Literatura académica sobre el tema "Tychonoff space"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Tychonoff space".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Tychonoff space"

1

ALZahrani, Samirah. "C-Tychonoff and L-Tychonoff Topological Spaces". European Journal of Pure and Applied Mathematics 11, n.º 3 (31 de julio de 2018): 882–92. http://dx.doi.org/10.29020/nybg.ejpam.v11i3.3253.

Texto completo
Resumen
A topological space X is called C-Tychonoff if there exist a one-to-one function f from X onto a Tychonoff space Y such that f restriction K from K onto f(K) is a homeomorphism for each compact subspace K of X. We discuss this property and illustrate the relationships between C-Tychonoffness and some other properties like submetrizability, local compactness, L-Tychononess, C-normality, C-regularity, epinormality, sigma-compactness, pseudocompactness and zero-dimensional.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Shakhmatov, Dimitri, Mikhail Tkachenko, Vladimir V. Tkachuk y Richard G. Wilson. "Strengthening connected Tychonoff topologies". Applied General Topology 3, n.º 2 (1 de octubre de 2002): 113. http://dx.doi.org/10.4995/agt.2002.2058.

Texto completo
Resumen
<p>The problem of whether a given connected Tychonoff space admits a strictly finer connected Tychonoff topology is considered. We show that every Tychonoff space X satisfying ω (X) ≤ c and c (X) ≤ N<sub>0</sub> admits a finer strongly σ-discrete connected Tychonoff topology of weight 2<sup>c</sup>. We also prove that every connected Tychonoff space is an open continuous image of a connected strongly σ-discrete submetrizable Tychonoff space. The latter result is applied to represent every connected topological group as a quotient of a connected strongly σ-discrete submetrizable topological group.</p>
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Tzannes, V. "A Tychonoff non-normal space". International Journal of Mathematics and Mathematical Sciences 16, n.º 3 (1993): 615–16. http://dx.doi.org/10.1155/s0161171293000754.

Texto completo
Resumen
A Tychonoff non-normal space is constructed which can be used for the construction of a regular space on which every weakly continuous (hence everyθ-continuous orη-continuous) map into a given space is constant.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Rice, Michael D. "Reflexive objects in topological categories". Mathematical Structures in Computer Science 6, n.º 4 (agosto de 1996): 375–86. http://dx.doi.org/10.1017/s0960129500001079.

Texto completo
Resumen
This paper presents several basic results about the non-existence of reflexive objects in cartesian closed topological categories of Hausdorff spaces. In particular, we prove that there are no non-trivial countably compact reflexive objects in the category of Hausdorff k-spaces and, more generally, that any non-trivial reflexive Tychonoff space in this category contains a closed discrete subspace corresponding to a numeral system in the sense of Wadsworth. In addition, we establish that a reflexive Tychonoff space in a cartesian-closed topological category cannot contain a non-trivial continuous image of the unit interval. Therefore, if there exists a non-trivial reflexive Tychonoff space, it does not have a nice geometric structure.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Basu, C. K. y S. S. Mandal. "Maximal Tychonoff spaces and normal isolator covers". Publications de l'Institut Math?matique (Belgrade) 99, n.º 113 (2016): 217–25. http://dx.doi.org/10.2298/pim1613217b.

Texto completo
Resumen
We introduce a new kind of cover called a normal isolator cover to characterize maximal Tychonoff spaces. Such a study is used to provide an alternative proof of an interesting result of Feng and Garcia-Ferreira in 1999 that every maximal Tychonoff space is extremally disconnected. Maximal tychonoffness of subspaces is also discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Gabriyelyan, S. S. "Free Locally Convex Spaces and the k-space Property". Canadian Mathematical Bulletin 57, n.º 4 (1 de diciembre de 2014): 803–9. http://dx.doi.org/10.4153/cmb-2014-019-7.

