Littérature scientifique sur le sujet « Activin signaling pathway »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Activin signaling pathway ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Activin signaling pathway"
Olsen, Oddrun Elise, Hanne Hella, Samah Elsaadi, Carsten Jacobi, Erik Martinez-Hackert et Toril Holien. « Activins as Dual Specificity TGF-β Family Molecules : SMAD-Activation via Activin- and BMP-Type 1 Receptors ». Biomolecules 10, no 4 (29 mars 2020) : 519. http://dx.doi.org/10.3390/biom10040519.
Texte intégralXie, Chen, Wenjuan Jiang, Jerome J. Lacroix, Yun Luo et Jijun Hao. « Insight into Molecular Mechanism for Activin A-Induced Bone Morphogenetic Protein Signaling ». International Journal of Molecular Sciences 21, no 18 (5 septembre 2020) : 6498. http://dx.doi.org/10.3390/ijms21186498.
Texte intégralLebrun, Jean-Jacques, Kazuaki Takabe, Yan Chen et Wylie Vale. « Roles of Pathway-Specific and Inhibitory Smads in Activin Receptor Signaling ». Molecular Endocrinology 13, no 1 (1 janvier 1999) : 15–23. http://dx.doi.org/10.1210/mend.13.1.0218.
Texte intégralJung, Jae Woo, Chihoon Ahn, Sun Young Shim, Peter C. Gray, Witek Kwiatkowski et Senyon Choe. « Regulation of FSHβ induction in LβT2 cells by BMP2 and an Activin A/BMP2 chimera, AB215 ». Journal of Endocrinology 223, no 1 (6 août 2014) : 35–45. http://dx.doi.org/10.1530/joe-14-0317.
Texte intégralTang, Pei, Xueer Wang, Min Zhang, Simin Huang, Chuxi Lin, Fang Yan, Ying Deng, Lu Zhang et Lin Zhang. « Activin B Stimulates Mouse Vibrissae Growth and Regulates Cell Proliferation and Cell Cycle Progression of Hair Matrix Cells through ERK Signaling ». International Journal of Molecular Sciences 20, no 4 (15 février 2019) : 853. http://dx.doi.org/10.3390/ijms20040853.
Texte intégralRoh, Jason D., Ryan Hobson, Vinita Chaudhari, Pablo Quintero, Ashish Yeri, Mark Benson, Chunyang Xiao et al. « Activin type II receptor signaling in cardiac aging and heart failure ». Science Translational Medicine 11, no 482 (6 mars 2019) : eaau8680. http://dx.doi.org/10.1126/scitranslmed.aau8680.
Texte intégralQiu, Wanglong, Chia-Yu Kuo, Yu Tian et Gloria H. Su. « Dual Roles of the Activin Signaling Pathway in Pancreatic Cancer ». Biomedicines 9, no 7 (14 juillet 2021) : 821. http://dx.doi.org/10.3390/biomedicines9070821.
Texte intégralMallick, Sreeradha, Eric Kenney et Ioannis Eleftherianos. « The Activin Branch Ligand Daw Regulates the Drosophila melanogaster Immune Response and Lipid Metabolism against the Heterorhabditis bacteriophora Serine Carboxypeptidase ». International Journal of Molecular Sciences 25, no 14 (21 juillet 2024) : 7970. http://dx.doi.org/10.3390/ijms25147970.
Texte intégralLaBonne, C., et M. Whitman. « Mesoderm induction by activin requires FGF-mediated intracellular signals ». Development 120, no 2 (1 février 1994) : 463–72. http://dx.doi.org/10.1242/dev.120.2.463.
Texte intégralLamba, Pankaj, Michelle M. Santos, Daniel P. Philips et Daniel J. Bernard. « Acute regulation of murine follicle-stimulating hormone β subunit transcription by activin A ». Journal of Molecular Endocrinology 36, no 1 (février 2006) : 201–20. http://dx.doi.org/10.1677/jme.1.01961.
Texte intégralThèses sur le sujet "Activin signaling pathway"
Shi, Dan. « Computational analysis of transcriptional responses to the Activin signal ». Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21891.
