Littérature scientifique sur le sujet « 3D structuring »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « 3D structuring ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "3D structuring"
Senn, T., Ch Waberski, J. Wolf, J. P. Esquivel, N. Sabaté et B. Löchel. « 3D structuring of polymer parts using thermoforming processes ». Microelectronic Engineering 88, no 1 (janvier 2011) : 11–16. http://dx.doi.org/10.1016/j.mee.2010.08.003.
Texte intégralPurwidyantri, Agnes, Chih-Hsien Hsu, Chia-Ming Yang, Briliant Adhi Prabowo, Ya-Chung Tian et Chao-Sung Lai. « Plasmonic nanomaterial structuring for SERS enhancement ». RSC Advances 9, no 9 (2019) : 4982–92. http://dx.doi.org/10.1039/c8ra10656h.
Texte intégralAleksandrov, M., A. Diakité, J. Yan, W. Li et S. Zlatanova. « SYSTEMS ARCHITECTURE FOR MANAGEMENT OF BIM, 3D GIS AND SENSORS DATA ». ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-4/W9 (30 septembre 2019) : 3–10. http://dx.doi.org/10.5194/isprs-annals-iv-4-w9-3-2019.
Texte intégralQi, Jianbo, Tiangang Yin, Donghui Xie et Jean-Philippe Gastellu-Etchegorry. « Hybrid Scene Structuring for Accelerating 3D Radiative Transfer Simulations ». Remote Sensing 11, no 22 (12 novembre 2019) : 2637. http://dx.doi.org/10.3390/rs11222637.
Texte intégralKim, Do-Yeon. « Liver vasculature refinement with multiple 3D structuring element shapes ». Pattern Analysis and Applications 17, no 3 (24 avril 2013) : 667–78. http://dx.doi.org/10.1007/s10044-013-0338-6.
Texte intégralYan, Hengfeng, Jimin Chen et Jinyan Zhao. « 3D-MID manufacturing via laser direct structuring with nanosecond laser pulses ». Journal of Polymer Engineering 36, no 9 (1 novembre 2016) : 957–62. http://dx.doi.org/10.1515/polyeng-2015-0367.
Texte intégralJabłoński, Mirosław. « Silhouette Processing Via Mathematical Morphology with Pose-Aware Structuring Elements Based on 3D Model ». Image Processing & ; Communications 17, no 4 (1 décembre 2012) : 71–78. http://dx.doi.org/10.2478/v10248-012-0031-1.
Texte intégralJaksa, Laszlo, Dieter Pahr, Gernot Kronreif et Andrea Lorenz. « Development of a Multi-Material 3D Printer for Functional Anatomic Models ». International Journal of Bioprinting 7, no 4 (12 octobre 2021) : 420. http://dx.doi.org/10.18063/ijb.v7i4.420.
Texte intégralIvanov, Alexey, et Ulrich Mescheder. « Silicon Electrochemical Etching for 3D Microforms with High Quality Surfaces ». Advanced Materials Research 325 (août 2011) : 666–71. http://dx.doi.org/10.4028/www.scientific.net/amr.325.666.
Texte intégralBéjot, Pierre, et Bertrand Kibler. « Quadrics for Structuring Invariant Space-Time Wave Packets ». EPJ Web of Conferences 266 (2022) : 13018. http://dx.doi.org/10.1051/epjconf/202226613018.
Texte intégralThèses sur le sujet "3D structuring"
Friedrich, Aline [Verfasser]. « 3D manufacturing using laser direct structuring and the application on the development of antenna systems / Aline Friedrich ». Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2019. http://d-nb.info/1192440536/34.
Texte intégralBaldacci, Fabien. « Graphe de surface orientée : un modèle opérationnel de segmentation d'image 3D ». Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13940/document.
