Artículos de revistas sobre el tema "Wind power prediction"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Wind power prediction".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Wu, Xinhua, Nan Chen, Qianyun Du, Shuangshuang Mao, and Xiaoming Ju. "Short-term wind power prediction model based on ARMA-GRU-QPSO and error correction." Journal of Physics: Conference Series 2427, no. 1 (2023): 012028. http://dx.doi.org/10.1088/1742-6596/2427/1/012028.
Texto completoBao-Wei Zhang, Bao-Wei Zhang, Hong-Bo Cui Bao-Wei Zhang, and Jiu-Xiang Song Hong-Bo Cui. "Wind Power Prediction Based on Difference Method." 電腦學刊 33, no. 4 (2022): 195–204. http://dx.doi.org/10.53106/199115992022083304016.
Texto completoHu, Hongda, Zhiyong Hu, Kaiwen Zhong, et al. "Long-term offshore wind power prediction using spatiotemporal kriging: A case study in China’s Guangdong Province." Energy Exploration & Exploitation 38, no. 3 (2019): 703–22. http://dx.doi.org/10.1177/0144598719889368.
Texto completoGuo, Wei, Li Xu, Danyang Zhao, Dianqiang Zhou, Tian Wang, and Xujing Tang. "A Wind Power Combination Forecasting Method Based on GASF Image Representation and UniFormer." Journal of Marine Science and Engineering 12, no. 7 (2024): 1173. http://dx.doi.org/10.3390/jmse12071173.
Texto completoLiu, Yi, Jun He, Yu Wang, Zong Liu, Lixun He, and Yanyang Wang. "Short-Term Wind Power Prediction Based on CEEMDAN-SE and Bidirectional LSTM Neural Network with Markov Chain." Energies 16, no. 14 (2023): 5476. http://dx.doi.org/10.3390/en16145476.
Texto completoLiu, Yuanlong, Yuanbiao Zhang, and Ziyue Chen. "Wind Power Prediction Investigation." Research Journal of Applied Sciences, Engineering and Technology 5, no. 5 (2013): 1762–68. http://dx.doi.org/10.19026/rjaset.5.4935.
Texto completoLiu, Hai Ke, Jiang Xia Feng, Shen Quan Yang, and Tao Jia. "Wind Power Prediction Model Based on ARMA and Improved BP-ANN." Advanced Materials Research 1008-1009 (August 2014): 183–87. http://dx.doi.org/10.4028/www.scientific.net/amr.1008-1009.183.
Texto completoLi, Wei, Hong Tu Zhang, and Ting Ting An. "Study on Short-Term Wind Power Prediction Model Based on ARMA Theory." Applied Mechanics and Materials 448-453 (October 2013): 1875–78. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.1875.
Texto completoSolovev, Bogdan, and Giorgi Gamisonia. "WIND POWER PREDICTION METHODS FOR SHELF WIND POWER PLANTS." Electrical and data processing facilities and systems 18, no. 3-4 (2022): 108–20. http://dx.doi.org/10.17122/1999-5458-2022-18-3-4-108-120.
Texto completoRamadevi, Bhukya, Venkata Ramana Kasi, and Kishore Bingi. "Hybrid LSTM-Based Fractional-Order Neural Network for Jeju Island’s Wind Farm Power Forecasting." Fractal and Fractional 8, no. 3 (2024): 149. http://dx.doi.org/10.3390/fractalfract8030149.
Texto completoZhao, Shuling, and Sishuo Zhao. "Wind Power Interval Prediction via an Integrated Variational Empirical Decomposition Deep Learning Model." Sustainability 15, no. 7 (2023): 6114. http://dx.doi.org/10.3390/su15076114.
Texto completoLiu, Renfeng, Yinbo Song, Chen Yuan, Desheng Wang, Peihua Xu, and Yaqin Li. "GAN-Based Abrupt Weather Data Augmentation for Wind Turbine Power Day-Ahead Predictions." Energies 16, no. 21 (2023): 7250. http://dx.doi.org/10.3390/en16217250.
