Literatura académica sobre el tema "Triiodthyronin"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Triiodthyronin".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Triiodthyronin"
Osadchuk, L. V., N. V. Gutorova, A. Yu Ludinina, N. N. Potolitsyna y E. R. Bojko. "Changes in hormonal and metabolic status in men of an ethnic group Komi with overweight and obesity". Obesity and metabolism 10, n.º 2 (15 de junio de 2013): 28–32. http://dx.doi.org/10.14341/2071-8713-4821.
Texto completoLerch, Meier y Staub. "Subclinical thyroid dysfunction – is there a need for treatment?" Therapeutische Umschau 56, n.º 7 (1 de julio de 1999): 369–73. http://dx.doi.org/10.1024/0040-5930.56.7.369.
Texto completoRyadovaya, L., E. Gutkevich y S. Ivanova. "Steroid and Thyreoid Hormones and Neurotic, Stress-related and Somatoform Disorders". European Psychiatry 24, S1 (enero de 2009): 1. http://dx.doi.org/10.1016/s0924-9338(09)71498-1.
Texto completoDjokovic, Radojica. "Blood concentrations of thyroid hormones and lipids and histological changes in the liver in dairy cows in post-parturient period". Veterinarski glasnik 63, n.º 5-6 (2009): 285–97. http://dx.doi.org/10.2298/vetgl0906285d.
Texto completoYaglova, N. V. y V. V. Yaglov. "Alteration of thyroid hormone secretion after long-term exposure to low doses of endocrine disruptor DDT". Biomeditsinskaya Khimiya 60, n.º 6 (2014): 655–60. http://dx.doi.org/10.18097/pbmc20146006655.
Texto completoZenzerov, V. S. y E. V. Tipisova. "Initial data on the level of thyroid hormones (Thyroxin, Triiodthyronine) and thyrotropic hormone of the hypophysis in the hemolymph of king crabs from the Barents Sea". Doklady Biological Sciences 428, n.º 1 (octubre de 2009): 462–63. http://dx.doi.org/10.1134/s0012496609050202.
Texto completoKubicki, Rouven, Jochen Grohmann, Klaus-Georg Kunz, Brigitte Stiller, Karl Otfried Schwab y Natascha van der Werf-Grohmann. "Frequency of thyroid dysfunction in pediatric patients with congenital heart disease exposed to iodinated contrast media – a long-term observational study". Journal of Pediatric Endocrinology and Metabolism 33, n.º 11 (26 de noviembre de 2020): 1409–15. http://dx.doi.org/10.1515/jpem-2020-0032.
Texto completoDjoković, R., H. Šamanc, M. Jovanović y Z. Nikolić. "Blood Concentrations of Thyroid Hormones and Lipids and Content of Lipids in the Liver of Dairy Cows in Transitional Period". Acta Veterinaria Brno 76, n.º 4 (2007): 525–32. http://dx.doi.org/10.2754/avb200776040525.
Texto completoGanslmeier, Mira, Claudia Castrop, Klemens Scheidhauer, Ina-Christine Rondak y Peter B. Luppa. "Regional adjustment of thyroid hormone reference intervals". LaboratoriumsMedizin 38, n.º 5 (1 de enero de 2014). http://dx.doi.org/10.1515/labmed-2014-0008.
Texto completoBaltaci, Abdulkerim Kasım y Rasim Mogulkoc. "Leptin, neuropeptide Y (NPY), melatonin and zinc levels in experimental hypothyroidism and hyperthyroidism: relation with melatonin and the pineal gland". Hormone Molecular Biology and Clinical Investigation, 2 de marzo de 2018. http://dx.doi.org/10.1515/hmbci-2018-0009.
Texto completoTesis sobre el tema "Triiodthyronin"
Randau, Thomas [Verfasser]. "Der Effekt von Dexamethason und Triiodthyronin auf primäre bovine Chondrozyten und chondrogen differenzierte mesenchymale Stammzellen / Thomas Randau". Bonn : Universitäts- und Landesbibliothek Bonn, 2014. http://d-nb.info/1059476711/34.
Texto completoSieverling, Nathalie. "Kationische Copolymere für den rezeptorvermittelten Gentransfer". Phd thesis, Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2005/525/.