Texte intégralTransforming growth factor-β (TGF-β) signaling pathways play a crucial role in cell proliferation, migration, and apoptosis through the activation of Smad proteins. Research has shown that the biological effects of TGF-β signaling pathway are highly cellular-context-dependent. In this thesis work, I aimed at understanding how TGF-β signaling can regulate target genes differently, how different dynamics of gene expressions are induced by TGF-β signal, and what is the role of Smad proteins in differing the profiles of target gene expression. In this study, I focused on the transcriptional responses to the Nodal/Activin ligand, which is a member of the TGF-β superfamily and a key regulator of early embryonic development. Kinetic models were developed and calibrated with the time course data of RNA polymerase II (Pol II) and Smad2 chromatin binding profiles for the target genes. Using the Akaike information criterion (AIC) to evaluate different kinetic models, we discovered that Nodal/Activin signaling regulates target genes via different mechanisms. In the Nodal/Activin-Smad2 signaling pathway, Smad2 plays different regulatory roles on different target genes. We show how Smad2 participates in regulating the transcription or degradation rate of each target gene separately. Moreover, a series of features that can predict the transcription dynamics of target genes are selected by logistic regression. The approach we present here provides quantitative relationships between transcription factor dynamics and transcriptional responses. This work also provides a general computational framework for studying the transcription regulations of other signaling pathways.
Ibrahim, Christine. « Exploring the role of the activin A-ActRIIB pathway in sickle cell disease-associated nephropathy and sarcopenia : mechanistic insights and therapeutic potential ». Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP5287.
Texte intégralSickle cell disease (SCD) is a genetic disorder marked by recurrent vaso-occlusive crises and progressive multi-organ damage, including kidney disease and muscle wasting, both of which worsen morbidity and reduce quality of life of affected patients. While the mechanisms underlying SCD-related kidney disease are well-established, the drivers of muscle atrophy remain incompletely understood. Emerging evidence suggests that Activin A, a member of the TGF-β superfamily, plays a significant role in both fibrosis and disease progression in kidney disease as well as muscle atrophy. However, its role in SCD-associated muscle and kidney damage has yet to be elucidated. This study investigates the role of Activin A in SCD-associated muscle wasting and kidney disease. We assessed sarcopenia prevalence and circulating Activin A levels in SCD patients and employed a murine model to analyse the temporal changes in muscle and kidney pathology as well as the involvement of Activin pathway in these pathologies. Our findings confirm that sarcopenia is prevalent among SCD patients, emphasizing the need for focused research on SCD muscle pathology. Both patient and murine models showed elevated Activin A levels in SCD, supporting the hypothesis that Activin A may contribute to kidney disease and muscle atrophy in this context. In SCD mice, ultrastructural alterations, myofiber atrophy, reduced vascularization, and impaired muscle stem cells preceded detectable kidney pathology. Pharmacological inhibition of Activin signalling pathway mitigated muscle damage and showed early signs of kidney improvement, suggesting it as a promising therapeutic target for SCD complications and patient outcomes enhancement
Leon, Florian Luis Anthony. « Role of the Nodal Signaling pathway in amphioxus neural induction ». Electronic Thesis or Diss., Sorbonne université, 2018. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2018SORUS151.pdf.
Texte intégralNeural induction (NI) is the process through which pluripotent ectodermal cells are committed to a neural fate. In vertebrates, the dorsal organizer produces BMP antagonists, and other signals that induce neural cell fate. However, not much was known about NI in other chordates. Our team previously shown that the cephalochordate B. lanceolatum presents a functional organizer, and that the acquisition of epidermal fate relies on BMP activation. However, deprivation of BMP signals leads to an undifferentiated state of the ectoderm, indicating that BMP inhibition is not sufficient for NI. Moreover, FGF signal inhibition does not block NI, in the contrary to what is observed in several chordate lineages, suggesting that FGF is not the key signal to induce neural fate in amphioxus. Remarkably, activation of the Nodal/Activin pathway triggers NI and represent an instructive signal in this process in amphioxus. In this work, we have identified a group of putative non-exonic regulatory regions which are Activin-sensitive, through ATAC-seq, and searched for potential transcription factors binding sites. Our results suggest that Zinc Finger-related factors, as Klf1/2/4, might be playing crucial roles in neural development. We have also confirmed these results though comparative RNA-seq analyse at several developmental time points in embryo and ectodermal explants after Nodal activation
Saharinen, Pipsa. « Signaling through the Jak-Stat pathway : regulation of tyrosine kinase activity ». Helsinki : University of Helsinki, 2002. http://ethesis.helsinki.fi/julkaisut/mat/bioti/vk/saharinen/.
Texte intégralArngården, Linda. « Analysis of signaling pathway activity in single cells using the in situ Proximity Ligation Assay ». Doctoral thesis, Uppsala universitet, Molekylära verktyg, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-281716.
Texte intégralMontgomery, Lucy Theresa. « Investigations of ABA signalling pathways in stomatal guard cells ». Thesis, Lancaster University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242895.
Texte intégralGrocott, Timothy. « Regulation of Pax6 transcriptional activity by the Smad/TGF-β signalling pathway ». Thesis, University of East Anglia, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.436697.
