Littérature scientifique sur le sujet « Aerospace alloy »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Aerospace alloy ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Aerospace alloy"

1

Warner, Timothy. « Recently-Developed Aluminium Solutions for Aerospace Applications ». Materials Science Forum 519-521 (juillet 2006) : 1271–78. http://dx.doi.org/10.4028/www.scientific.net/msf.519-521.1271.

Texte intégral
Résumé :
Two principal approaches are available to materials’ engineers to improve the overall cost-weight balance of metallic airframe structures: improving alloy performance and optimising materials’ utilisation. Although both approaches have been successful in the past, they are most effective when applied concomitantly. The Aluminium industry has a long record of improving aerospace alloys’ performance. Nevertheless, even in apparently well-explored alloy systems such as the 7xxx family, products with improved damage tolerance-strength balances have recently been developed, thanks to an improved understanding of the optimum Zn-Mg-Cu combinations for the required property balances but also to developments in casting capability. Novel dispersoids and dispersoid combinations have enabled further improvements of the performance of existing alloy families. For example, appropriate Sc and Zr additions have a significant impact on the grain structure of 2xxx alloys and thus on performance. Another high potential approach for alloy performance improvements is the optimisation of Al-Cu-Li-(Mg-Ag-Zn) alloys. These so-called “third generation Al-Li alloys” were principally developed for military and space applications; in order to meet the demands of future commercial airframes, more damage tolerant variants are being developed. AA2198 and AA2050 are used to illustrate the potential of these higher damage tolerance Al-Cu-Li alloys. However, materials performance improvements are only part of the potential developments of metallic solutions for airframes. Further gains of a similar magnitude in component weight and cost can be achieved by applying new technologies and new design solutions to metallic structures. The future of metallic airframes will depend on the concomitant application of both these approaches.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Barnes, Anthony J., Hari Raman, Andrew Lowerson et David Edwards. « Recent Application of Superformed 5083 Aluminum Alloy in the Aerospace Industry ». Materials Science Forum 735 (décembre 2012) : 361–71. http://dx.doi.org/10.4028/www.scientific.net/msf.735.361.

Texte intégral
Résumé :
Traditionally the Aerospace Industry has, most often, selected heat treatable aluminum alloys for its sheet metal fairings, panels and skins. With the introduction of superplastic forming (SPF) in the late 70’s and early 80’s the initial applications of SPF aluminum utilized the heat treatable superplastic alloys that were available then (ie. 2004 and 7475). When superplastic 5083 alloy sheet became commercially available in the late 1980’s applications were focused on the ‘high end’ automobile and the European rail markets. More recently, the qualification of SP5083 to aerospace standards, combined with appropriate design criteria, has enabled an increasing number and variety of aerospace components to be Superformed from this non-heat treatable medium strength alloy. This presentation examines a number of recent aerospace applications of Superformed 5083; from contemporary tool designs through to finished components. The important attributes of both SPF design; the ability to create complex geometry, and the excellent post-formed characteristics of SP5083 that have created cost effective solutions to specific Aerospace Industry needs are illustrated. Future prospects for stronger 5000 series superplastic alloys are also discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
3

MATSUO, Mamoru. « Application of aluminum alloy superplasticity in aerospace. » Journal of Japan Institute of Light Metals 36, no 1 (1986) : 43–50. http://dx.doi.org/10.2464/jilm.36.43.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Vrabeľ, Marek, et Martin Eckstein. « Hole Making of Inconel 718 Aerospace Alloy ». Acta Mechanica Slovaca 20, no 1 (31 mars 2016) : 10–13. http://dx.doi.org/10.21496/ams.2016.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Woodfield, Andrew, et Gérard Lemaitre. « Aerospace Titanium Alloy Melt Process Quality Improvements ». MATEC Web of Conferences 321 (2020) : 04008. http://dx.doi.org/10.1051/matecconf/202032104008.

Texte intégral
Résumé :
This Jet Engine Titanium Quality Committee (JETQC) paper describes industry quality improvements since 1990. Quality refers to freedom from melt-related hard-alpha and high-density inclusions (HDI). JETQC, formed under the auspices of the U.S. Federal Aviation Administration (FAA) following the Sioux City aircraft accident in 1989, is comprised of U.S., E.U. and Japanese aircraft engine manufacturers to address the quality of premium / rotor quality titanium alloy production. Titanium suppliers provide melt-related inclusion data. JETQC focuses on hard-alpha and HDI inclusion rates in premium quality (PQ) titanium alloy products for critical rotating aircraft engine applications. PQ materials typically are produced via triple vacuum arc re-melt (3XVAR) or hearth melt VAR (HMVAR) processes, but more recently, the Skull plus VAR (SVAR) process has been introduced. Hard-alpha rates have continued to decline over the last decade primarily for the HMVAR process. HDI rates declined in the early 90’s, but more recently the overall rate has stayed approximately constant with inclusions confined to the 3XVAR process. Combining the trends for both hard-alpha and HDIs, the HMVAR process has demonstrated in recent years to be higher quality compared with the 3XVAR process.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ramesh Narayanan, P., Satyam Suwas, K. Sreekumar, Parameshwar Prasad Sinha et Srinivasa Ranganathan. « Evolution of Crystallographic Texture in Cold Rolled Al-Zn-Mg Alloys Used in Space Applications ». Materials Science Forum 702-703 (décembre 2011) : 315–19. http://dx.doi.org/10.4028/www.scientific.net/msf.702-703.315.

Texte intégral
Résumé :
The aerospace industry uses a variety of materials in different forms like sheets, forgings, extruded rods, welded components and machined components for launch vehicle and satellite applications. As lighter and stronger materials are the aims of the aerospace industry, aluminium alloys are the most widely used materials in the in the aircraft and aerospace industries. These aluminum alloys used in the aerospace industry are subjected to a variety of processing operations, either in the sheet form after rolling, forging, heat treatment and machining conditions, to realize the final product implies that these alloys exhibit a wide range of properties depending on the processing conditions. Texture formation in a material takes place during its various processing stages. The actual orientation distribution in a poly crystal is the result of the manufacturing processes applied. In this context, it is important to characterize the evolution of texture, both macro and micro texture, in AA7075 and AFNOR7020 alloys, which are two of the important high strength aluminum alloys used in the Aerospace industry. This paper deals with the results of the crystallographic texture measurements carried out on the cold rolled and artificially aged AA7075 and AFNOR7020 aluminium alloys. Results obtained from the pole figure analysis, Orientation Distribution Function (ODF) method and estimation of the various fibres present in the cold rolled material and the volume fraction of the texture components are discussed in detail for the alloy. Results of the micro texture measurements using the EBSD are presented, explained and analyzed in detail. A comparison of the inverse pole figures (IPFs), Image Quality (IQ) maps, Misorientation angle, Grain Orientation Spread (GOS), Kernal Average Misorientation (KAM), CSL boundaries, Grain size and Grain boundary character distribution (GBCD) for materials cold rolled to different reduction for the alloy are done and analyzed. Conclusions are drawn regarding the evolution of texture from the above analysis. Deformation texture components Cu, Bs and S increase from the starting material as the rolling percentage increases. On the other hand, recrystallization texture components of Goss and Cube are observed to be weak. AFNOR7020 Alloy developed a stronger texture compared to the AA7075 alloy. S component of texture is stronger in AA7075 alloy whereas the Bs component is stronger in AFNOR7020 alloy. This is attributed to the shear banding which was found absent in the other alloy.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kemp, R. M. J., R. N. Wilson et P. J. Gregson. « A Comparison of the Corrosion Fatigue Properties of Plate Aluminium Alloys for Aerospace Applications ». Proceedings of the Institution of Mechanical Engineers, Part G : Journal of Aerospace Engineering 207, no 2 (juillet 1993) : 97–104. http://dx.doi.org/10.1243/pime_proc_1993_207_253_02.

Texte intégral
Résumé :
A corrosive environment such as salt water can severely degrade the fatigue properties of aluminium alloys used in aerospace applications. The corrosion fatigue crack growth rate properties of two conventional alloys, that is Al-Zn-Mg-Cu-Zr alloy (7010-T7651) and Al-Cu-Mg alloy (2024–T351) have been compared with the more recently developed Al-Li-Cu-Mg alloy (8090-T8771). Increased growth rates were observed in salt water compared to air for 7010 and 8090 but not for 2024. Comparing the three alloys, the 8090 alloy corrosion fatigue rates were similar to those of 2024 which were considerably less than those for 7010. The increase in crack growth in 8090 due to environment was associated with a decrease in the high level of crack closure observed for tests in air. The susceptibility of an alloy to corrosion fatigue can be summarized using a ‘corrosion fatigue resistance’ index, Rcf
Styles APA, Harvard, Vancouver, ISO, etc.
8

