Littérature scientifique sur le sujet « Aerospace alloy »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Aerospace alloy ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Aerospace alloy"
Warner, Timothy. "Recently-Developed Aluminium Solutions for Aerospace Applications." Materials Science Forum 519-521 (July 2006): 1271–78. http://dx.doi.org/10.4028/www.scientific.net/msf.519-521.1271.
Texte intégralBarnes, Anthony J., Hari Raman, Andrew Lowerson, and David Edwards. "Recent Application of Superformed 5083 Aluminum Alloy in the Aerospace Industry." Materials Science Forum 735 (December 2012): 361–71. http://dx.doi.org/10.4028/www.scientific.net/msf.735.361.
Texte intégralMATSUO, Mamoru. "Application of aluminum alloy superplasticity in aerospace." Journal of Japan Institute of Light Metals 36, no. 1 (1986): 43–50. http://dx.doi.org/10.2464/jilm.36.43.
Texte intégralVrabeľ, Marek, and Martin Eckstein. "Hole Making of Inconel 718 Aerospace Alloy." Acta Mechanica Slovaca 20, no. 1 (2016): 10–13. http://dx.doi.org/10.21496/ams.2016.002.
Texte intégralWoodfield, Andrew, and Gérard Lemaitre. "Aerospace Titanium Alloy Melt Process Quality Improvements." MATEC Web of Conferences 321 (2020): 04008. http://dx.doi.org/10.1051/matecconf/202032104008.
Texte intégralRamesh Narayanan, P., Satyam Suwas, K. Sreekumar, Parameshwar Prasad Sinha, and Srinivasa Ranganathan. "Evolution of Crystallographic Texture in Cold Rolled Al-Zn-Mg Alloys Used in Space Applications." Materials Science Forum 702-703 (December 2011): 315–19. http://dx.doi.org/10.4028/www.scientific.net/msf.702-703.315.
Texte intégralKemp, R. M. J., R. N. Wilson, and P. J. Gregson. "A Comparison of the Corrosion Fatigue Properties of Plate Aluminium Alloys for Aerospace Applications." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 207, no. 2 (1993): 97–104. http://dx.doi.org/10.1243/pime_proc_1993_207_253_02.
Texte intégralBatool, Syeda Ammara, Akhlaq Ahmad, Abdul Wadood, Abdul Mateen, and Syed Wilayat Hussain. "Development of Lightweight Aluminum-Titanium Alloys for Aerospace Applications." Key Engineering Materials 778 (September 2018): 22–27. http://dx.doi.org/10.4028/www.scientific.net/kem.778.22.
Texte intégralVijayakumar, T., T. Senthilvelan, and R. Venkatakrishnan. "Wear Behaviour of Polyurethane Coated Aerospace Aluminium Alloy (7075)." Applied Mechanics and Materials 813-814 (November 2015): 252–56. http://dx.doi.org/10.4028/www.scientific.net/amm.813-814.252.
Texte intégralKrämer, A., Dieter Lung, and Fritz Klocke. "High Performance Cutting of Aerospace Materials." Advanced Materials Research 498 (April 2012): 127–32. http://dx.doi.org/10.4028/www.scientific.net/amr.498.127.
Texte intégralThèses sur le sujet "Aerospace alloy"
YANG, LIN. "CORROSION INHIBITOR SYSTEM FOR SUPERPRIMER COATINGS ON AEROSPACE ALLOY." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1135970650.
Texte intégralMojarad, Farimani Saeed. "Experimental process development and aerospace alloy formability studies for hydroforming." Mémoire, École de technologie supérieure, 2013. http://espace.etsmtl.ca/1261/1/MOJARAD_FARIMANI_Saeed.pdf.
Texte intégralBaxter, Gavin James. "Fatigue damage accumulation in titanium alloy IMI 834." Thesis, University of Sheffield, 1994. http://etheses.whiterose.ac.uk/14764/.
Texte intégralHenry, Dilys M. "The nature and effects of hydrogen in weldalite aerospace alloy and other commercial aluminium-lithium alloys." Thesis, Brunel University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340935.
Texte intégralRoets, Philip J. "Development of a hybrid light alloy - carbon fibre aerospace structural panel." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4151.
Texte intégralWhittaker, Jarrod Talbott. "Ductility and Use of Titanium Alloy and Stainless Steel Aerospace Fasteners." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5796.