Texto completoDrisya, G. V., D. C. Kiplangat, K. Asokan, and K. Satheesh Kumar. "Deterministic prediction of surface wind speed variations." Annales Geophysicae 32, no. 11 (2014): 1415–25. http://dx.doi.org/10.5194/angeo-32-1415-2014.
Texto completoLange, Matthias. "On the Uncertainty of Wind Power Predictions—Analysis of the Forecast Accuracy and Statistical Distribution of Errors." Journal of Solar Energy Engineering 127, no. 2 (2005): 177–84. http://dx.doi.org/10.1115/1.1862266.
Texto completoYang, Jiacheng, Shiyuan Wen, and Jia Lin. "A new power prediction model for wind power generation." Journal of Physics: Conference Series 2785, no. 1 (2024): 012067. http://dx.doi.org/10.1088/1742-6596/2785/1/012067.
Texto completoTeng, Yun, Zhi Yao An, Xin Yu, Zhen Hao Wang, and Yong Gang Zhang. "Study of Wind Farm Power Output Predicting Model Based on Nonlinear Time Series." Applied Mechanics and Materials 670-671 (October 2014): 1526–29. http://dx.doi.org/10.4028/www.scientific.net/amm.670-671.1526.
Texto completoTsai, Wen-Chang, Chih-Ming Hong, Chia-Sheng Tu, Whei-Min Lin, and Chiung-Hsing Chen. "A Review of Modern Wind Power Generation Forecasting Technologies." Sustainability 15, no. 14 (2023): 10757. http://dx.doi.org/10.3390/su151410757.
Texto completoZhang, Yujie, Lei Zhang, Duo Sun, Kai Jin, and Yu Gu. "Short-Term Wind Power Forecasting Based on VMD and a Hybrid SSA-TCN-BiGRU Network." Applied Sciences 13, no. 17 (2023): 9888. http://dx.doi.org/10.3390/app13179888.
Texto completoLi, De Xin, Xiang Yu Lv, and Zhi Hui Song. "Short-Term Prediction of Wind Power Output Based on Markov Chain." Applied Mechanics and Materials 448-453 (October 2013): 1789–95. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.1789.
Texto completoYu, Feng Ming, Xi Cang Li, Jin Hua Song, Chun Xiang Gao, and Chun Long Jiang. "Research on Wind Power Prediction by Combining Mesoscale Numerical Model with Neural Network Model." Advanced Materials Research 512-515 (May 2012): 771–77. http://dx.doi.org/10.4028/www.scientific.net/amr.512-515.771.
Texto completoSun, Zhen’ao, and Zhe Chen. "Power Generation Prediction Method of Offshore Wind Turbines Based on Cascaded Deep Learning." International Transactions on Electrical Energy Systems 2022 (September 23, 2022): 1–10. http://dx.doi.org/10.1155/2022/4404867.
Texto completoYang, Xi Yun, Peng Wei, Huan Liu, and Bao Jun Sun. "Short-Term Wind Power Forecasting Based on SVM with Backstepping Wind Speed of Power Curve." Applied Mechanics and Materials 224 (November 2012): 401–5. http://dx.doi.org/10.4028/www.scientific.net/amm.224.401.
Texto completoYang, Yiheng. "Wind Power Prediction Based on LSTM and Self-Attention Mechanism." Applied and Computational Engineering 141, no. 1 (2025): 30–38. https://doi.org/10.54254/2755-2721/2025.21570.
Texto completoYang, Yankun, Yuling Li, Lin Cheng, and Shiyou Yang. "Short-Term Wind Power Prediction Based on a Modified Stacking Ensemble Learning Algorithm." Sustainability 16, no. 14 (2024): 5960. http://dx.doi.org/10.3390/su16145960.
