Artículos de revistas sobre el tema "Yield predictions"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Yield predictions".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Yadav, Kamini y Hatim M. E. Geli. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period". Land 10, n.º 12 (15 de diciembre de 2021): 1389. http://dx.doi.org/10.3390/land10121389.
Texto completoMia, Md Suruj, Ryoya Tanabe, Luthfan Nur Habibi, Naoyuki Hashimoto, Koki Homma, Masayasu Maki, Tsutomu Matsui y Takashi S. T. Tanaka. "Multimodal Deep Learning for Rice Yield Prediction Using UAV-Based Multispectral Imagery and Weather Data". Remote Sensing 15, n.º 10 (10 de mayo de 2023): 2511. http://dx.doi.org/10.3390/rs15102511.
Texto completoChatterjee, Sabyasachi, Swarup Kumar Mondal, Anupam Datta y Hritik Kumar Gupta. "Enhancing Feature Optimization for Crop Yield Prediction Models". Current Agriculture Research Journal 12, n.º 2 (10 de septiembre de 2024): 739–49. http://dx.doi.org/10.12944/carj.12.2.19.
Texto completoUlfa, Fathiyya, Thomas G. Orton, Yash P. Dang y Neal W. Menzies. "Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models". Agronomy 12, n.º 2 (3 de febrero de 2022): 384. http://dx.doi.org/10.3390/agronomy12020384.
Texto completoLutman, Peter J. W., Ruth Risiott y H. Peter Ostermann. "Investigations into Alternative Methods to Predict the Competitive Effects of Weeds on Crop Yields". Weed Science 44, n.º 2 (junio de 1996): 290–97. http://dx.doi.org/10.1017/s0043174500093917.
Texto completoYan, Zhangpeng, Weimin Zhai y Chao Li. "A novel motherboard test item yield prediction model based on parallel feature extraction". Journal of Physics: Conference Series 2816, n.º 1 (1 de agosto de 2024): 012078. http://dx.doi.org/10.1088/1742-6596/2816/1/012078.
Texto completoGrzesiak, W., R. Lacroix, J. Wójcik y P. Blaszczyk. "A comparison of neural network and multiple regression predictions for 305-day lactation yield using partial lactation records". Canadian Journal of Animal Science 83, n.º 2 (1 de junio de 2003): 307–10. http://dx.doi.org/10.4141/a02-002.
Texto completoVishwajeet Singh, Med Ram Verma y Subhash Kumar Yadav. "PREDICTIVE MODELLING FOR SUGARCANE PRODUCTION: A COMPREHENSIVE COMPARISON OF ARIMA AND MACHINE LEARNING ALGORITHMS". Applied Biological Research 26, n.º 2 (30 de mayo de 2024): 199–209. http://dx.doi.org/10.48165/abr.2024.26.01.23.
Texto completoEngen, Martin, Erik Sandø, Benjamin Lucas Oscar Sjølander, Simon Arenberg, Rashmi Gupta y Morten Goodwin. "Farm-Scale Crop Yield Prediction from Multi-Temporal Data Using Deep Hybrid Neural Networks". Agronomy 11, n.º 12 (18 de diciembre de 2021): 2576. http://dx.doi.org/10.3390/agronomy11122576.
Texto completoSemenov, Mikhail A., Rowan A. C. Mitchell, Andrew P. Whitmore, Malcolm J. Hawkesford, Martin A. J. Parry y Peter R. Shewry. "Shortcomings in wheat yield predictions". Nature Climate Change 2, n.º 6 (11 de abril de 2012): 380–82. http://dx.doi.org/10.1038/nclimate1511.
Texto completoXu, Chang y Ani L. Katchova. "Predicting Soybean Yield with NDVI Using a Flexible Fourier Transform Model". Journal of Agricultural and Applied Economics 51, n.º 3 (21 de mayo de 2019): 402–16. http://dx.doi.org/10.1017/aae.2019.5.
Texto completoSon, D. V. "SOIL YIELD FORECASTING". Bulletin of Shakarim University. Technical Sciences 1, n.º 4(16) (27 de diciembre de 2024): 72–80. https://doi.org/10.53360/2788-7995-2024-4(16)-10.
Texto completoYildirim, Tugba, Daniel N. Moriasi, Patrick J. Starks y Debaditya Chakraborty. "Using Artificial Neural Network (ANN) for Short-Range Prediction of Cotton Yield in Data-Scarce Regions". Agronomy 12, n.º 4 (29 de marzo de 2022): 828. http://dx.doi.org/10.3390/agronomy12040828.