Texto completoSowohl das kationische Ausgangspolymer PEI als auch das Pfropfcopolymer PEI-g-PEO (PEO-Seitenketten zur Erhöhung der Biokompatibilität) wurden mit Rezeptorliganden modifiziert, um eine verbesserte und spezifische Transfektion an ausgesuchten Zellen zu erreichen. Als Liganden wurden Folsäure (Transfektion an HeLa-Zellen), Triiod-L-thyronin (HepG2-Zellen) und die Uronsäuren der Galactose, Mannose, Glucose sowie die Lactobionsäure (HeLa-, HepG2- und 16HBE-Zellen) verwendet.
Das PEI, die Pfropfcopolymere PEI-g-PEO und die Ligand-funktionalisierten Copolymere wurden hinsichtlich ihrer chemischen Zusammensetzung und molekularen Parameter charakterisiert. Die Molmassenuntersuchungen mittels Größenausschlusschromatographie zeigten, dass nach der Synthese unterschiedliche Polymerfraktionen mit nicht einheitlicher chemischer Zusammensetzung vorlagen.
Die anschließenden Transfektionsversuche wurden mit Hilfe einer speziellen DNA (Luciferase) an den Zelllinien HepG2 (Leberkrebszellen), HeLa (Gebärmutterhalskrebszellen) und 16HBE (Atemwegsepithelzellen) durchgeführt. Die T3(Triiod-L-thyronin)-Vektoren zeigten in Abhängigkeit vom eingesetzten Komplexverhältnis Polykation/DNA ein Maximum in der Transfektion an HepG2-Zellen. Die Hypothese der rezeptorvermittelten Endozytose ließ sich durch entsprechende T3-Überschuss-Experimente und Fluoreszenzmikroskopie-Untersuchungen bestätigen. Dagegen konnte bei den Folsäure-Vektoren keine rezeptorvermittelte Endozytose beobachtet werden.
Bei den Vektoren mit Mannuronsäure-Ligand (Man) konnte an allen drei Zelllinien (HepG2, HeLa, 16HBE) eine konstante, hohe Transfereffizienz nachgewiesen werden. Sie waren bei allen eingesetzten Polymer-DNA-Verhältnissen effizienter als der Vergleichsvektor PEI. Dieses Transfektionsverhalten ließ sich durch Blockierung der Zuckerstruktur unterbinden. In Transfektionsexperimenten mit einem Überschuss an freier Mannuronsäure und fluoreszenzmikroskopischen Untersuchungen konnte eine rezeptorvermittelte Endozytose der Man-Vektoren an den o.g. Zelllinien nachgewiesen werden. Die anderen Uronsäure-Konjugate zeigten keine signifikanten Abweichungen im Transfektionsverhalten im Vergleich zum PEI-Vektor.
The goal of this work was the development of new non-viral gene transfer systems for the somatic gene therapy. For these non-viral gene vectors (polycation-DNA-complexes) on the base of ligand-functionalized polycations were synthesized, characterized and tested in transfection trials on different cell cultures (HepG2, HeLa, 16HBE).
In preliminary investigations PEI-g-PEO copolymers with different grafting densities of poly(ethylene oxide) PEO8 were synthesized and characterized. This was followed by modification of PEI and the copolymer PEI-g-PEO(20) with specific receptor ligands for transfection studies to the cell lines mentioned above. Folic acid (transfection at HeLa cells), triiodo-L-thyronine (HepG2 cells) and the uronic acids of galactose, mannose, glucose as well as the lactobionic acid (HeLa, HepG2 and 16HBE cells) were used as ligands. The coupling of the ligands was performed either without a spacer or via PEO side chains and was realized by carbodiimids.
The PEI and the grafted copolymers PEI-g-PEO as well as the ligand-functionalized copolymers were characterized regarding to their chemical composition and molecular parameters. Molar masses from sedimentation rate experiments of the AUC were obtained within the range of 35000 to 70000 g/mol. The molar mass investigations by means of SEC-MALLS revealed that after the grafting process both copolymers with heterogeneous chemical composition and unmodified PEI were present. The polydispersity of all PEI-g-PEO(20) based copolymers increased significantly compared with unmodified PEI. The molar masses increased with higher conversion degree as expected. The highly-substituted products exhibited an increasingly more compact structure in aqueous solution.
The following transfection studies were accomplished with the help of a luciferase reporter genes at the cultures HepG2 (liver cancer cells), HeLa (cervix cancer cells) and 16HBE (lung epithelium cells). The grafted copolymers PEI-g-PEO were compared to the unmodified PEI vector in transfection experiments. Here an almost identical transfer efficiency compared to the unmodified PEI vector could be maintained accompanied by reduced toxicity up to a PEO content of 17% w/w.
Folic acid copolymers were tested on HeLa cells in further vector studies. All folic acid vectors showed a maximum in the transfection at a N/P ratio (complex of polycation with DNA) of 2.5 and/or 5.0, which refers to a receptor-mediated endocytosis. However, no receptor-mediated endocytosis was observed in transfection.
A similar transfection behavior was observed with the T3 vectors on HepG2 cells dependent on the N/P ratio. The hypothetical receptor-mediated endocytosis could be confirmed within the T3-functionalized vectors by appropriate T3 excess experiments. Herein the transfer efficiency of the T3 gene vectors decreased significantly while adding free low-molecular weight triiodo-L-thyronine. In contrast to this the transfer efficiency of the unmodified PEI vector decreased only negligibly. A receptor-mediated endocytosis was also confirmed by fluorescence microscopy investigation of T3-functionalized aminodextranes at transfection of HepG2 cells. Subsequently, the T3 vectors were tested at mice in vivo. Here high transfer efficiencies in comparison to the unmodified PEI vector were determined particularly in the spleen as well as in the kidneys and thyroid. The T3 vectors should be suitable for a gene transfer into hepatocytes.
The vectors with uronic acid conjugates as ligands (galacturonic-, glucuronic and lactobionic acid) did not show significant deviations in the transfer efficiencies compared with the PEI vector. In contrast to this the vectors with mannuronic acid exhibit a constant high transfer efficiency at the three cell cultures HepG2, HeLa and 16HBE. They are more efficient than the PEI vector over the examined N/P range. Here the transfection proceeds independently of the charge of the complex (N/P ratio). This transfection behavior could be prevented by blocking the glycosidic OH groups of the Man vector. A receptor-mediated endocytosis of the Man vectors at the three examined cell lines (HepG2, HeLa, 16HBE) could be verified by means of transfection experiments with an excess of free mannuronic acid and fluorescence microscopic investigations.
In continuing studies new gene vectors on the base of cationic starch graft copolymers were synthesized and tested in transfection studies at HepG2 and 16HBE cells. Beyond that peptide-functionalized PEI vectors, which exhibit a nuclear localization sequence (TAT), were established and their transfection in vitro was determined. Compared to the PEI vector lower transfections of the vectors on the base of cationic starch graft copolymers was observed. However, an increase is expected by coupling with T3 and mannuronic acid ligands.
DŘÍZHALOVÁ, Blanka. "Aktivita štítné žlázy ovcí". Master's thesis, 2014. http://www.nusl.cz/ntk/nusl-180816.
Texto completoCapítulos de libros sobre el tema "Triiodthyronin"
Hubl, W. "Triiodthyronin, freies". En Lexikon der Medizinischen Laboratoriumsdiagnostik, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49054-9_3110-1.
Texto completoHubl, W. "Triiodthyronin, gesamt". En Lexikon der Medizinischen Laboratoriumsdiagnostik, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49054-9_3111-1.
Texto completoHubl, W. "Triiodthyronin, reverses". En Lexikon der Medizinischen Laboratoriumsdiagnostik, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49054-9_3112-1.
Texto completoHubl, W. "Triiodthyronin, freies". En Springer Reference Medizin, 2354–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_3110.
Texto completoHubl, W. "Triiodthyronin, gesamt". En Springer Reference Medizin, 2356–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_3111.
Texto completoHubl, W. "Triiodthyronin, reverses". En Springer Reference Medizin, 2357–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_3112.
Texto completo"Reverses Triiodthyronin (rT3)". En Springer Reference Medizin, 2066. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_313268.
Texto completoBehrends, Jan C., Josef Bischofberger, Rainer Deutzmann, Heimo Ehmke, Stephan Frings, Stephan Grissmer, Markus Hoth et al. "11.5 Schilddrüsenhormone (Thyroxin und Triiodthyronin)". En Duale Reihe Physiologie. Stuttgart: Georg Thieme Verlag, 2012. http://dx.doi.org/10.1055/b-0034-24801.
Texto completo"11.5 Schilddrüsenhormone (Thyroxin und Triiodthyronin)". En Physiologie, editado por Jan C. Behrends. Stuttgart: Georg Thieme Verlag, 2010. http://dx.doi.org/10.1055/b-0034-24673.
Texto completo"20 Hormone: 20.4 Schilddrüsenhormone (Thyroxin und Triiodthyronin)". En Biochemie, editado por Joachim Rassow, Karin Hauser, Roland Netzker y Rainer Deutzmann. Stuttgart: Georg Thieme Verlag, 2008. http://dx.doi.org/10.1055/b-0034-88970.
Texto completo