Texto completoCai, Zelin, Tao Feng, Jun Guo, Bo Hu, and Lei Wang. "Wind power short-term prediction over mountain area using a high-resolution WRF model." E3S Web of Conferences 260 (2021): 02012. http://dx.doi.org/10.1051/e3sconf/202126002012.
Texto completoKim, Gyeongmin, and Jin Hur. "A Short-Term Power Output Forecasting Based on Augmented Naïve Bayes Classifiers for High Wind Power Penetrations." Sustainability 13, no. 22 (2021): 12723. http://dx.doi.org/10.3390/su132212723.
Texto completoXue, Yanan, Jinliang Yin, and Xinhao Hou. "Short-Term Wind Power Prediction Based on Multi-Feature Domain Learning." Energies 17, no. 13 (2024): 3313. http://dx.doi.org/10.3390/en17133313.
Texto completoJency, W. G., and J. E. Judith. "Pearson Autocovariance Distinct Patterns and Attention-Based Deep Learning for Wind Power Prediction." Journal of Electrical and Computer Engineering 2022 (April 22, 2022): 1–12. http://dx.doi.org/10.1155/2022/8498021.
Texto completoZhang, Pei, Yanling Wang, Likai Liang, Xing Li, and Qingtian Duan. "Short-Term Wind Power Prediction Using GA-BP Neural Network Based on DBSCAN Algorithm Outlier Identification." Processes 8, no. 2 (2020): 157. http://dx.doi.org/10.3390/pr8020157.
Texto completoLee, Joseph C. Y., Peter Stuart, Andrew Clifton, et al. "The Power Curve Working Group's assessment of wind turbine power performance prediction methods." Wind Energy Science 5, no. 1 (2020): 199–223. http://dx.doi.org/10.5194/wes-5-199-2020.
Texto completoShi, Yuxuan, Yanyu Wang, and Haoran Zheng. "Wind Speed Prediction for Offshore Sites Using a Clockwork Recurrent Network." Energies 15, no. 3 (2022): 751. http://dx.doi.org/10.3390/en15030751.
Texto completoHe, Jia, Fangchun Tang, Junxin Feng, et al. "Wind Power Prediction Method and Outlook in Microtopographic Microclimate." Energies 18, no. 7 (2025): 1686. https://doi.org/10.3390/en18071686.
Texto completoJency, W. G., and J. E. Judith. "Homogenized Point Mutual Information and Deep Quantum Reinforced Wind Power Prediction." International Transactions on Electrical Energy Systems 2022 (December 14, 2022): 1–15. http://dx.doi.org/10.1155/2022/3686786.
Texto completoWu, Xiaomei, Songjun Jiang, Chun Sing Lai, Zhuoli Zhao, and Loi Lei Lai. "Short-Term Wind Power Prediction Based on Data Decomposition and Combined Deep Neural Network." Energies 15, no. 18 (2022): 6734. http://dx.doi.org/10.3390/en15186734.
Texto completoZhou, Jianguo, Xiaolei Xu, Xuejing Huo, and Yushuo Li. "Forecasting Models for Wind Power Using Extreme-Point Symmetric Mode Decomposition and Artificial Neural Networks." Sustainability 11, no. 3 (2019): 650. http://dx.doi.org/10.3390/su11030650.
Texto completoLi, Fan, Hongzhen Wang, Dan Wang, Dong Liu, and Ke Sun. "A Review of Wind Power Prediction Methods Based on Multi-Time Scales." Energies 18, no. 7 (2025): 1713. https://doi.org/10.3390/en18071713.
Texto completoTian, Yuqian, Dazhi Wang, Guolin Zhou, Jiaxing Wang, Shuming Zhao, and Yongliang Ni. "An Adaptive Hybrid Model for Wind Power Prediction Based on the IVMD-FE-Ad-Informer." Entropy 25, no. 4 (2023): 647. http://dx.doi.org/10.3390/e25040647.