Texte intégralDerry, Christopher Graham. "Characterisation and modelling of toughness in aerospace aluminium alloy friction stir welds." Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.494597.
Texte intégralNabhani, Farhad. "The performance of ultra-hard cutting tool materials in maching aerospace alloy TA48." Thesis, University of Hull, 1991. http://hydra.hull.ac.uk/resources/hull:4627.
Texte intégralBoag, Adam Paull, and adam boag@gmail com. "The Relationship Between Microstructure and Stable Pitting Initiation in Aerospace Aluminium Alloy 2024-T3." RMIT University. Applied Science, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20091028.114831.
Texte intégralJerrard, Peter George Eveleigh. "Selective laser melting of advanced metal alloys for aerospace applications." Thesis, University of Exeter, 2011. http://hdl.handle.net/10036/3576.
Texte intégralLivres sur le sujet "Aerospace alloy"
Gangloff, R. P. NASA-UVa light aerospace alloy and structures technology program (LA²ST). National Aeronautics and Space Administration, 1996.
Trouver le texte intégralGangloff, R. P. NASA-UVa light aerospace alloy and structures technology program (LA²ST). National Aeronautics and Space Administration, 1996.
Trouver le texte intégralGangloff, R. P. NASA-UVa light aerospace alloy and structures technology program (LA²ST). National Aeronautics and Space Administration, 1996.
Trouver le texte intégralXian jin hang kong lü he jin cai liao yu ying yong: Advanced areanautical aluminum alloy materials technology and application. Guo fang gong ye chu ban she, 2012.
Trouver le texte intégralStarke, E. A. NASA-UVa Light Aerospace Alloy and Structure Technology Program supplement: aluminum-based materials for high speed aircraft. Langley Research Center, 1993.
Trouver le texte intégralGangloff, R. P. NASA-UVa Light Aerospace Alloy and Structures Technology Program (LA2ST): A progress report, January 1, 1991 to June 30, 1991. School of Engineering & Applied Science, University of Virginia, 1991.
Trouver le texte intégralGangloff, R. P. NASA-UVa Light Aerospace Alloy and Structures Technology Program (LA2ST): A progress report, January 1, 1991 to June 30, 1991. School of Engineering & Applied Science, University of Virginia, 1991.
Trouver le texte intégralTack, Andrew J. The effect of microstructure and loading variables on fatigue crack propagation in three aerospace bearing steels anda low alloy steel. University of Birmingham, 1989.
Trouver le texte intégralGialanella, Stefano, and Alessio Malandruccolo. Aerospace Alloys. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-24440-8.
Texte intégralStarke, E. A. NASA-UVa light aerospace alloy and structures technology program supplement: aluminum-based materials for high speed aircraft: semi-annual report, July 1, 1992-December 31, 1992. Langley Research Center, 1995.
Trouver le texte intégralChapitres de livres sur le sujet "Aerospace alloy"
Bhattacharjee, A., B. Saha, and J. C. Williams. "Titanium Alloys: Part 2—Alloy Development, Properties and Applications." In Aerospace Materials and Material Technologies. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2134-3_6.
Texte intégralBalan, K. P., and A. Venugopal Reddy. "Aero Steels: Part 1—Low Alloy Steels." In Aerospace Materials and Material Technologies. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2134-3_7.
Texte intégralSrinivas, M., and A. Venugopal Reddy. "Aero Steels: Part 2—High Alloy Steels." In Aerospace Materials and Material Technologies. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2134-3_8.
Texte intégralWanhill, R. J. H. "Structural Alloy Testing: Part 1—Ambient Temperature Properties." In Aerospace Materials and Material Technologies. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2143-5_9.
Texte intégralSchick, Justin R., Darren J. Hartl, and Dimitris C. Lagoudas. "Incorporation of Shape Memory Alloy Actuators into Morphing Aerostructures." In Morphing Aerospace Vehicles and Structures. John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119964032.ch10.
Texte intégralZheng, Qingjun, Banqiu Wu, and Ramana G. Reddy. "In-SituFormation of AIN Reinforced Al Alloy Composites Using Ammonia." In Lightweight Alloys for Aerospace Application. John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787922.ch27.
