST010.
Texto completoAnticipating clients’ needs is crucial to any business — this is particularly true for corporate and institutional banks such as BNP Paribas Corporate and Institutional Banking due to their role in the financial markets. This thesis addresses the problem of future interests prediction in the financial context and focuses on the development of ad hoc algorithms designed for solving specific financial challenges.This manuscript is composed of five chapters:- Chapter 1 introduces the problem of future interests prediction in the financial world. The goal of this chapter is to provide the reader with all the keys necessary to understand the remainder of this thesis. These keys are divided into three parts: a presentation of the datasets we have at our disposal to solve the future interests prediction problem and their characteristics, an overview of the candidate algorithms to solve this problem, and the development of metrics to monitor the performance of these algorithms on our datasets. This chapter finishes with some of the challenges that we face when designing algorithms to solve the future interests problem in finance, challenges that will be partly addressed in the following chapters;- Chapter 2 proposes a benchmark of some of the algorithms introduced in Chapter 1 on a real-word dataset from BNP Paribas CIB, along with a development on the difficulties encountered for comparing different algorithmic approaches on a same dataset and on ways to tackle them. This benchmark puts in practice classic recommendation algorithms that were considered on a theoretical point of view in the preceding chapter, and provides further intuition on the analysis of the metrics introduced in Chapter 1;- Chapter 3 introduces a new algorithm, called Experts Network, that is designed to solve the problem of behavioral heterogeneity of investors on a given financial market using a custom-built neural network architecture inspired from mixture-of-experts research. In this chapter, the introduced methodology is experimented on three datasets: a synthetic dataset, an open-source one and a real-world dataset from BNP Paribas CIB. The chapter provides further insights into the development of the methodology and ways to extend it;- Chapter 4 also introduces a new algorithm, called History-augmented Collaborative Filtering, that proposes to augment classic matrix factorization approaches with the information of users and items’ interaction histories. This chapter provides further experiments on the dataset used in Chapter 2, and extends the presented methodology with various ideas. Notably, this chapter exposes an adaptation of the methodology to solve the cold-start problem and applies it to a new dataset;- Chapter 5 brings to light a collection of ideas and algorithms, successful or not, that were experimented during the development of this thesis. This chapter finishes on a new algorithm that blends the methodologies introduced in Chapters 3 and 4
Capítulos de libros sobre el tema "Time-aware recommender systems"
Wei, Suyun, Ning Ye y Qianqian Zhang. "Time-Aware Collaborative Filtering for Recommender Systems". En Communications in Computer and Information Science, 663–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33506-8_81.
Texto completode Borba, Eduardo José, Isabela Gasparini y Daniel Lichtnow. "Time-Aware Recommender Systems: A Systematic Mapping". En Lecture Notes in Computer Science, 464–79. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58077-7_38.
Texto completoSánchez, Pablo y Alejandro Bellogín. "Time-Aware Novelty Metrics for Recommender Systems". En Lecture Notes in Computer Science, 357–70. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76941-7_27.
Texto completode Borba, Eduardo José, Isabela Gasparini y Daniel Lichtnow. "Describing Scenarios and Architectures for Time-Aware Recommender Systems for Learning". En Enterprise Information Systems, 366–86. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93375-7_17.
Texto completoCampos, Pedro G., Alejandro Bellogín, Iván Cantador y Fernando Díez. "Time-Aware Evaluation of Methods for Identifying Active Household Members in Recommender Systems". En Advances in Artificial Intelligence, 22–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40643-0_3.
Texto completoActas de conferencias sobre el tema "Time-aware recommender systems"
Anelli, Vito W., Vito Bellini, Tommaso Di Noia, Wanda La Bruna, Paolo Tomeo y Eugenio Di Sciascio. "An Analysis on Time- and Session-aware Diversification in Recommender Systems". En UMAP '17: 25th Conference on User Modeling, Adaptation and Personalization. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3079628.3079703.
Texto completoChen, Hanxuan y Zuoquan Lin. "A Hybrid Neural Network and Hidden Markov Model for Time-aware Recommender Systems". En 11th International Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0007380402040213.
Texto completoZhao, Pengyu, Kecheng Xiao, Yuanxing Zhang, Kaigui Bian y Wei Yan. "AMEIR: Automatic Behavior Modeling, Interaction Exploration and MLP Investigation in the Recommender System". En Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/290.
Texto completoXin, Xin, Bo Chen, Xiangnan He, Dong Wang, Yue Ding y Joemon Jose. "CFM: Convolutional Factorization Machines for Context-Aware Recommendation". En Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/545.
Texto completoGuo, Guibing, Enneng Yang, Li Shen, Xiaochun Yang y Xiaodong He. "Discrete Trust-aware Matrix Factorization for Fast Recommendation". En Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/191.
Texto completoPerera, Dilruk y Roger Zimmermann. "LSTM Networks for Online Cross-Network Recommendations". En Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/532.
Texto completoYu, Zeping, Jianxun Lian, Ahmad Mahmoody, Gongshen Liu y Xing Xie. "Adaptive User Modeling with Long and Short-Term Preferences for Personalized Recommendation". En Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/585.
Texto completoKarahodza, Bakir y Dzenana Donko. "Feature enhanced time-aware recommender system". En 2015 XXV International Conference on Information, Communication and Automation Technologies (ICAT). IEEE, 2015. http://dx.doi.org/10.1109/icat.2015.7340527.
Texto completoHamed, A. A., R. Roose, M. Branicki y A. Rubin. "T-Recs: Time-aware Twitter-based Drug Recommender System". En 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012). IEEE, 2012. http://dx.doi.org/10.1109/asonam.2012.178.
Texto completoPuntheeranurak, Sutheera y Pongpan Pitakpaisarnsin. "Time-aware Recommender System Using Naive Bayes Classifier Weighting Technique". En 2nd International Symposium on Computer, Communication, Control and Automation. Paris, France: Atlantis Press, 2013. http://dx.doi.org/10.2991/3ca-13.2013.66.
Texto completo