Littérature scientifique sur le sujet « 2D-TMDs materials »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « 2D-TMDs materials ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "2D-TMDs materials"
Tung, Vincent. « (Keynote) Wafer-Scale Epitaxy of 2D Materials with Uniformity, Single Crystallinity, and Low Defect Density ». ECS Meeting Abstracts MA2024-02, no 35 (22 novembre 2024) : 2448. https://doi.org/10.1149/ma2024-02352448mtgabs.
Texte intégralAcosta, Selene, et Mildred Quintana. « Chemically Functionalized 2D Transition Metal Dichalcogenides for Sensors ». Sensors 24, no 6 (12 mars 2024) : 1817. http://dx.doi.org/10.3390/s24061817.
Texte intégralMa, Yuanji, Yuhan Du, Wenbin Wu, Zeping Shi, Xianghao Meng et Xiang Yuan. « Synthesis and Characterization of 2D Ternary Compound TMD Materials Ta3VSe8 ». Micromachines 15, no 5 (28 avril 2024) : 591. http://dx.doi.org/10.3390/mi15050591.
Texte intégralEkengoue, C. M., C. Kenfack-Sadem, J. E. Danga, G. N. Bawe, A. El Moussaouy, O. Mommadi, L. Belamkadem et L. C. Fai. « Polariton condensate and Landau-Zener-Stückelberg interferometry transition in multilayer transition metal dichalcogenides ». Physica Scripta 97, no 2 (13 janvier 2022) : 025801. http://dx.doi.org/10.1088/1402-4896/ac4718.
Texte intégralGhosh, Dibyendu, Pooja Devi et Praveen Kumar. « Intercalation in two-dimensional transition metal chalcogenides : interlayer engineering and applications ». Progress in Energy 4, no 2 (21 janvier 2022) : 022001. http://dx.doi.org/10.1088/2516-1083/ac3c3d.
Texte intégralChen, Chueh-An, Chiao-Lin Lee, Po-Kang Yang, Dung-Sheng Tsai et Chuan-Pei Lee. « Active Site Engineering on Two-Dimensional-Layered Transition Metal Dichalcogenides for Electrochemical Energy Applications : A Mini-Review ». Catalysts 11, no 2 (21 janvier 2021) : 151. http://dx.doi.org/10.3390/catal11020151.
Texte intégralMia, Abdul Kaium, M. Meyyappan et P. K. Giri. « Two-Dimensional Transition Metal Dichalcogenide Based Biosensors : From Fundamentals to Healthcare Applications ». Biosensors 13, no 2 (21 janvier 2023) : 169. http://dx.doi.org/10.3390/bios13020169.
Texte intégralKim, Youngbum, et Jeongyong Kim. « Near-field optical imaging and spectroscopy of 2D-TMDs ». Nanophotonics 10, no 13 (29 septembre 2021) : 3397–415. http://dx.doi.org/10.1515/nanoph-2021-0383.
Texte intégralDou, Maofeng, et Maria Fyta. « Lithium adsorption on 2D transition metal dichalcogenides : towards a descriptor for machine learned materials design ». Journal of Materials Chemistry A 8, no 44 (2020) : 23511–18. http://dx.doi.org/10.1039/d0ta04834h.
Texte intégralLi, Qi, Jianping Meng et Zhou Li. « Recent progress on Schottky sensors based on two-dimensional transition metal dichalcogenides ». Journal of Materials Chemistry A 10, no 15 (2022) : 8107–28. http://dx.doi.org/10.1039/d2ta00075j.
Texte intégralThèses sur le sujet "2D-TMDs materials"
Young, Justin R. « Synthesis and Characterization of Novel Two-Dimensional Materials ». The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1468925594.
Texte intégralPark, Juhong. « Fabrication of Large-Scale and Thickness-Modulated Two-Dimensional Transition Metal Dichalcogenides [2D TMDs] Nanolayers ». Thesis, University of North Texas, 2019. https://digital.library.unt.edu/ark:/67531/metadc1505271/.
Texte intégralChoukroun, Jean. « Theoretical sStudy of In-plane Heterojunctions of Transition-metal Dichalcogenides and their Applications for Low-power Transistors ». Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS557/document.