Texto completo
Resumen
AbstractLet L(X) be the free locally convex space over a Tychonoff space X. Then L(X) is a k-space if and only if X is a countable discrete space. We prove also that L(D) has uncountable tightness for every uncountable discrete space D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Çoker, Doğan, A. Haydar Eş y Necla Turanli. "A Tychonoff theorem in intuitionistic fuzzy topological spaces". International Journal of Mathematics and Mathematical Sciences 2004, n.º 70 (2004): 3829–37. http://dx.doi.org/10.1155/s0161171204403603.

Texto completo
Resumen
The purpose of this paper is to prove a Tychonoff theorem in the so-called “intuitionistic fuzzy topological spaces.” After giving the fundamental definitions, such as the definitions of intuitionistic fuzzy set, intuitionistic fuzzy topology, intuitionistic fuzzy topological space, fuzzy continuity, fuzzy compactness, and fuzzy dicompactness, we obtain several preservation properties and some characterizations concerning fuzzy compactness. Lastly we give a Tychonoff-like theorem.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Jumaev, D. "(O-C)-compact Spaces and Hyperspaces Functor". Bulletin of Science and Practice 5, n.º 4 (15 de abril de 2019): 30–37. http://dx.doi.org/10.33619/2414-2948/41/03.

Texto completo
Resumen
In the work, it is established that the space of all nonempty compact subsets of a Tychonoff space is (O-C)–compact if and only if the give Tychonoff space is (O-C)–compact. Further, for a map f:X→Y the map expβX→Y is (O-C)–compact if and only if the map f is (O-C)–compact.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Kocinac, Ljubisa. "On spaces of group-valued functions". Filomat 25, n.º 2 (2011): 163–72. http://dx.doi.org/10.2298/fil1102163k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Elfard, Ali Sayed. "Neighborhood base at the identity of free paratopological groups". Topological Algebra and its Applications 1 (12 de noviembre de 2013): 31–36. http://dx.doi.org/10.2478/taa-2013-0004.

Texto completo
Resumen
AbstractIn 1985, V. G. Pestov described a neighborhood base at the identity of free topological groups on a Tychonoff space in terms of the elements of the fine uniformity on the Tychonoff space. In this paper, we extend Postev’s description to the free paratopological groups where we introduce a neighborhood base at the identity of free paratopological groups on any topological space in terms of the elements of the fine quasiuniformity on the space.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Tychonoff space"

1

Stover, Derrick D. "Continuous Mappings and Some New Classes of Spaces". View abstract, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3371579.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Törnkvist, Robin. "Tychonoff's theorem and its equivalence with the axiom of choice". Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-107423.

Texto completo
Resumen
In this essay we give an elementary introduction to topology so that we can prove Tychonoff’s theorem, and also its equivalence with the axiom of choice.
Denna uppsats tillhandahåller en grundläggande introduktion till topologi för att sedan bevisa Tychonoff’s theorem, samt dess ekvivalens med urvalsaxiomet.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Tychonoff space"

1

Tozzi, A. y V. Trnková. "Clone Segments of the Tychonoff Modification of Space". En Papers in Honour of Bernhard Banaschewski, 327–37. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-2529-3_19.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Buskes, Gerard y Arnoud van Rooij. "Tychonoff’s Theorem". En Topological Spaces, 270–82. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-0665-1_17.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Sanchis, M. "Bounded Subsets of Tychonoff Spaces: A Survey of Results and Problems". En Pseudocompact Topological Spaces, 107–50. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91680-4_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Boules, Adel N. "Essentials of General Topology". En Fundamentals of Mathematical Analysis, 191–244. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198868781.003.0005.

Texto completo
Resumen
The first eight sections of this chapter constitute its core and are generally parallel to the leading sections of chapter 4. Most of the sections are brief and emphasize the nonmetric aspects of topology. Among the topics treated are normality, regularity, and second countability. The proof of Tychonoff’s theorem for finite products appears in section 8. The section on locally compact spaces is the transition between the core of the chapter and the more advanced sections on metrization, compactification, and the product of infinitely many spaces. The highlights include the one-point compactification, the Urysohn metrization theorem, and Tychonoff’s theorem. Little subsequent material is based on the last three sections. At various points in the book, it is explained how results stated for the metric case can be extended to topological spaces, especially locally compact Hausdorff spaces. Some such results are developed in the exercises.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía