Artículos de revistas sobre el tema "Unsupervised intrusion detection"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Unsupervised intrusion detection".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
ZHONG, SHI, TAGHI M. KHOSHGOFTAAR y NAEEM SELIYA. "CLUSTERING-BASED NETWORK INTRUSION DETECTION". International Journal of Reliability, Quality and Safety Engineering 14, n.º 02 (abril de 2007): 169–87. http://dx.doi.org/10.1142/s0218539307002568.
Texto completoHajamydeen, Asif Iqbal y Nur Izura Udzir. "A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework". Scalable Computing: Practice and Experience 20, n.º 1 (9 de marzo de 2019): 113–60. http://dx.doi.org/10.12694/scpe.v20i1.1465.
Texto completoZoppi, Tommaso, Mohamad Gharib, Muhammad Atif y Andrea Bondavalli. "Meta-Learning to Improve Unsupervised Intrusion Detection in Cyber-Physical Systems". ACM Transactions on Cyber-Physical Systems 5, n.º 4 (31 de octubre de 2021): 1–27. http://dx.doi.org/10.1145/3467470.
Texto completoMeira, Jorge. "Comparative Results with Unsupervised Techniques in Cyber Attack Novelty Detection". Proceedings 2, n.º 18 (17 de septiembre de 2018): 1191. http://dx.doi.org/10.3390/proceedings2181191.
Texto completoCasas, Pedro, Johan Mazel y Philippe Owezarski. "Unsupervised Network Intrusion Detection Systems: Detecting the Unknown without Knowledge". Computer Communications 35, n.º 7 (abril de 2012): 772–83. http://dx.doi.org/10.1016/j.comcom.2012.01.016.
Texto completoZhao, Yi Lin y Qing Lei Zhou. "Intrusion Detection Method Based on LEGClust Algorithm". Applied Mechanics and Materials 263-266 (diciembre de 2012): 3025–33. http://dx.doi.org/10.4028/www.scientific.net/amm.263-266.3025.
Texto completoAlmalawi, Abdulmohsen, Adil Fahad, Zahir Tari, Asif Irshad Khan, Nouf Alzahrani, Sheikh Tahir Bakhsh, Madini O. Alassafi, Abdulrahman Alshdadi y Sana Qaiyum. "Add-On Anomaly Threshold Technique for Improving Unsupervised Intrusion Detection on SCADA Data". Electronics 9, n.º 6 (18 de junio de 2020): 1017. http://dx.doi.org/10.3390/electronics9061017.
Texto completoLi, Longlong, Qin Chen, Shuiming Chi y Xiaohang Liu. "Unsupervised Intrusion Detection based on FCM and Vote Mechanism". Information Technology Journal 13, n.º 1 (15 de diciembre de 2013): 133–39. http://dx.doi.org/10.3923/itj.2014.133.139.
Texto completoIraqi, Omar y Hanan El Bakkali. "Application-Level Unsupervised Outlier-Based Intrusion Detection and Prevention". Security and Communication Networks 2019 (28 de julio de 2019): 1–13. http://dx.doi.org/10.1155/2019/8368473.
Texto completoMin, Luo, Zhang Huan-guo y Wang Li-na. "Research and implementation of unsupervised clustering-based intrusion detection". Wuhan University Journal of Natural Sciences 8, n.º 3 (septiembre de 2003): 803–7. http://dx.doi.org/10.1007/bf02900819.
Texto completoSilaban, Andreas Jonathan, Satria Mandala y Erwid Jadied Mustofa. "Wrapper-Based Feature Selection Analysis For Semi-Supervised Anomaly Based Intrusion Detection System". International Journal on Information and Communication Technology (IJoICT) 5, n.º 2 (10 de junio de 2020): 32. http://dx.doi.org/10.21108/ijoict.2019.52.209.
Texto completoCai, Long-zheng, Jian Chen, Yun Ke, Tao Chen y Zhi-gang Li. "A new data normalization method for unsupervised anomaly intrusion detection". Journal of Zhejiang University SCIENCE C 11, n.º 10 (29 de septiembre de 2010): 778–84. http://dx.doi.org/10.1631/jzus.c0910625.
Texto completoTANG, Shao-xian. "Intrusion detection based on unsupervised clustering and hybrid genetic algorithm". Journal of Computer Applications 28, n.º 2 (10 de julio de 2008): 409–11. http://dx.doi.org/10.3724/sp.j.1087.2008.00409.
