Artículos de revistas sobre el tema "Variable prediction horizons"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Variable prediction horizons".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Alamaniotis, Miltiadis y Georgios Karagiannis. "Integration of Gaussian Processes and Particle Swarm Optimization for Very-Short Term Wind Speed Forecasting in Smart Power". International Journal of Monitoring and Surveillance Technologies Research 5, n.º 3 (julio de 2017): 1–14. http://dx.doi.org/10.4018/ijmstr.2017070101.
Texto completoAbduljabbar, Rusul L., Hussein Dia y Pei-Wei Tsai. "Unidirectional and Bidirectional LSTM Models for Short-Term Traffic Prediction". Journal of Advanced Transportation 2021 (26 de marzo de 2021): 1–16. http://dx.doi.org/10.1155/2021/5589075.
Texto completoMontaser, Eslam, José-Luis Díez y Jorge Bondia. "Glucose Prediction under Variable-Length Time-Stamped Daily Events: A Seasonal Stochastic Local Modeling Framework". Sensors 21, n.º 9 (4 de mayo de 2021): 3188. http://dx.doi.org/10.3390/s21093188.
Texto completoFaria, Álvaro José Gomes de, Sérgio Henrique Godinho Silva, Leônidas Carrijo Azevedo Melo, Renata Andrade, Marcelo Mancini, Luiz Felipe Mesquita, Anita Fernanda dos Santos Teixeira, Luiz Roberto Guimarães Guilherme y Nilton Curi. "Soils of the Brazilian Coastal Plains biome: prediction of chemical attributes via portable X-ray fluorescence (pXRF) spectrometry and robust prediction models". Soil Research 58, n.º 7 (2020): 683. http://dx.doi.org/10.1071/sr20136.
Texto completoGoldstein, Benjamin A., Michael J. Pencina, Maria E. Montez-Rath y Wolfgang C. Winkelmayer. "Predicting mortality over different time horizons: which data elements are needed?" Journal of the American Medical Informatics Association 24, n.º 1 (29 de junio de 2016): 176–81. http://dx.doi.org/10.1093/jamia/ocw057.
Texto completoLiu, Chengyuan, Josep Vehí, Parizad Avari, Monika Reddy, Nick Oliver, Pantelis Georgiou y Pau Herrero. "Long-Term Glucose Forecasting Using a Physiological Model and Deconvolution of the Continuous Glucose Monitoring Signal". Sensors 19, n.º 19 (8 de octubre de 2019): 4338. http://dx.doi.org/10.3390/s19194338.
Texto completoAlmarzooqi, Ameera M., Maher Maalouf, Tarek H. M. El-Fouly, Vasileios E. Katzourakis, Mohamed S. El Moursi y Constantinos V. Chrysikopoulos. "A hybrid machine-learning model for solar irradiance forecasting". Clean Energy 8, n.º 1 (10 de enero de 2024): 100–110. http://dx.doi.org/10.1093/ce/zkad075.
Texto completoFernández Pozo, Rubén, Ana Belén Rodríguez González, Mark Richard Wilby y Juan José Vinagre Díaz. "Analysis of Extended Information Provided by Bluetooth Traffic Monitoring Systems to Enhance Short-Term Level of Service Prediction". Sensors 22, n.º 12 (17 de junio de 2022): 4565. http://dx.doi.org/10.3390/s22124565.
Texto completoWang, Haowei, Kin On Kwok y Steven Riley. "Forecasting influenza incidence as an ordinal variable using machine learning". Wellcome Open Research 9 (8 de enero de 2024): 11. http://dx.doi.org/10.12688/wellcomeopenres.19599.1.
Texto completoZjavka, Ladislav. "Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation". Energies 14, n.º 22 (12 de noviembre de 2021): 7581. http://dx.doi.org/10.3390/en14227581.
Texto completoLi, Gang, Lin Zhong, Wenjun Sun, Shaohua Zhang, Qianjie Liu, Qingsheng Huang y Guoliang Hu. "A Variable Horizon Model Predictive Control for Magnetorheological Semi-Active Suspension with Air Springs". Sensors 24, n.º 21 (29 de octubre de 2024): 6926. http://dx.doi.org/10.3390/s24216926.
Texto completoGiraldo, Sergio A. C., Príamo A. Melo y Argimiro R. Secchi. "Tuning of Model Predictive Controllers Based on Hybrid Optimization". Processes 10, n.º 2 (11 de febrero de 2022): 351. http://dx.doi.org/10.3390/pr10020351.
Texto completoMendes, Wanderson de Sousa y Michael Sommer. "Advancing Soil Organic Carbon and Total Nitrogen Modelling in Peatlands: The Impact of Environmental Variable Resolution and vis-NIR Spectroscopy Integration". Agronomy 13, n.º 7 (6 de julio de 2023): 1800. http://dx.doi.org/10.3390/agronomy13071800.