Texto completoRawat, Meenakshi, Vaishali Sharda, Xiaomao Lin y Kraig Roozeboom. "Climate Change Impacts on Rainfed Maize Yields in Kansas: Statistical vs. Process-Based Models". Agronomy 13, n.º 10 (6 de octubre de 2023): 2571. http://dx.doi.org/10.3390/agronomy13102571.
Texto completoSchimleck, Laurence R., Peter D. Kube, Carolyn A. Raymond, Anthony J. Michell y Jim French. "Estimation of whole-tree kraft pulp yield of Eucalyptus nitens using near-infrared spectra collected from increment cores". Canadian Journal of Forest Research 35, n.º 12 (1 de diciembre de 2005): 2797–805. http://dx.doi.org/10.1139/x05-193.
Texto completoJeschke, Mark R., David E. Stoltenberg, George O. Kegode, Christy L. Sprague, Stevan Z. Knezevic, Shawn M. Hock y Gregg A. Johnson. "Predicted Soybean Yield Loss As Affected by Emergence Time of Mixed-Species Weed Communities". Weed Science 59, n.º 3 (septiembre de 2011): 416–23. http://dx.doi.org/10.1614/ws-d-10-00129.1.
Texto completoChen, Yang, Tim R. McVicar, Randall J. Donohue, Nikhil Garg, François Waldner, Noboru Ota, Lingtao Li y Roger Lawes. "To Blend or Not to Blend? A Framework for Nationwide Landsat–MODIS Data Selection for Crop Yield Prediction". Remote Sensing 12, n.º 10 (21 de mayo de 2020): 1653. http://dx.doi.org/10.3390/rs12101653.
Texto completoMeng, Linghua, Huanjun Liu, Susan L. Ustin y Xinle Zhang. "Predicting Maize Yield at the Plot Scale of Different Fertilizer Systems by Multi-Source Data and Machine Learning Methods". Remote Sensing 13, n.º 18 (19 de septiembre de 2021): 3760. http://dx.doi.org/10.3390/rs13183760.
Texto completoJHAJHARIA, KAVITA. "Wheat yield prediction of Rajasthan using climatic and satellite data and machine learning techniques". Journal of Agrometeorology 27, n.º 1 (1 de marzo de 2025): 63–66. https://doi.org/10.54386/jam.v27i1.2807.
Texto completoPeng, Dailiang, Enhui Cheng, Xuxiang Feng, Jinkang Hu, Zihang Lou, Hongchi Zhang, Bin Zhao, Yulong Lv, Hao Peng y Bing Zhang. "A Deep–Learning Network for Wheat Yield Prediction Combining Weather Forecasts and Remote Sensing Data". Remote Sensing 16, n.º 19 (27 de septiembre de 2024): 3613. http://dx.doi.org/10.3390/rs16193613.
Texto completoLinkesh, Monisha, Minakshi Ghorpade y Pratibha Prasad. "Jowar and Wheat Yield Prediction using a Wavelet based Fusion of Landsat and Sentinel Data with Meteorological Parameters". Indian Journal Of Science And Technology 17, n.º 17 (14 de abril de 2024): 1791–99. http://dx.doi.org/10.17485/ijst/v17i17.413.
Texto completoLou, Zhengfang, Xiaoping Lu y Siyi Li. "Yield Prediction of Winter Wheat at Different Growth Stages Based on Machine Learning". Agronomy 14, n.º 8 (20 de agosto de 2024): 1834. http://dx.doi.org/10.3390/agronomy14081834.
Texto completoAzizah, Nurul, Sri Suhartini y Irnia Nurika. "Optimization of Vanillin Extraction from Biodegradation of Oil Palm Empty Fruit Bunches by Serpula lacrymans". Industria: Jurnal Teknologi dan Manajemen Agroindustri 10, n.º 1 (29 de abril de 2021): 33–40. http://dx.doi.org/10.21776/ub.industria.2021.010.01.4.
Texto completoSadenova, Marzhan, Nail Beisekenov, Petar Sabev Varbanov y Ting Pan. "Application of Machine Learning and Neural Networks to Predict the Yield of Cereals, Legumes, Oilseeds and Forage Crops in Kazakhstan". Agriculture 13, n.º 6 (3 de junio de 2023): 1195. http://dx.doi.org/10.3390/agriculture13061195.
Texto completoKostyra, Tomasz Piotr. "Forecasting the yield curve for Poland with the PCA and machine learning". Bank i Kredyt Vol. 55, No. 4 (31 de agosto de 2024): 459–78. http://dx.doi.org/10.5604/01.3001.0054.8580.