Texto completoGhafir, Ibrahim, Konstantinos G. Kyriakopoulos, Francisco J. Aparicio-Navarro, Sangarapillai Lambotharan, Basil Assadhan y Hamad Binsalleeh. "A Basic Probability Assignment Methodology for Unsupervised Wireless Intrusion Detection". IEEE Access 6 (2018): 40008–23. http://dx.doi.org/10.1109/access.2018.2855078.
Texto completoCarrasco, Rafael San Miguel y Miguel-Angel Sicilia. "Unsupervised intrusion detection through skip-gram models of network behavior". Computers & Security 78 (septiembre de 2018): 187–97. http://dx.doi.org/10.1016/j.cose.2018.07.003.
Texto completoChoi, Hyunseung, Mintae Kim, Gyubok Lee y Wooju Kim. "Unsupervised learning approach for network intrusion detection system using autoencoders". Journal of Supercomputing 75, n.º 9 (9 de marzo de 2019): 5597–621. http://dx.doi.org/10.1007/s11227-019-02805-w.
Texto completoSiddiqui, Abdul Jabbar y Azzedine Boukerche. "Adaptive ensembles of autoencoders for unsupervised IoT network intrusion detection". Computing 103, n.º 6 (20 de febrero de 2021): 1209–32. http://dx.doi.org/10.1007/s00607-021-00912-2.
Texto completoZoppi, Tommaso, Andrea Ceccarelli, Tommaso Capecchi y Andrea Bondavalli. "Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat Landscape". ACM/IMS Transactions on Data Science 2, n.º 2 (2 de abril de 2021): 1–26. http://dx.doi.org/10.1145/3441140.
Texto completoQaddoura, Raneem, Ala’ M. Al-Zoubi, Iman Almomani y Hossam Faris. "A Multi-Stage Classification Approach for IoT Intrusion Detection Based on Clustering with Oversampling". Applied Sciences 11, n.º 7 (28 de marzo de 2021): 3022. http://dx.doi.org/10.3390/app11073022.
Texto completoVaiyapuri, Thavavel y Adel Binbusayyis. "Application of deep autoencoder as an one-class classifier for unsupervised network intrusion detection: a comparative evaluation". PeerJ Computer Science 6 (7 de diciembre de 2020): e327. http://dx.doi.org/10.7717/peerj-cs.327.
Texto completoHuang, Xiaolong. "Network Intrusion Detection Based on an Improved Long-Short-Term Memory Model in Combination with Multiple Spatiotemporal Structures". Wireless Communications and Mobile Computing 2021 (24 de abril de 2021): 1–10. http://dx.doi.org/10.1155/2021/6623554.
Texto completoGoernitz, N., M. Kloft, K. Rieck y U. Brefeld. "Toward Supervised Anomaly Detection". Journal of Artificial Intelligence Research 46 (20 de febrero de 2013): 235–62. http://dx.doi.org/10.1613/jair.3623.
Texto completoBarletta, Vita Santa, Danilo Caivano, Antonella Nannavecchia y Michele Scalera. "Intrusion Detection for in-Vehicle Communication Networks: An Unsupervised Kohonen SOM Approach". Future Internet 12, n.º 7 (14 de julio de 2020): 119. http://dx.doi.org/10.3390/fi12070119.
Texto completoSirisha, Aswadati, Kosaraju Chaitanya, Komanduri Venkata Sesha Sai Rama Krishna y Satya Sandeep Kanumalli. "Intrusion Detection Models Using Supervised and Unsupervised Algorithms - A Comparative Estimation". International Journal of Safety and Security Engineering 11, n.º 1 (28 de febrero de 2021): 51–58. http://dx.doi.org/10.18280/ijsse.110106.
Texto completoDai, Yawen, Guanghui Yuan, Zhaoyuan Yang y Bin Wang. "K-Modes Clustering Algorithm Based on Weighted Overlap Distance and Its Application in Intrusion Detection". Scientific Programming 2021 (25 de mayo de 2021): 1–9. http://dx.doi.org/10.1155/2021/9972589.
Texto completoPrasanta Gogoi, B. Borah y D. K. Bhattacharyya. "Anomaly Detection Analysis of Intrusion Data Ising Supervised & Unsupervised Approach". Journal of Convergence Information Technology 5, n.º 1 (28 de febrero de 2010): 95–110. http://dx.doi.org/10.4156/jcit.vol5.issue1.11.