Texte intégralNowadays, microprocessors can contain tens of billions of transistors and as a result, heat dissipation and its impact on device performance has increasingly become a hindrance to further scaling. Due to their working mechanism, the power supply of MOSFETs cannot be reduced without deteriorating overall performance, and Si-MOSFETs scaling therefore seems to be reaching its end. New architectures such as the TFET, which can perform at low supply voltages thanks to its reliance on band-to-band tunneling, and new materials could solve this issue. Transition metal dichalcogenide monolayers (TMDs) are 2D semiconductors with direct band gaps ranging from 1 to 2 eV, and therefore hold potential in electronics and photonics. Moreover, when under appropriate strains, their band alignment can result in broken-gap configurations which can circumvent the traditionally low currents observed in TFETs due to the tunneling mechanism they rely upon. In this work, in-plane TMD heterojunctions are investigated using an atomistic tight-binding approach, two of which lead to a broken-gap configuration (MoTe2/MoS2 and WTe2/MoS2). The potential of these heterojunctions for use in tunnel field-effect transistors (TFETs) is evaluated via quantum transport computations based on an atomistic tight-binding model and the non-equilibrium Green’s function theory. Both p-type and n-type TFETs based on these in-plane TMD heterojunctions are shownto yield high ON currents (ION > 103 µA/µm) and extremely low subthreshold swings (SS < 5 mV/dec) at low supply voltages (VDD = 0.3 V). Innovative device architectures allowed by the 2D nature of these materials are also proposed, and shown to enhance performance even further
Hagerty, Phillip. « Physical Vapor Deposition of Materials for Flexible Two Dimensional Electronic Devices ». University of Dayton / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1460739765.
Texte intégralMahmoudi, Aymen. « Propriétés électroniques des dichalcogénures bi-dimensionnels de métaux de transition ». Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP106.
Texte intégralThe subject of this thesis is two-dimensional (2D) materials of atomic thickness. The study of the optical and electronic properties of hybrid heterostructures based on MX₂ transition metal dichalcogenides (TMDs) (M = Mo, W; X = S, Se, Te) is now being carefully considered with a view to future applications and more fundamental studies. Beyond their intrinsic physical properties, in multilayer configurations, these materials offer promising physical phenomena such as modulation of bandgap values, ferroelectricity for specific crystal configurations, and so on. In particular, this work focuses on hybrid heterostructures based on tungsten diselenide (WSe₂) on graphene and gallium phosphate (GaP) substrates. Using microscopy and spectroscopy techniques such as Raman spectroscopy and angle-resolved photoemission spectroscopy (ARPES), we investigated the electronic, optical, and structural properties of heterostructures composed of several 2D materials to better understand these emerging systems. Accordingly, the first direct measurements of the electronic band structure of the rhombohedral phase of the WSe₂ bilayer structure deposited on a 2D graphene substrate are presented in this manuscript. The direct growth of this 2D material on a 3D GaP substrate has been studied for several thicknesses. This work has enabled us to identify the effect of the nature of the crystalline phase and the growth method on the electronic band structures, providing a better understanding of these emerging systems
Ni, Pingping. « Solution-processed functionalized MoS2 for room temperature NO2 chemiresistive sensors ». Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX117.
Texte intégralIn response to environmental and public health issues, sensors for toxic and/or polluting gases are at the core of extensive research and innovation. Therefore, their development is important and also a major challenge for society. Up to date for gas sensing applications, metal oxide chemiresistive sensors are the most widely investigated devices thanks to their ease in fabrication, simplicity of operation, and facile integration in miniaturization. However, their high working temperature restricts their implementation in the wearable, flexible devices. Two-dimensional (2D) materials possess great potential in serving as a gas-sensing layer in wearable gas sensors due to their excellent mechanical flexibility, large specific surface areas, strong surface activities with a high gas sensitivity. Among this family, transition metal chalcogenides (TMDs), such as molybdenum disulfides (MoS2), exhibit outstanding properties thanks to its tunable band gap, and are also promising candidates for the detection of toxic gas at room temperature.This thesis aims to fabricate and optimize nitrogen dioxide (NO2) chemiresistive gas sensors based on solution-processed 2D MoS2. The first step in the work involved the development and the optimization of liquid phase exfoliation process to produce colloidal suspensions of MoS2 nanosheets on a large scale. In parallel, we assessed vacuum-assisted filtration and liquid/liquid interfacial self-assembly as two thin film fabrication techniques from individual nanosheets. Besides 2D MoS2 dispersion production and thin film processing, a multiscale physicochemical characterization of the produced MoS2 through microscopic and spectroscopic techniques, coupled with electrical measurements was conducted to determine the optimal exfoliation conditions to obtain MoS2 nanosheets and the morphologies of thin films produced by two distinct deposition processes. Then, MoS2 thin film fabricated by vacuum-assisted filtration with gold interdigitated electrodes on top were assessed for NO2 gas sensing, which exhibited a moderate sensitivity to a low NO2 concentration down to 1 ppm at room temperature. However, full recovery of NO2 sensing cannot always be achieved due to the MoS2 NSs atom vacancies generated during liquid shear exfoliation. To solve this issue, we passivated these vacancies on MoS2 nanosheets with gold nanoparticles (Au NPs). The functionalization of MoS2 nanosheets with Au NPs improved the sensitivity towards NO2 and lowered the recovery time compared to bare MoS2 sensor
Beyer, Griffin Joseph. « Large Area 2D Electronic Molecular Sensor Arrays via Photonic Annealing of Amorphous Sputtered Mos2 ». University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1582624657416084.
Texte intégralKumar, Jeevesh. « Atomic-level Investigation and Proposals to Address Technological Roadblocks and Reliability Challenges in 2D Material Based Nanoelectronic Devices ». Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5872.