Texto completoAslan, Antonio, José-Luis Díez, Alejandro José Laguna Sanz y Jorge Bondia. "On the Use of Population Data for Training Seasonal Local Models-Based Glucose Predictors: An In Silico Study". Applied Sciences 13, n.º 9 (25 de abril de 2023): 5348. http://dx.doi.org/10.3390/app13095348.
Texto completoClingensmith, Christopher M. y Sabine Grunwald. "Predicting Soil Properties and Interpreting Vis-NIR Models from across Continental United States". Sensors 22, n.º 9 (21 de abril de 2022): 3187. http://dx.doi.org/10.3390/s22093187.
Texto completoPavani-Biju, Barbara, José G. Borges, Susete Marques y Ana C. Teodoro. "Enhancing Forest Site Classification in Northwest Portugal: A Geostatistical Approach Employing Cokriging". Sustainability 16, n.º 15 (26 de julio de 2024): 6423. http://dx.doi.org/10.3390/su16156423.
Texto completoDill, Robert, Henryk Dobslaw y Maik Thomas. "ESMGFZ EAM Products for EOP Prediction: Toward the Quantification of Time Variable EAM Forecast Errors". Artificial Satellites 58, n.º 4 (1 de diciembre de 2023): 330–40. http://dx.doi.org/10.2478/arsa-2023-0013.
Texto completoRamspek, Chava L., Marie Evans, Christoph Wanner, Christiane Drechsler, Nicholas C. Chesnaye, Maciej Szymczak, Magdalena Krajewska et al. "Kidney Failure Prediction Models: A Comprehensive External Validation Study in Patients with Advanced CKD". Journal of the American Society of Nephrology 32, n.º 5 (8 de marzo de 2021): 1174–86. http://dx.doi.org/10.1681/asn.2020071077.
Texto completoBeauchemin, S., R. R. Simard, M. A. Bolinder, M. C. Nolin y D. Cluis. "Prediction of phosphorus concentration in tile-drainage water from the Montreal Lowlands soils". Canadian Journal of Soil Science 83, n.º 1 (1 de febrero de 2003): 73–87. http://dx.doi.org/10.4141/s02-029.
Texto completoAmara-Ouali, Yvenn, Bachir Hamrouche, Guillaume Principato y Yannig Goude. "Quantifying the Uncertainty of Electric Vehicle Charging with Probabilistic Load Forecasting". World Electric Vehicle Journal 16, n.º 2 (9 de febrero de 2025): 88. https://doi.org/10.3390/wevj16020088.
Texto completoO'Connell, D. A. y P. J. Ryan. "Prediction of three key hydraulic properties in a soil survey of a small forested catchment". Soil Research 40, n.º 2 (2002): 191. http://dx.doi.org/10.1071/sr01036.
Texto completoPark, Sophia y Myeong Jun Kim. "Forecasting Ultrafine Dust Concentrations in Seoul: A Machine Learning Approach". Atmosphere 16, n.º 3 (20 de febrero de 2025): 239. https://doi.org/10.3390/atmos16030239.
Texto completoHitziger, Martin y Mareike Ließ. "Comparison of Three Supervised Learning Methods for Digital Soil Mapping: Application to a Complex Terrain in the Ecuadorian Andes". Applied and Environmental Soil Science 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/809495.
Texto completoZhang, Mengmeng, Guijun Han, Xiaobo Wu, Chaoliang Li, Qi Shao, Wei Li, Lige Cao, Xuan Wang, Wanqiu Dong y Zenghua Ji. "SST Forecast Skills Based on Hybrid Deep Learning Models: With Applications to the South China Sea". Remote Sensing 16, n.º 6 (14 de marzo de 2024): 1034. http://dx.doi.org/10.3390/rs16061034.
Texto completoPañeda, Emilio Martínez. "Progress and opportunities in modelling environmentally assisted cracking". RILEM Technical Letters 6 (19 de julio de 2021): 70–77. http://dx.doi.org/10.21809/rilemtechlett.2021.145.
Texto completoBruzda, Joanna. "Does modal (auto)regression produce credible forecasts of macroeconomic indicators?" Wiadomości Statystyczne. The Polish Statistician 2024, n.º 10 (31 de octubre de 2024): 1–27. http://dx.doi.org/10.59139/ws.2024.10.1.
Texto completoAlekseev, Valery I. "Forecasting changes in the Earth’s climate system by instrumental measurements and paleodata in the phase-time region, consistent with changes in the barycentric motions of the SUN. Part 2". Yugra State University Bulletin 21, n.º 1 (28 de marzo de 2025): 48–62. https://doi.org/10.18822/byusu20250148-62.