Texto completoRamani Varanasi, Venkata. "A Comparative Evaluation of supervised and unsupervised algorithms for Intrusion Detection". International Journal of Advanced Trends in Computer Science and Engineering 9, n.º 4 (25 de agosto de 2020): 4834–43. http://dx.doi.org/10.30534/ijatcse/2020/9394202.
Texto completoWang, Xiao Bin, Yong Jun Wang y Yong Lin Sun. "Abnormal File Access Behavior Detection Based on FPD: An Unsupervised Approach". Applied Mechanics and Materials 713-715 (enero de 2015): 2212–16. http://dx.doi.org/10.4028/www.scientific.net/amm.713-715.2212.
Texto completoDaneshpazhouh, Armin y Ashkan Sami. "Semi-Supervised Outlier Detection with Only Positive and Unlabeled Data Based on Fuzzy Clustering". International Journal on Artificial Intelligence Tools 24, n.º 03 (junio de 2015): 1550003. http://dx.doi.org/10.1142/s0218213015500037.
Texto completoSahu, Santosh Kumar, Akanksha Katiyar, Kanchan Mala Kumari, Govind Kumar y Durga Prasad Mohapatra. "An SVM-Based Ensemble Approach for Intrusion Detection". International Journal of Information Technology and Web Engineering 14, n.º 1 (enero de 2019): 66–84. http://dx.doi.org/10.4018/ijitwe.2019010104.
Texto completoJavidi, Mohammad Masoud. "Network Attacks Detection by Hierarchical Neural Network". Computer Engineering and Applications Journal 4, n.º 2 (18 de junio de 2015): 119–32. http://dx.doi.org/10.18495/comengapp.v4i2.108.
Texto completoWang, Zu-Min, Ji-Yu Tian, Jing Qin, Hui Fang y Li-Ming Chen. "A Few-Shot Learning-Based Siamese Capsule Network for Intrusion Detection with Imbalanced Training Data". Computational Intelligence and Neuroscience 2021 (13 de septiembre de 2021): 1–17. http://dx.doi.org/10.1155/2021/7126913.
Texto completoVega Vega, Rafael Alejandro, Pablo Chamoso-Santos, Alfonso González Briones, José-Luis Casteleiro-Roca, Esteban Jove, María del Carmen Meizoso-López, Benigno Antonio Rodríguez-Gómez et al. "Intrusion Detection with Unsupervised Techniques for Network Management Protocols over Smart Grids". Applied Sciences 10, n.º 7 (27 de marzo de 2020): 2276. http://dx.doi.org/10.3390/app10072276.
Texto completoHanselmann, Markus, Thilo Strauss, Katharina Dormann y Holger Ulmer. "CANet: An Unsupervised Intrusion Detection System for High Dimensional CAN Bus Data". IEEE Access 8 (2020): 58194–205. http://dx.doi.org/10.1109/access.2020.2982544.
Texto completoNisioti, Antonia, Alexios Mylonas, Paul D. Yoo y Vasilios Katos. "From Intrusion Detection to Attacker Attribution: A Comprehensive Survey of Unsupervised Methods". IEEE Communications Surveys & Tutorials 20, n.º 4 (2018): 3369–88. http://dx.doi.org/10.1109/comst.2018.2854724.
Texto completoKumar Mallick, Pradeep, Bibhu Prasad Mohanty, Sudan Jha y Kuhoo . "A novel Approach Using “Supervised and Unsupervised learning” to prevent the Adequacy of Intrusion Detection Systems". International Journal of Engineering & Technology 7, n.º 3.34 (1 de septiembre de 2018): 474. http://dx.doi.org/10.14419/ijet.v7i3.34.19362.
Texto completoYu, Zhenhao, Fang Liu, Yinquan Yuan, Sihan Li y Zhengying Li. "Signal Processing for Time Domain Wavelengths of Ultra-Weak FBGs Array in Perimeter Security Monitoring Based on Spark Streaming". Sensors 18, n.º 9 (4 de septiembre de 2018): 2937. http://dx.doi.org/10.3390/s18092937.
Texto completoOm Pal, Peeyush Jain, Sudhansu Goyal, Zia Saquib y Bernard L. Menezes. "Intrusion Detection Using Graph Support: A Hybrid Approach of Supervised and Unsupervised Techniques". International Journal of Advancements in Computing Technology 2, n.º 3 (31 de agosto de 2010): 114–18. http://dx.doi.org/10.4156/ijact.vol2.issue3.12.