Texte intégralGianella-Borradori, Matteo Luca. « The identification & ; optimisation of endogenous signalling pathway modulators ». Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:4c87de5d-24a7-4998-8edb-917c3922aae1.
Texte intégralPorchet, Nicolas. « Role of signaling pathays in cell-fate specification in the early mouse embryo ». Thesis, Université de Paris (2019-....), 2019. http://www.theses.fr/2019UNIP7096.
Texte intégralDuring the early mouse embryogenesis, cell-fate specification events result in the formation of the pre-implantation blastocyst. Those events are mainly regulated by the action of signaling cascades activated upon fixation of the signaling molecules at the cell membrane. The activity of these signaling pathways allow the transcriptional regulation of a specific pool of genes responsible for cell-fate decisions and the formation of tissues. Here, I am interested in the roles of both ACTIVIN/NODAL and βCATENIN signaling pathways in the specification of cell identities during the maturation of the mouse blastocyst
Carlyle, Becky Catherine. « DISC1 & ; GSK3β modulate PDE4 activity : functional integration of psychiatric associated signalling pathways ». Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4823.
Texte intégralLivres sur le sujet "Activin signaling pathway"
Takao, Kumazawa, Kruger Lawrence et Mizumura Kazue, dir. The polymodal receptor : A gateway to pathological pain. Amsterdam : Elsevier, 1996.
Trouver le texte intégralFleischmann, Roy. Signalling pathway inhibitors. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0081.
Texte intégralD’Amato, Gaetano, Guillermo Luxán et José Luis de la Pompa. Defining cardiac domains from the inside : NOTCH in endocardial–myocardial interactions. Sous la direction de José Maria Pérez-Pomares, Robert G. Kelly, Maurice van den Hoff, José Luis de la Pompa, David Sedmera, Cristina Basso et Deborah Henderson. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198757269.003.0011.
Texte intégralHartman, Adam L. Amino Acids in the Treatment of Neurological Disorders. Sous la direction de Dominic P. D’Agostino. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190497996.003.0035.
Texte intégralAlves, Ines Teles, Jan Trapman et Guido Jenster. Molecular biology of prostate cancer. Sous la direction de James W. F. Catto. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199659579.003.0059.
Texte intégralPatisaul, Heather B., et Scott M. Belcher. Receptor and Enzyme Mechanisms as Targets for Endocrine Disruptors. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199935734.003.0005.
Texte intégralKühn, Wolfgang, et Gerd Walz. The molecular basis of ciliopathies and cyst formation. Sous la direction de Neil Turner. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0303.
Texte intégralLories, Rik J., et Georg Schett. Pathology : bone. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198734444.003.0010.
Texte intégralNoebels, Jeffrey L., Massimo Avoli, Michael A. Rogawski, Annamaria Vezzani et Antonio V. Delgado-Escueta, dir. Jasper's Basic Mechanisms of the Epilepsies. 5e éd. Oxford University PressNew York, 2024. http://dx.doi.org/10.1093/med/9780197549469.001.0001.
Texte intégralVostral, Sharra L. Toxic Shock. NYU Press, 2018. http://dx.doi.org/10.18574/nyu/9781479877843.001.0001.
Texte intégralChapitres de livres sur le sujet "Activin signaling pathway"
Scheper, Gert C., Roel Van Wijk et Adri A. M. Thomas. « Regulation of the Activity of Eukaryotic Initiation Factors in Stressed Cells ». Dans Signaling Pathways for Translation, 39–56. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-09889-9_2.
Texte intégralWatabe, Tetsuro, Albert F. Candia et Ken W. Y. Cho. « Activin Signaling Pathways and Their Role in Xenopus Mesoderm Formation ». Dans Inhibin, Activin and Follistatin, 244–53. New York, NY : Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1874-6_23.
Texte intégralSteffen, Anika, Theresia E. B. Stradal et Klemens Rottner. « Signalling Pathways Controlling Cellular Actin Organization ». Dans The Actin Cytoskeleton, 153–78. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/164_2016_35.
Texte intégralGoldstein, Barry J., Faiyaz Ahmad, Wendi Ding, Pei-Ming Li et Wei-Ren Zhang. « Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases ». Dans Insulin Action, 91–99. Boston, MA : Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5647-3_10.
Texte intégralSchuller, Hildegard M. « Neurotransmitter Receptor-Mediated Signaling Pathways as Modulators of Carcinogenesis ». Dans Neuronal Activity in Tumor Tissue, 45–63. Basel : KARGER, 2007. http://dx.doi.org/10.1159/000100045.