Texto completoPravallika, K., G. Karuna, K. Anuradha y V. Srilakshmi. "Deep Neural Network Model for Proficient Crop Yield Prediction". E3S Web of Conferences 309 (2021): 01031. http://dx.doi.org/10.1051/e3sconf/202130901031.
Texto completoBarton, N., P. Dawson y M. Miller. "Yield Strength Asymmetry Predictions From Polycrystal Elastoplasticity". Journal of Engineering Materials and Technology 121, n.º 2 (1 de abril de 1999): 230–39. http://dx.doi.org/10.1115/1.2812370.
Texto completoAyu Siregar, Silviana y Yusuf Ramadhan Nasution. "Prediction of Rice Farming Yields in Padangsidimpuan City through Support Vector Machine (SVM) Algorithms". JINAV: Journal of Information and Visualization 5, n.º 1 (10 de agosto de 2024): 146–56. https://doi.org/10.35877/454ri.jinav2876.
Texto completoFeng, Yu, Wen Lin, Shaobo Yu, Aixia Ren, Qiang Wang, Hafeez Noor, Jianfu Xue, Zhenping Yang, Min Sun y Zhiqiang Gao. "Effects of fallow tillage on winter wheat yield and predictions under different precipitation types". PeerJ 9 (8 de diciembre de 2021): e12602. http://dx.doi.org/10.7717/peerj.12602.
Texto completoXavier, Alencar y Katy M. Rainey. "Quantitative Genomic Dissection of Soybean Yield Components". G3: Genes|Genomes|Genetics 10, n.º 2 (9 de diciembre de 2019): 665–75. http://dx.doi.org/10.1534/g3.119.400896.
Texto completoHuber, Florian, Alvin Inderka y Volker Steinhage. "Leveraging Remote Sensing Data for Yield Prediction with Deep Transfer Learning". Sensors 24, n.º 3 (24 de enero de 2024): 770. http://dx.doi.org/10.3390/s24030770.
Texto completoPazhanivelan, Sellaperumal, N. S. Sudarmanian, S. Satheesh y K. P. Ragunath. "Innovative Approaches to Bengal gram Yield Mapping: Integration of Sentinel-1 SAR and Crop Simulation Models for Precision Agriculture". Journal of Scientific Research and Reports 31, n.º 1 (25 de enero de 2025): 449–60. https://doi.org/10.9734/jsrr/2025/v31i12788.
Texto completoGupta, Soma, Satarupa Mohanty y Dayal Kumar Behera. "AI-based Yield Prediction: A Thorough Review". Indian Journal Of Science And Technology 18, n.º 10 (16 de marzo de 2025): 822–38. https://doi.org/10.17485/ijst/v18i10.175.
Texto completoErik, E., M. Durmaz y A. Ö. Ok. "IN AND END OF SEASON SOYBEAN YIELD PREDICTION WITH HISTOGRAM BASED DEEP LEARNING". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-M-1-2023 (21 de abril de 2023): 95–100. http://dx.doi.org/10.5194/isprs-archives-xlviii-m-1-2023-95-2023.
Texto completoKalpana, P., I. Anusha Prem, S. Josephine Reena Mary y ArockiaValan Rani. "Crop Yield Prediction Using Machine Learning". REST Journal on Data Analytics and Artificial Intelligence 2, n.º 1 (1 de marzo de 2023): 16–20. http://dx.doi.org/10.46632/jdaai/2/1/3.
Texto completoKalpana, P., I. Anusha Prem, S. Josephine Reena Mary y ArockiaValan Rani. "Crop Yield Prediction Using Machine Learning". REST Journal on Data Analytics and Artificial Intelligence 2, n.º 1 (1 de marzo de 2023): 16–20. http://dx.doi.org/10.46632/10.46632/jdaai/2/1/3.
Texto completoNagesh, V. "CROP RECOMMENDATION SYSTEM USING KNN ALGORITHM AND RANDOM FOREST". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 07, n.º 12 (1 de diciembre de 2023): 1–11. http://dx.doi.org/10.55041/ijsrem27660.
Texto completoHock, Shawn M., Stevan Z. Knezevic, William G. Johnson, Christy Sprague y Alex R. Martin. "WeedSOFT: Effects of Corn-Row Spacing for Predicting Herbicide Efficacy on Selected Weed Species". Weed Technology 21, n.º 1 (marzo de 2007): 219–24. http://dx.doi.org/10.1614/wt-06-008.1.