Texto completoWang, Bo, Tiancheng Wang, Mao Yang, Chao Han, Dawei Huang, and Dake Gu. "Ultra-Short-Term Prediction Method of Wind Power for Massive Wind Power Clusters Based on Feature Mining of Spatiotemporal Correlation." Energies 16, no. 6 (2023): 2727. http://dx.doi.org/10.3390/en16062727.
Texto completoYang, Mao, Gang Du, and Li Sun. "Probabilistic Interval Prediction of Wind Power." Applied Mechanics and Materials 740 (March 2015): 429–32. http://dx.doi.org/10.4028/www.scientific.net/amm.740.429.
Texto completoZhou, Yan, Fuzhen Wei, Kaiyang Kuang, and Rabea Jamil Mahfoud. "Research on a Deep Ensemble Learning Model for the Ultra-Short-Term Probabilistic Prediction of Wind Power." Electronics 13, no. 3 (2024): 475. http://dx.doi.org/10.3390/electronics13030475.
Texto completoKader, Mst Sharmin, Riyadzh Mahmudh, Han Xiaoqing, Ashfaq Niaz, and Muhammad Usman Shoukat. "Active power control strategy for wind farms based on power prediction errors distribution considering regional data." PLOS ONE 17, no. 8 (2022): e0273257. http://dx.doi.org/10.1371/journal.pone.0273257.
Texto completoYang, Zhang, Yang, and Lv. "Deterministic and Probabilistic Wind Power Forecasting Based on Bi-Level Convolutional Neural Network and Particle Swarm Optimization." Applied Sciences 9, no. 9 (2019): 1794. http://dx.doi.org/10.3390/app9091794.
Texto completoZhang, Yi, Feng Zhang, Yutao Qiu, et al. "Research on refined prediction of coastal wind power based on dynamic downscale and deep learning prediction." Journal of Physics: Conference Series 2488, no. 1 (2023): 012051. http://dx.doi.org/10.1088/1742-6596/2488/1/012051.
Texto completoWaweru, Paul, Charles Kagiri, and Titus Mulembo. "Wind Power Prediction Model Using Machine Learning." Journal of Power, Energy, and Control 1, no. 1 (2024): 48–57. http://dx.doi.org/10.62777/pec.v1i1.6.
Texto completoWang, Hao, Chen Peng, Bolin Liao, Xinwei Cao, and Shuai Li. "Wind Power Forecasting Based on WaveNet and Multitask Learning." Sustainability 15, no. 14 (2023): 10816. http://dx.doi.org/10.3390/su151410816.
Texto completoBokde, Neeraj, Andrés Feijóo, Daniel Villanueva, and Kishore Kulat. "A Review on Hybrid Empirical Mode Decomposition Models for Wind Speed and Wind Power Prediction." Energies 12, no. 2 (2019): 254. http://dx.doi.org/10.3390/en12020254.
Texto completoWei, Chih-Chiang, and Cheng-Shu Chiang. "Assessment of Offshore Wind Power Potential and Wind Energy Prediction Using Recurrent Neural Networks." Journal of Marine Science and Engineering 12, no. 2 (2024): 283. http://dx.doi.org/10.3390/jmse12020283.
Texto completoShi, Chongqing, and Xiaoli Zhang. "Recurrent neural network wind power prediction based on variational modal decomposition improvement." AIP Advances 13, no. 2 (2023): 025027. http://dx.doi.org/10.1063/5.0135711.
Texto completoHuang, Qiyue, Yapeng Wang, Xu Yang, and Sio-Kei Im. "Research on Wind Power Prediction Based on A Gated Transformer." Applied Sciences 13, no. 14 (2023): 8350. http://dx.doi.org/10.3390/app13148350.
Texto completoThamizharasi, Ms, Chunduri Aditya, Veeranki Durgabhiram, and Chukka Praveen. "Wind Power Analysis Using Machine Learning in Wind Turbines." International Journal for Research in Applied Science and Engineering Technology 11, no. 8 (2023): 1559–64. http://dx.doi.org/10.22214/ijraset.2023.52452.
Texto completo