Texte intégralReynolds, Anthony P., Bob Wheeler, and Kumar V. Jata. "Deformation, Fracture and Fatigue in a Dispersion Strengthened Aluminum Alloy." In Lightweight Alloys for Aerospace Application. John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787922.ch8.
Texte intégralFleck, P., K. Koziar, G. Davila, et al. "The Effect of Retrogression and Reaging on 7249 Aluminum Alloy." In Lightweight Alloys for Aerospace Application. John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787922.ch9.
Texte intégralSinha, V., M. J. Mills, and J. C. Williams. "Dwell-Fatigue Behavior of Ti-6Al-2Sn-4Zr-2Mo-0.1Si Alloy." In Lightweight Alloys for Aerospace Application. John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787922.ch18.
Texte intégralVerhaeghe, Geert, and Paul Hilton. "Laser Welding of Low-Porosity Aerospace Aluminum Alloy." In Proceedings of the 34th International MATADOR Conference. Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-0647-0_36.
Texte intégralActes de conférences sur le sujet "Aerospace alloy"
Shrimpton, G. R. D., and H. C. Angus. "Aluminum-Lithium Alloy Forgings for Aerospace." In Aerospace Technology Conference and Exposition. SAE International, 1988. http://dx.doi.org/10.4271/881404.
Texte intégralHenriques, Vinicius Andr\ae Rodrigues, Jos\ae Luis de Oliveira, Edevaldo Faria Diniz, and Ana Carolina Silva Machado Dutra. "Gamma Ti-Al Alloy Production for Aerospace Applications." In SAE Brasil 2011 Congress and Exhibit. SAE International, 2011. http://dx.doi.org/10.4271/2011-36-0042.
Texte intégralNaydenkin, E. V., I. P. Mishin, I. V. Ratochka, and V. A. Vinokurov. "High-strength nanostructured titanium alloy for aerospace industry." In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4932850.
Texte intégralNovotny, Paul M., and Thomas J. McCaffrey. "An Advanced Alloy for Landing Gear and Aircraft Structural Applications - Aerometr® 100 Alloy." In Aerospace Technology Conference and Exposition. SAE International, 1992. http://dx.doi.org/10.4271/922040.
Texte intégralVerhaeghe, G., P. Hilton, and S. Barnes. "Achieving Low-Porosity Laser Welds in Aerospace Aluminium Alloy." In Aerospace Manufacturing Technology Conference & Exposition. SAE International, 2003. http://dx.doi.org/10.4271/2003-01-2895.
Texte intégralYoshinouchi, T., H. Yoshizawa, N. Tsuno, and S. Ikeda. "Metal Injection Molding of Alloy 718 for Aerospace Applications." In Superalloys. John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.7449/2014/superalloys_2014_437_446.
Texte intégralRoach, T. A. "Alloy 718 Fasteners: Versatility and Reliability for Aerospace Design." In Superalloys. TMS, 1989. http://dx.doi.org/10.7449/1989/superalloys_1989_381_389.
Texte intégralKeener, Steven G. "Advanced Low-cost Titanium-alloy Materials for Aerospace Fastener Applications." In Aerospace Technology Conference and Exposition. SAE International, 2007. http://dx.doi.org/10.4271/2007-01-3839.
Texte intégralYan, Jingxuan, Xierong Hu, Jiaxiong Fang, and Guosen Xu. "Study of the recombination mechanisms and carrier lifetimes in Hg0.8Cd0.2Te alloy." In Aerospace Sensing, edited by Eustace L. Dereniak and Robert E. Sampson. SPIE, 1992. http://dx.doi.org/10.1117/12.137806.
Texte intégralHaag, Chris, Monish Tandale, and John Valasek. "Characterization of Shape Memory Alloy Behavior and Position Control Using Reinforcement Learning." In Infotech@Aerospace. American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-7160.
Texte intégralRapports d'organisations sur le sujet "Aerospace alloy"
Rodriguez, Salvador, Andrew Kustas, and Graham Monroe. Metal Alloy and RHEA Additive Manufacturing for Nuclear Energy and Aerospace Applications. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1644167.
Texte intégralDawson, Paul, Matthew Miller, Kevin McNelis, Amanda Oczkowski, Jun-Sang Park, and James Williams. A New Multiscale Methodology for Evaluating Distributions of Residual Stress in Processed Aerospace Alloys. Defense Technical Information Center, 2013. http://dx.doi.org/10.21236/ada582421.
Texte intégral