Texto completoSreekanth, S. "HarvestMax: A Predictive Model for Crop Yield and Fertilizer Optimization". International Journal for Research in Applied Science and Engineering Technology 12, n.º 4 (30 de abril de 2024): 2841–47. http://dx.doi.org/10.22214/ijraset.2024.60339.
Texto completoBi, Hele, Jiale Jiang, Junzhao Chen, Xiaojun Kuang y Jinxiao Zhang. "Machine Learning Prediction of Quantum Yields and Wavelengths of Aggregation-Induced Emission Molecules". Materials 17, n.º 7 (4 de abril de 2024): 1664. http://dx.doi.org/10.3390/ma17071664.
Texto completoKarthikeyan, R., M. Gowthami, A. Abhishhek y P. Karthikeyan. "Implementation of Effective Crop Selection by Using the Random Forest Algorithm". International Journal of Engineering & Technology 7, n.º 3.34 (1 de septiembre de 2018): 287. http://dx.doi.org/10.14419/ijet.v7i3.34.19209.
Texto completoCao, Junjun, Huijing Wang, Jinxiao Li, Qun Tian y Dev Niyogi. "Improving the Forecasting of Winter Wheat Yields in Northern China with Machine Learning–Dynamical Hybrid Subseasonal-to-Seasonal Ensemble Prediction". Remote Sensing 14, n.º 7 (1 de abril de 2022): 1707. http://dx.doi.org/10.3390/rs14071707.
Texto completoHUNDAL, S. S. y PRABHJYOT-KAUR. "Application of the CERES–Wheat model to yield predictions in the irrigated plains of the Indian Punjab". Journal of Agricultural Science 129, n.º 1 (agosto de 1997): 13–18. http://dx.doi.org/10.1017/s0021859697004462.
Texto completoOrduna-Cabrera, Fernando, Alejandro Rios-Ochoa, Federico Frank, Soeren Lindner, Marcial Sandoval-Gastelum, Michael Obersteiner y Valeria Javalera-Rincon. "Short-Term Forecasting Arabica Coffee Cherry Yields by Seq2Seq over LSTM for Smallholder Farmers". Sustainability 17, n.º 9 (25 de abril de 2025): 3888. https://doi.org/10.3390/su17093888.
Texto completoKacar, Ilyas, Fahrettin Ozturk, Serkan Toros y Suleyman Kilic. "Prediction of Strain Limits via the Marciniak-Kuczynski Model and a Novel Semi-Empirical Forming Limit Diagram Model for Dual-Phase DP600 Advanced High Strength Steel". Strojniški vestnik – Journal of Mechanical Engineering 66, n.º 10 (15 de octubre de 2020): 602–12. http://dx.doi.org/10.5545/sv-jme.2020.6755.
Texto completoZiliani, M. G., M. U. Altaf, B. Aragon, R. Houborg, T. E. Franz, Y. Lu, J. Sheffield, I. Hoteit y M. F. McCabe. "INTRA-FIELD CROP YIELD VARIABILITY BY ASSIMILATING CUBESAT LAI IN THE APSIM CROP MODEL". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2022 (30 de mayo de 2022): 1045–52. http://dx.doi.org/10.5194/isprs-archives-xliii-b3-2022-1045-2022.
Texto completoSpejewski, E. H., H. K. Carter, B. Mervin, E. Prettyman, A. Kronenberg y D. W. Stracener. "ISOL yield predictions from holdup-time measurements". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266, n.º 19-20 (octubre de 2008): 4271–74. http://dx.doi.org/10.1016/j.nimb.2008.05.048.
Texto completoHara, Patryk, Magdalena Piekutowska y Gniewko Niedbała. "Prediction of Pea (Pisum sativum L.) Seeds Yield Using Artificial Neural Networks". Agriculture 13, n.º 3 (12 de marzo de 2023): 661. http://dx.doi.org/10.3390/agriculture13030661.
Texto completoHina, Firdous y Dr Mohd Tahseenul Hasan. "Agriculture Crop Yield Prediction Using Machine Learning". International Journal for Research in Applied Science and Engineering Technology 10, n.º 4 (30 de abril de 2022): 910–15. http://dx.doi.org/10.22214/ijraset.2022.41381.
Texto completoSharma, Suresh Kumar, Durga Prasad Sharma y Kiran Gaur. "Machine Learning Techniques for Crop Yield Forecasting in Semi-Arid (3A) Zone, Rajasthan (India)". Current Agriculture Research Journal 11, n.º 3 (5 de enero de 2024): 895–914. http://dx.doi.org/10.12944/carj.11.3.19.
Texto completo