Texte intégralIn this work we focus on 3D image segmentation. The aim consists in defining a framework which, given a segmentation problem, allows to design efficiently an algorithm solving this problem. Since this framework has to be unspecific according to the kind of segmentation problem, it has to allow an efficient implementation of most segmentation techniques and criteria, in order to combine them to define new algorithms. This framework has to rely on a structuring model both representing the topology and the geometry of the partition of an image, in order to efficiently extract required information. In this document, different segmentation techniques are presented in order to define a set of primitives required for their implementation. Existing models are presented with their advantages and drawbacks, then the new structuring model is defined. Its whole implementation including details of its memory consumption and time complexity for each primitives of the previously defined set of requirements is given. Some examples of use with real image analysis problems are described, with also possible extensions of the model and its implementation on parallel architecture
Nouri, Lamia. « Développement d'un procédé de structuration 3D pour le silicium ». Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAT088/document.
Texte intégralThis thesis deals with the development of a patterning process for silicon substrates. Based on ion implantation through a resist pattern to locally modified the underneath layer. Wet etching processes have been developed to reveal the shapes transferred into the silicon substrate. Thanks to morphological, physical and chemical characterizations, modifications induced by ion implantation have been identified and understood.Two ion species (argon and hydrogen) were used in this thesis in order to assess either physical or chemical modifications in silicon substrate. Several wet chemistries: alkaline, acid and dissolution by anodization, were investigated to reveal the final shape. The optimization of the implantation and wet etching processes allowed to obtain 2D and 3D structures with silicon substrate.Moreover, our approach has been successfully implemented to pattern 2D shapes in SiOCH and silicon nitride
Kamotesov, Sergkei. « Transmission d’énergie par induction électromagnétique en plastronique 3D ». Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1353.
Texte intégralThe objective of this thesis is to evaluate the interest of 3D molded interconnect devices technologies 3D-MID for wireless power transfer (WPT) through electromagnetic induction. WPT systems mostly uses planar coils that allows transfer between receiver and emitter at low and mid-range distance, at the condition that they are well aligned. We studied a specific case with a 3D receiver enclosed in a half meter box with 4 emitting inductors on 4 sides. Three questions were examined: the magnetic resonance of 3D-MID inductors at 6.78 MHz, their dimensions and their 3D shape. The nearly spherical shape 3D-MID receiver (Ø 8 cm) was 3D printed, activated with laser direct structuring (LDS), autocatalytic metallization and electroplating. It has 3 solenoid receiving inductors, each with quality factor above 129 ±10, placed orthogonally on the equators. The experimental results show: (1) the receiver is able to receive 4.33 W at 15.8 % efficiency in the middle of the box and (2) that we can change position and orientation of the receiver in the box, the placement of the inductors allows, in a widely meaning, to mean the received power. In conclusion 3D-MID allows to integrate, relatively easily, inductors for WPT, in the casing of electronics devices, in the same way as for 3D-MID electromagnetic antennas in smartphones. These inductors can 3D-shape the casing, which will allow the design of omnidirectional receivers
Killge, Sebastian, Sujay Charania, Sebastian Lüngen, Niels Neumann, Zaid Al-Husseini, Dirk Plettemeier, Johann W. Bartha, Krzysztof Nieweglowski et Karlheinz Bock. « Micro structured coupling elements for 3D silicon optical interposer ». SPIE, 2017. https://tud.qucosa.de/id/qucosa%3A35147.
Texte intégralMerheb, Melissa. « Une approche universelle d'assemblage dirigé de nanoparticules dans des microstructures polymères 1D, 2D et 3D ». Electronic Thesis or Diss., Troyes, 2022. http://www.theses.fr/2022TROY0013.