Texto completoJin, Yixuan. "Stock Price Analysis and Prediction Method Based on Machine Learning: Taking Apple Inc as an Example". Highlights in Business, Economics and Management 21 (12 de diciembre de 2023): 652–58. http://dx.doi.org/10.54097/hbem.v21i.14720.
Texto completoAlekseev, Valery I. "Forecasting changes in the earth’s climate system by instrumental measurements and paleodata in the phase-time region, consistent with changes in the barycentric motions of the sun. Part 1". Yugra State University Bulletin 20, n.º 2 (10 de octubre de 2024): 74–96. http://dx.doi.org/10.18822/byusu20240274-96.
Texto completoWang, Meng, Changhe Niu, Zifan Wang, Yongxin Jiang, Jianming Jian y Xiuying Tang. "Model and Parameter Adaptive MPC Path Tracking Control Study of Rear-Wheel-Steering Agricultural Machinery". Agriculture 14, n.º 6 (24 de mayo de 2024): 823. http://dx.doi.org/10.3390/agriculture14060823.
Texto completoUkalovic, D., B. Leeb, B. Rintelen, G. Eichbauer-Sturm, P. Spellitz, R. Puchner, M. Herold et al. "POS0641 MACHINE LEARNING AND EXPLAINABLE AI METHODS CAN HELP TO PREDICT THE INEFFECTIVENESS OF INDIVIDUAL BIOLOGICAL DISEASE MODIFYING ANTIRHEUMATIC DRUGS (bDMARDS) – DATA FROM THE AUSTRIAN BIOLOGICAL REGISTRY BIOREG". Annals of the Rheumatic Diseases 82, Suppl 1 (30 de mayo de 2023): 597. http://dx.doi.org/10.1136/annrheumdis-2023-eular.3479.
Texto completoLuo, Yaneng, Handong Huang, Yadi Yang, Qixin Li, Sheng Zhang y Jinwei Zhang. "Deepwater reservoir prediction using broadband seismic-driven impedance inversion and seismic sedimentology in the South China Sea". Interpretation 6, n.º 4 (1 de noviembre de 2018): SO17—SO29. http://dx.doi.org/10.1190/int-2018-0029.1.
Texto completoAkhmedov, T. R. y M. A. Aghayeva. "Prediction of petrophysical characteristics of deposits in Kurovdagh field by use of attribute analysis of 3D data". Geofizicheskiy Zhurnal 44, n.º 3 (24 de agosto de 2022): 103–12. http://dx.doi.org/10.24028/gj.v44i3.261976.
Texto completoLawson, John R., Corey K. Potvin, Patrick S. Skinner y Anthony E. Reinhart. "The Vice and Virtue of Increased Horizontal Resolution in Ensemble Forecasts of Tornadic Thunderstorms in Low-CAPE, High-Shear Environments". Monthly Weather Review 149, n.º 4 (abril de 2021): 921–44. http://dx.doi.org/10.1175/mwr-d-20-0281.1.
Texto completoGonzález-Enrique, Javier, Juan Jesús Ruiz-Aguilar, José Antonio Moscoso-López, Daniel Urda, Lipika Deka y Ignacio J. Turias. "Artificial Neural Networks, Sequence-to-Sequence LSTMs, and Exogenous Variables as Analytical Tools for NO2 (Air Pollution) Forecasting: A Case Study in the Bay of Algeciras (Spain)". Sensors 21, n.º 5 (4 de marzo de 2021): 1770. http://dx.doi.org/10.3390/s21051770.
Texto completoAbduljabbar, Rusul, Hussein Dia y Sohani Liyanage. "Machine Learning Models for Traffic Prediction on Arterial Roads Using Traffic Features and Weather Information". Applied Sciences 14, n.º 23 (27 de noviembre de 2024): 11047. http://dx.doi.org/10.3390/app142311047.
Texto completoBergeron, Jean M., Mélanie Trudel y Robert Leconte. "Combined assimilation of streamflow and snow water equivalent for mid-term ensemble streamflow forecasts in snow-dominated regions". Hydrology and Earth System Sciences 20, n.º 10 (28 de octubre de 2016): 4375–89. http://dx.doi.org/10.5194/hess-20-4375-2016.
Texto completoWentz, Victor Hugo, Joylan Nunes Maciel, Jorge Javier Gimenez Ledesma y Oswaldo Hideo Ando Junior. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models". Energies 15, n.º 7 (27 de marzo de 2022): 2457. http://dx.doi.org/10.3390/en15072457.