Texte intégralBhattacharyya, Swastibrata. « Tuning Electronic Properties of Low Dimensional Materials ». Thesis, 2014. http://etd.iisc.ac.in/handle/2005/2778.
Texte intégralBhattacharyya, Swastibrata. « Tuning Electronic Properties of Low Dimensional Materials ». Thesis, 2014. http://etd.iisc.ernet.in/handle/2005/2778.
Texte intégralChapitres de livres sur le sujet "2D-TMDs materials"
Singh, Abhay Kumar. « 2D TMDs Properties ». Dans Materials Horizons : From Nature to Nanomaterials, 199–303. Singapore : Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-0247-6_4.
Texte intégralNaz, Raheela, Tahir Rasheed, Suleman Khan et Muhammad Bilal. « Nanostructured 2D Transition Metal Dichalcogenides (TMDs) as Electrodes for Supercapacitor ». Dans Nanostructured Materials for Supercapacitors, 319–39. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99302-3_15.
Texte intégralZhang, Q., C. Zheng, K. Sagoe-Crentsil et W. Duan. « Transfer and Substrate Effects on 2D Materials for Their Sensing and Energy Applications in Civil Engineering ». Dans Lecture Notes in Civil Engineering, 409–19. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_42.
Texte intégralMathew, Minu, Sithara Radhakrishnan et Chandra Sekhar Rout. « Recent Developments in All-Solid-State Micro-Supercapacitors Based on Two-Dimensional Materials ». Dans Nanofibers [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94535.
Texte intégralWu, Xiaohan, Ruijing Ge, Deji Akinwande et Jack C. Lee. « Memristors Based on 2D Monolayer Materials ». Dans Memristor - An Emerging Device for Post-Moore’s Computing and Applications. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98331.
Texte intégralThambiratnam, Kavintheran, Norazriena Yusoff, Siti Aisyah Reduan, Muhamad Zharif Samion, Shok Ing Ooi et Harith Ahmad. « Two-Dimensional Materials for Advancement of Fiber Laser Technologies ». Dans Photonic Materials : Recent Advances and Emerging Applications, 177–213. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815049756123010013.
Texte intégralKumar, Sumit, et Sandeep Kumar Garg. « A Review on Irradiated Si-Surface for 2D-Materials Corrosion Inhibitors Applications ». Dans Sustainability, Safety, and Applications of Nanomaterials-Based Corrosion Inhibitors, 66–86. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-7640-9.ch004.
Texte intégralEl Houda Safi, Nour. « Electronic and Optical Properties of Multilayer PtSe2 ». Dans Structural and Chemical Features of Chalcogenides [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1004411.
Texte intégralKumar Singh, Manoj, Pratik V. Shinde, Pratap Singh et Pawan Kumar Tyagi. « Two-Dimensional Materials for Advanced Solar Cells ». Dans Solar Cells - Theory, Materials and Recent Advances. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.94114.
Texte intégralVargas-Bernal, Rafael. « The Role of Two-Dimensional Materials in Electromagnetic Interference Shielding ». Dans Encyclopedia of Information Science and Technology, Fifth Edition, 1254–70. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3479-3.ch086.
Texte intégralActes de conférences sur le sujet "2D-TMDs materials"
Jain, Puneet, Shotaro Yotsuya, Kosuke Nagashio et Daisuke Kiriya. « Self-assembly of dopant molecules on MoS2 monolayer for degeneracy/heavily doping ». Dans JSAP-Optica Joint Symposia, 18a_A35_1. Washington, D.C. : Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.18a_a35_1.
Texte intégralShimazaki, Yuya. « Electronic and excitonic properties of semiconductor bilayer moiré system revealed by optical spectroscopy ». Dans JSAP-Optica Joint Symposia, 17a_A35_4. Washington, D.C. : Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.17a_a35_4.
Texte intégralDushaq, Ghada, Solomon Serunjogi, Srinivasa R. Tamalampudi et Mahmoud Rasras. « Exploiting Ferroionic 2D Materials for Enhanced Electro-Optic Functionality in Silicon Photonics ». Dans CLEO : Applications and Technology, JTh2A.5. Washington, D.C. : Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jth2a.5.
Texte intégralKim, Heejun, Keisuke Shinokita, Wenjin Zhang, Kenji Watanabe, Takashi Taniguchi et Kazunari Matsuda. « Dynamics of Moiré Exciton in MoSe2-WSe2 Heterstrosucture ». Dans JSAP-OSA Joint Symposia. Washington, D.C. : Optica Publishing Group, 2021. http://dx.doi.org/10.1364/jsap.2021.10a_n305_9.
Texte intégralEini, Tomer, Tal Asherov, Yarden Mazor et Itai Epstein. « Valley-polarized Hyperbolic-Exciton-Polaritons in 2D Semiconductors ». Dans CLEO : QELS_Fundamental Science. Washington, D.C. : Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.fm1a.4.
Texte intégral