Texte intégralThe controlled assembly of nanoparticles (NPs) on 3D micropatterns and over a large surface is a promising method for the creation of structured materials with new properties. In this context, the combination of lithography with colloidal deposition has attracted much attention during the last decade due to the advantages offered by both approaches. In this thesis, we have developed a versatile method allowing the control of the assembly of NPs whatever their nature, size and shape. This approach is based on the functionalization of a photopolymer in order to give it positive charges allowing it, after two photon photopolymerization (2PP) step, to attract negatively charged NPs, due to electrostatic interactions. Studying the reactivity of the photopolymer and both optical and structural properties of the assemblies enabled us to optimize the photochemical stability in 2PP, improve the reproducibility of the process, extend the functionalization technique to a large number of amines and acrylic monomers and provide a better understanding of the functionalization mechanism. At the same time, we have proposed a new functionalization approach that consists of treating the polymerized surface with amines. The advantage of this approach is the possibility of obtaining an assembly of NPs on large surfaces produced by photopolymerization at 1 or 2 photons which overcomes the constraints associated with the prior functionalization of the monomer
Martinet, Aurélien. « Structuring 3D Geometry based on Symmetry and Instancing Information ». Phd thesis, 2007. http://tel.archives-ouvertes.fr/tel-00379200.
Texte intégralLivres sur le sujet "3D structuring"
Sharma, Sarah, et Rianka Singh, dir. Re-Understanding Media. Duke University Press, 2022. http://dx.doi.org/10.1215/9781478022497.
Texte intégralChapitres de livres sur le sujet "3D structuring"
Lucas, Laurent, Céline Loscos et Yannick Remion. « 3D Scene Reconstruction and Structuring ». Dans 3D Video, 157–72. Hoboken, USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118761915.ch8.
Texte intégralSchramm, R. « Structuring and Metallization ». Dans Three-Dimensional Molded Interconnect Devices (3D-MID), 63–108. München : Carl Hanser Verlag GmbH & Co. KG, 2014. http://dx.doi.org/10.3139/9781569905524.003.
Texte intégralFranke, Jörg. « Structuring and Metallization ». Dans Three-Dimensional Molded Interconnect Devices (3D-MID), 63–111. München, Germany : Carl Hanser Verlag GmbH & Co. KG, 2014. http://dx.doi.org/10.1007/978-1-56990-552-4_3.
Texte intégralPfarr-Harfst, Mieke, et Stefanie Wefers. « Digital 3D Reconstructed Models – Structuring Visualisation Project Workflows ». Dans Digital Heritage. Progress in Cultural Heritage : Documentation, Preservation, and Protection, 544–55. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48496-9_43.
Texte intégralPfleging, Wilhelm, Petronela Gotcu, Peter Smyrek, Yijing Zheng, Joong Kee Lee et Hans Jürgen Seifert. « Lithium-Ion Battery—3D Micro-/Nano-Structuring, Modification and Characterization ». Dans Laser Micro-Nano-Manufacturing and 3D Microprinting, 313–47. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_11.
Texte intégralGill, Andrew A., et Frederik Claeyssens. « 3D Structuring of Biocompatible and Biodegradable Polymers Via Stereolithography ». Dans Methods in Molecular Biology, 309–21. Totowa, NJ : Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-984-0_19.
Texte intégralBuchberger, Gerda, Martina Muck, Cristina Plamadeala et Johannes Heitz. « Laser Structuring for Biomedical Applications ». Dans Springer Series in Optical Sciences, 1105–65. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-14752-4_31.
Texte intégralXiao, Jianxiong, Jingni Chen, Dit-Yan Yeung et Long Quan. « Structuring Visual Words in 3D for Arbitrary-View Object Localization ». Dans Lecture Notes in Computer Science, 725–37. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-88690-7_54.
Texte intégralOhn, Syng-Yup. « Neighborhood Decomposition of 3D Convex Structuring Elements for Morphological Operations ». Dans Computer Analysis of Images and Patterns, 644–51. Berlin, Heidelberg : Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11556121_79.
Texte intégralJorgensen, Carl-Johan, et Fabrice Lamarche. « From Geometry to Spatial Reasoning : Automatic Structuring of 3D Virtual Environments ». Dans Motion in Games, 353–64. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25090-3_30.