Texte intégralTanner, Matthew J., Elina Levina, Michael Shtutman, Mengqian Chen, Patrice Ohouo et Ralph Buttyan. « Unique Effects of Wnt Signaling on Prostate Cancer Cells : Modulation of the Androgen Signaling Pathway by Interactions of the Androgen Receptor Gene and Protein with Key Components of the Canonical Wnt Signaling Pathway ». Dans Androgen Action in Prostate Cancer, 569–86. New York, NY : Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-69179-4_24.
Texte intégralSanders, Dale, Gethyn J. Allen, Shelagh R. Muir et Stephen K. Roberts. « Integration of Ion Channel Activity in Calcium Signalling Pathways ». Dans Cellular Integration of Signalling Pathways in Plant Development, 47–58. Berlin, Heidelberg : Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72117-5_5.
Texte intégralOtto, C., S. Wessler et K. H. Fritzemeier. « Exploiting Nongenomic Estrogen Receptor-Mediated Signaling for the Development of Pathway-Selective Estrogen Receptor Ligands ». Dans Tissue-Specific Estrogen Action, 163–81. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/2789_2006_022.
Texte intégralFantus, I. George, et Evangelia Tsiani. « Multifunctional actions of vanadium compounds on insulin signaling pathways : Evidence for preferential enhancement of metabolic versus mitogenic effects ». Dans Insulin Action, 109–19. Boston, MA : Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5647-3_12.
Texte intégralRazani, Bahram, Arash Shahangian, Beichu Guo et Genhong Cheng. « Biological Impact of Type I Interferon Induction Pathways beyond Their Antivirus Activity ». Dans Cellular Signaling and Innate Immune Responses to RNA Virus Infections, 155–75. Washington, DC, USA : ASM Press, 2014. http://dx.doi.org/10.1128/9781555815561.ch11.
Texte intégralActes de conférences sur le sujet "Activin signaling pathway"
Qiu, Wanglong, Sophia Tang, Sohyae Lee, Andrew T. Turk, Anthony Sireci, Anne Qiu, Ralph H. Hruban, Helen E. Remotti et Gloria H. Su. « Abstract 2735 : Inactivation of activin signaling pathway accelerates the development of pancreatic intraductal papillary mucinous neoplasms in vivo. » Dans Proceedings : AACR 104th Annual Meeting 2013 ; Apr 6-10, 2013 ; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-2735.
Texte intégralParchaykina, M. V., I. D. Molchanov, E. V. Chudaikina, T. P. Kuzmenko, E. S. Revina, A. V. Zavarykina, M. A. Simakova et V. V. Revin. « THE ROLE OF LIPID METABOLITES IN THE REGULATION OF REGENERATIVE PROCESSES IN DAMAGED SOMATIC NERVES ». Dans XI МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ МОЛОДЫХ УЧЕНЫХ : БИОИНФОРМАТИКОВ, БИОТЕХНОЛОГОВ, БИОФИЗИКОВ, ВИРУСОЛОГОВ, МОЛЕКУЛЯРНЫХ БИОЛОГОВ И СПЕЦИАЛИСТОВ ФУНДАМЕНТАЛЬНОЙ МЕДИЦИНЫ. IPC NSU, 2024. https://doi.org/10.25205/978-5-4437-1691-6-266.
Texte intégralDereli-Korkut, Zeynep, et Sihong Wang. « Microfluidic Cell Arrays to Mimic 3D Tissue Microenvironment ». Dans ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80411.
Texte intégralPenninger, Charles L., Andre´s Tovar, Glen L. Niebur et John E. Renaud. « Signaling Pathways for Bone Resorption Predicted as a Hybrid Cellular Automaton Process ». Dans ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39358.
Texte intégralJoiner, Danese M., Bryan T. MacDonald, Xi He, Peter V. Hauschka et Steven A. Goldstein. « Reduction of the Wnt Inhibitor Dkk1 Correlates With Improved Bone Mechanical and Morphological Properties in Mice ». Dans ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-175478.
Texte intégralParchaykina, M. V., T. P. Kuzmenko, E. P. Popkov, A. V. Zavarykina, N. E. Arzhanov et V. V. Revin. « STUDY OF THE EFFECT OF CLOBETASOL ON CHANGES IN THE CONTENT OF NERVE GROWTH FACTOR AND THE FUNCTIONAL ACTIVITY OF DAMAGED SOMATIC NERVES ». Dans X Международная конференция молодых ученых : биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-202.