Texto completoRabbani, Mahdi, Yongli Wang, Reza Khoshkangini, Hamed Jelodar, Ruxin Zhao, Sajjad Bagheri Baba Ahmadi y Seyedvalyallah Ayobi. "A Review on Machine Learning Approaches for Network Malicious Behavior Detection in Emerging Technologies". Entropy 23, n.º 5 (25 de abril de 2021): 529. http://dx.doi.org/10.3390/e23050529.
Texto completoJing, Yong Wen y Li Fen Li. "SOM and PSO Based Alerts Clustering in Intrusion Detection System". Applied Mechanics and Materials 401-403 (septiembre de 2013): 1453–57. http://dx.doi.org/10.4028/www.scientific.net/amm.401-403.1453.
Texto completoJabbar, Ayad. "Local and Global Outlier Detection Algorithms in Unsupervised Approach: A Review". Iraqi Journal for Electrical and Electronic Engineering 17, n.º 1 (31 de marzo de 2021): 1–12. http://dx.doi.org/10.37917/ijeee.17.1.9.
Texto completoAlmomani, Ammar, Mohammad Alauthman, Firas Albalas, O. Dorgham y Atef Obeidat. "An Online Intrusion Detection System to Cloud Computing Based on Neucube Algorithms". International Journal of Cloud Applications and Computing 8, n.º 2 (abril de 2018): 96–112. http://dx.doi.org/10.4018/ijcac.2018040105.
Texto completoRamaiah, CH, D. Adithya Charan y R. Syam Akhil. "Secure automated threat detection and prevention (SATDP)". International Journal of Engineering & Technology 7, n.º 2.20 (18 de abril de 2018): 86. http://dx.doi.org/10.14419/ijet.v7i2.20.11760.
Texto completoMohammadpour, Leila, T. C. Ling, C. S. Liew y Alihossein Aryanfar. "A Mean Convolutional Layer for Intrusion Detection System". Security and Communication Networks 2020 (24 de octubre de 2020): 1–16. http://dx.doi.org/10.1155/2020/8891185.
Texto completoDr.R.Venkatesh, Kavitha S, Dr Uma Maheswari N,. "Network Anomaly Detection for NSL-KDD Dataset Using Deep Learning". INFORMATION TECHNOLOGY IN INDUSTRY 9, n.º 2 (31 de marzo de 2021): 821–27. http://dx.doi.org/10.17762/itii.v9i2.419.
Texto completoLee, JooHwa y KeeHyun Park. "AE-CGAN Model based High Performance Network Intrusion Detection System". Applied Sciences 9, n.º 20 (10 de octubre de 2019): 4221. http://dx.doi.org/10.3390/app9204221.
Texto completoKuwahara, Takuya, Yukino Baba, Hisashi Kashima, Takeshi Kishikawa, Junichi Tsurumi, Tomoyuki Haga, Yoshihiro Ujiie, Takamitsu Sasaki y Hideki Matsushima. "Supervised and Unsupervised Intrusion Detection Based on CAN Message Frequencies for In-vehicle Network". Journal of Information Processing 26 (2018): 306–13. http://dx.doi.org/10.2197/ipsjjip.26.306.
Texto completoQu, Hongchun, Zeliang Qiu, Xiaoming Tang, Min Xiang y Ping Wang. "Incorporating unsupervised learning into intrusion detection for wireless sensor networks with structural co-evolvability". Applied Soft Computing 71 (octubre de 2018): 939–51. http://dx.doi.org/10.1016/j.asoc.2018.07.044.
Texto completoPrasad, Mahendra, Sachin Tripathi y Keshav Dahal. "Unsupervised feature selection and cluster center initialization based arbitrary shaped clusters for intrusion detection". Computers & Security 99 (diciembre de 2020): 102062. http://dx.doi.org/10.1016/j.cose.2020.102062.
Texto completoSovilj, Dušan, Paul Budnarain, Scott Sanner, Geoff Salmon y Mohan Rao. "A comparative evaluation of unsupervised deep architectures for intrusion detection in sequential data streams". Expert Systems with Applications 159 (noviembre de 2020): 113577. http://dx.doi.org/10.1016/j.eswa.2020.113577.
Texto completo