Texte intégralActes de conférences sur le sujet "3D structuring"
Malinauskas, Mangirdas, Simas Sakirzanovas, Viktorija Padolskyte, Darius Gailevicius, Vygantas Mizeikis, Kestutis Staliunas, Saulius Juodkazis et al. « 3D opto-structuring of ceramics at nanoscale ». Dans 3D Printed Optics and Additive Photonic Manufacturing, sous la direction de Georg von Freymann, Alois M. Herkommer et Manuel Flury. SPIE, 2018. http://dx.doi.org/10.1117/12.2306883.
Texte intégralShamir, Joseph, Rafael Piestun et Boris Spektor. « 3D light structuring and some applications ». Dans Selected Papers from the International Conference on Optics and Optoelectronics, sous la direction de Kehar Singh, Om P. Nijhawan, Arun K. Gupta et A. K. Musla. SPIE, 1999. http://dx.doi.org/10.1117/12.346785.
Texte intégralHeller, Marcel, Dieter Kaiser, Maik Stegemann, Georg Holfeld, Nicoló Morgana, Jens Schneider et Daniel Sarlette. « Grayscale lithography : 3D structuring and thickness control ». Dans SPIE Advanced Lithography, sous la direction de Will Conley. SPIE, 2013. http://dx.doi.org/10.1117/12.2008847.
Texte intégralDinescu, Adrian, et Adina Bragaru. « Silicon 3D structuring by anodization Florea ^Craciunoiu ». Dans 2008 International Semiconductor Conference. IEEE, 2008. http://dx.doi.org/10.1109/smicnd.2008.4703363.
Texte intégralAtescan, Yagmur, et Namiko Yamamoto. « 3D Structuring of Magnetoelastomers for Anisotropic Actuation Properties ». Dans AIAA Scitech 2020 Forum. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-2258.
Texte intégralShitrit, Nir, et Connie J. Chang-Hasnain. « Toward 3D Imaging with Ultracompact Structured Light System of Metasurface-Combining VCSELs ». Dans 3D Image Acquisition and Display : Technology, Perception and Applications. Washington, D.C. : Optica Publishing Group, 2022. http://dx.doi.org/10.1364/3d.2022.3th3a.1.
Texte intégralDavis, Ericson R., Jeremy M. Eckhause, David K. Peterson et Vitali Volovoi. « An Analytics Framework for Structuring 3D Printing Deployment Decisions ». Dans 2019 Annual Reliability and Maintainability Symposium (RAMS). IEEE, 2019. http://dx.doi.org/10.1109/rams.2019.8769235.
Texte intégralChen, M. H., Y. C. Lin et Y. C. Chou. « Laser-assist 3D Selective Structuring on SiP Module AiP Application ». Dans 2023 International Conference on Electronics Packaging (ICEP). IEEE, 2023. http://dx.doi.org/10.23919/icep58572.2023.10129666.
Texte intégralMizeikis, Vygantas, Darius Gailevičius, Domas Paipulas et Kęstutis Staliūnas. « Tailoring optical birefringence of polymers using 3D femtosecond laser structuring ». Dans Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XVI, sous la direction de Georg von Freymann, Eva Blasco et Debashis Chanda. SPIE, 2023. http://dx.doi.org/10.1117/12.2649678.
Texte intégralS., Bigot, Bissacco G. et Valentinčič J. « Die-Sinking Micro EDM for Complex 3D Structuring – Research Directions ». Dans 8th International Conference on Multi-Material Micro Manufacture. Singapore : Research Publishing Services, 2011. http://dx.doi.org/10.3850/978-981-07-0319-6_232.
Texte intégralRapports d'organisations sur le sujet "3D structuring"
Kharchenko, Yuliya V., Olena M. Babenko et Arnold E. Kiv. Using Blippar to create augmented reality in chemistry education. CEUR Workshop Proceedings, juillet 2021. http://dx.doi.org/10.31812/123456789/4630.
Texte intégral