Texto completoMishra, Pradeep, Khder Alakkari, Mostafa Abotaleb, Pankaj Kumar Singh, Shilpi Singh, Monika Ray, Soumitra Sankar Das et al. "Nowcasting India Economic Growth Using a Mixed-Data Sampling (MIDAS) Model (Empirical Study with Economic Policy Uncertainty–Consumer Prices Index)". Data 6, n.º 11 (2 de noviembre de 2021): 113. http://dx.doi.org/10.3390/data6110113.
Texto completoLopes, Gustavo. "The wisdom of crowds in forecasting at high-frequency for multiple time horizons: A case study of the Brazilian retail sales". Brazilian Review of Finance 20, n.º 2 (19 de junio de 2022): 77–115. http://dx.doi.org/10.12660/rbfin.v20n2.2022.85016.
Texto completoGong, Chen Chris, Falko Ueckerdt, Robert Pietzcker, Adrian Odenweller, Wolf-Peter Schill, Martin Kittel y Gunnar Luderer. "Bidirectional coupling of the long-term integrated assessment model REgional Model of INvestments and Development (REMIND) v3.0.0 with the hourly power sector model Dispatch and Investment Evaluation Tool with Endogenous Renewables (DIETER) v1.0.2". Geoscientific Model Development 16, n.º 17 (31 de agosto de 2023): 4977–5033. http://dx.doi.org/10.5194/gmd-16-4977-2023.
Texto completoMcKenzie, Neil y David Jacquier. "Improving the field estimation of saturated hydraulic conductivity in soil survey". Soil Research 35, n.º 4 (1997): 803. http://dx.doi.org/10.1071/s96093.
Texto completoKerry, Colette Gabrielle, Moninya Roughan, Shane Keating, David Gwyther, Gary Brassington, Adil Siripatana y Joao Marcos A. C. Souza. "Comparison of 4-dimensional variational and ensemble optimal interpolation data assimilation systems using a Regional Ocean Modeling System (v3.4) configuration of the eddy-dominated East Australian Current system". Geoscientific Model Development 17, n.º 6 (22 de marzo de 2024): 2359–86. http://dx.doi.org/10.5194/gmd-17-2359-2024.
Texto completoEl Ghazouli, Khalid, Jamal El Khattabi, Isam Shahrour y Aziz Soulhi. "Wastewater flow forecasting model based on the nonlinear autoregressive with exogenous inputs (NARX) neural network". H2Open Journal 4, n.º 1 (1 de enero de 2021): 276–90. http://dx.doi.org/10.2166/h2oj.2021.107.
Texto completoDumm, Gabriel, Lauren Fins, Russell T. Graham y Theresa B. Jain. "Distribution of Fine Roots of Ponderosa Pine and Douglas-Fir in a Central Idaho Forest". Western Journal of Applied Forestry 23, n.º 4 (1 de octubre de 2008): 202–5. http://dx.doi.org/10.1093/wjaf/23.4.202.
Texto completoAler, Ricardo, Javier Huertas-Tato, José M. Valls y Inés M. Galván. "Improving Prediction Intervals Using Measured Solar Power with a Multi-Objective Approach". Energies 12, n.º 24 (10 de diciembre de 2019): 4713. http://dx.doi.org/10.3390/en12244713.
Texto completoMendonça de Paiva, Gabriel, Sergio Pires Pimentel, Bernardo Pinheiro Alvarenga, Enes Gonçalves Marra, Marco Mussetta y Sonia Leva. "Multiple Site Intraday Solar Irradiance Forecasting by Machine Learning Algorithms: MGGP and MLP Neural Networks". Energies 13, n.º 11 (11 de junio de 2020): 3005. http://dx.doi.org/10.3390/en13113005.
Texto completoCarreno-Madinabeitia, Sheila, Gabriel Ibarra-Berastegi, Jon Sáenz, Eduardo Zorita y Alain Ulazia. "Sensitivity Studies for a Hybrid Numerical–Statistical Short-Term Wind and Gust Forecast at Three Locations in the Basque Country (Spain)". Atmosphere 11, n.º 1 (29 de diciembre de 2019): 45. http://dx.doi.org/10.3390/atmos11010045.
Texto completoHe, Hongwen, Jianfei Cao y Jiankun Peng. "Online Prediction with Variable Horizon for Vehicle's Future Driving-Cycle". Energy Procedia 105 (mayo de 2017): 2348–53. http://dx.doi.org/10.1016/j.egypro.2017.03.674.
Texto completoCao, Jianfei, Jiankun Peng y Hongwen He. "Research on Model Prediction Energy Management Strategy with Variable Horizon". Energy Procedia 105 (mayo de 2017): 3565–70. http://dx.doi.org/10.1016/j.egypro.2017.03.819.
Texto completo