Texte intégralParkins, Sharon, Lisa c. Green, Sarah Anthony, Adrienne R. Guarnieri, Shannon M. Shearer, Onur Kanisicak, Albert P. Owens et Michael Tranter. « Wnt1-Inducible Signaling Pathway Protein-1 (WISP1) Modulation of Cardiac Fibroblasts Activity ». Dans ASPET 2024 Annual Meeting Abstract. American Society for Pharmacology and Experimental Therapeutics, 2024. http://dx.doi.org/10.1124/jpet.269.989080.
Texte intégralAsyakina, A. S., et K. I. Melkonyan. « THE ROLE OF THE MATRICELLULAR PROTEIN PERIOSTIN ON THE EFFICIENCY OF CULTURING MAMMALIAN CELLS ». Dans XI МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ МОЛОДЫХ УЧЕНЫХ : БИОИНФОРМАТИКОВ, БИОТЕХНОЛОГОВ, БИОФИЗИКОВ, ВИРУСОЛОГОВ, МОЛЕКУЛЯРНЫХ БИОЛОГОВ И СПЕЦИАЛИСТОВ ФУНДАМЕНТАЛЬНОЙ МЕДИЦИНЫ. IPC NSU, 2024. https://doi.org/10.25205/978-5-4437-1691-6-298.
Texte intégralErickson, Geoffrey R., et Farshid Guilak. « Osmotic Stress Initiates Intracellular Calcium Waves in Chondrocytes Through Extracellular Influx and the Inositol Phosphate Pathway ». Dans ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0580.
Texte intégralWarren, Janine S. A., Emily Norton et John M. Lamar. « Abstract A41 : Inhibition of aberrant YAP and TAZ activity to prevent metastasis formation and growth ». Dans Abstracts : AACR Special Conference on the Hippo Pathway : Signaling, Cancer, and Beyond ; May 8-11, 2019 ; San Diego, CA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1557-3125.hippo19-a41.
Texte intégralRapports d'organisations sur le sujet "Activin signaling pathway"
Yompakdee, Chulee, et Warintorn Chavasiri. An active compound Kempferia parviflora with inhibitory activity against GSK-3 kinase implicated in type II Diabetes and Alzheimer's disease. Chulalongkorn University, 2015. https://doi.org/10.58837/chula.res.2015.37.
Texte intégralFriedman, Haya, Julia Vrebalov et James Giovannoni. Elucidating the ripening signaling pathway in banana for improved fruit quality, shelf-life and food security. United States Department of Agriculture, octobre 2014. http://dx.doi.org/10.32747/2014.7594401.bard.
Texte intégralLi, Shaoguang. A BCR-ABL Kinase Activity-Independent Signaling Pathway in Chronic Myelogenous Leukemia. Fort Belvoir, VA : Defense Technical Information Center, février 2007. http://dx.doi.org/10.21236/ada468056.
Texte intégralLi, Shaoguang. A BCR-ABL Kinase Activity-Independent Signaling Pathway in Chronic Myelogenous Leukemia. Fort Belvoir, VA : Defense Technical Information Center, février 2008. http://dx.doi.org/10.21236/ada482344.
Texte intégralBarash, Itamar, et Robert Rhoads. Translational Mechanisms Governing Milk Protein Levels and Composition. United States Department of Agriculture, 2006. http://dx.doi.org/10.32747/2006.7696526.bard.
Texte intégralYi, Ping. The Regulation of Nuclear Receptor Coactivator SRC-3 Activity Through Membrane Receptor Mediated Signaling Pathways. Fort Belvoir, VA : Defense Technical Information Center, mai 2005. http://dx.doi.org/10.21236/ada460836.
Texte intégralMoran, Nava, Richard Crain et Wolf-Dieter Reiter. Regulation by Light of Plant Potassium Uptake through K Channels : Biochemical, Physiological and Biophysical Study. United States Department of Agriculture, septembre 1995. http://dx.doi.org/10.32747/1995.7571356.bard.
Texte intégralOlszewski, Neil, et David Weiss. Role of Serine/Threonine O-GlcNAc Modifications in Signaling Networks. United States Department of Agriculture, septembre 2010. http://dx.doi.org/10.32747/2010.7696544.bard.
Texte intégralChamovitz, A. Daniel, et Georg Jander. Genetic and biochemical analysis of glucosinolate breakdown : The effects of indole-3-carbinol on plant physiology and development. United States Department of Agriculture, janvier 2012. http://dx.doi.org/10.32747/2012.7597917.bard.
Texte intégralBromberg, Michael. Targeting the Tissue Factor-Factor VIIa Signaling Pathway to Enhance Activity of mTOR Inhibitors in the Treatment of Breast Cancer. Fort Belvoir, VA : Defense Technical Information Center, septembre 2009. http://dx.doi.org/10.21236/ada526533.
Texte intégral