Batool, Syeda Ammara, Akhlaq Ahmad, Abdul Wadood, Abdul Mateen et Syed Wilayat Hussain. « Development of Lightweight Aluminum-Titanium Alloys for Aerospace Applications ». Key Engineering Materials 778 (septembre 2018) : 22–27. http://dx.doi.org/10.4028/www.scientific.net/kem.778.22.

Texte intégral
Résumé :
Aluminum (Al) and Titanium (Ti) based lightweight alloys have been a topic of discussion and research for a few decades now. Resulting alloys with hard intermetallic phases in Al-Ti binary system have good microstructural and mechanical properties including low densities, high specific strength, better resistance against oxidation and corrosion which are highly desirable in aerospace industry. Such an alloy system was studied in our research. Powder metallurgy (PM) was used as processing route because of its economical and easy operation. Samples were prepared using metallic powders of Aluminum (Al) and Titanium (Ti) with varying compositions of 95 at.% Al-Ti, 90 at.% Al-Ti and 88 at.% Al-10 at.% Ti-2 at.% SiC. After compaction, pressureless sintering was carried out at 620°C for several hours in Argon atmosphere followed by annealing resulting in a reasonably dense Al-Ti alloy. Microstructure and phase composition of alloy was analyzed by Scanning electron microscopy (SEM) and Energy dispersive spectroscopy (EDS), respectively. Hardness was evaluated by Vickers micro indentation test. An increase in hardness was observed. Sample containing reinforcement particles (SiC) demonstrated highest value of hardness.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Vijayakumar, T., T. Senthilvelan et R. Venkatakrishnan. « Wear Behaviour of Polyurethane Coated Aerospace Aluminium Alloy (7075) ». Applied Mechanics and Materials 813-814 (novembre 2015) : 252–56. http://dx.doi.org/10.4028/www.scientific.net/amm.813-814.252.

Texte intégral
Résumé :
This paper envisages to predict the life of an aircraft coating using high strength precipitation hardening 7000 series aluminum alloys, such as 7075 which is used extensively in aerospace industry. Aerospace aluminum alloy 7075 has been researched upon especially for aircraft materials. The intention of protective coating is to save the aerospace aluminium alloy 7075 metal surface from weatherability and, at the same time, to obtain the required degree of cosmetic finish for the object. One was epoxy polyamide as primer layer and other was the polyurethane as top-coat layer of coating through conventional spray type on aluminum alloy 7075 substrates. Epoxy polyamide is useful binders for aircraft primers. Top-coats have also been prepared, but polyurethane is still the choice for aircraft coating. This coating system is typically comprised, of a primer layer and a topcoat layer. The ability of the polyurethane coating is to prevent corrosion, weatherability depends on its anti-corrosive pigments and its adhesion to the substrate. All these factors are widely variable with the geographic location and season such as temperature, wind, oxygen and atmospheric pollutants. The effect of structural and process variable on wear resistance of polyurethane coating was analyzed to determine the maximum wear rate using DOE software optimum samples were prepare according to best level of each factor and its morphology was examined by scanning electron microscope (SEM).
Styles APA, Harvard, Vancouver, ISO, etc.
10

Krämer, A., Dieter Lung et Fritz Klocke. « High Performance Cutting of Aerospace Materials ». Advanced Materials Research 498 (avril 2012) : 127–32. http://dx.doi.org/10.4028/www.scientific.net/amr.498.127.

Texte intégral
Résumé :
Titanium and nickel-based alloys belong to the group of difficult-to-cut materials. The machining of these high-temperature alloys is characterized by low productivity and low process stability as a result of their physical and mechanical properties. Major problems during the machining of these materials are low applicable cutting speeds due to excessive tool wear, long machining times, and thus high manufacturing costs, as well as the formation of ribbon and snarled chips. Under these conditions automation of the production process is limited. This paper deals with strategies to improve machinability of titanium and nickel-based alloys. Using the example of the nickel-based alloy Inconel 718 high performance cutting with advanced cutting materials, such as PCBN and cutting ceramics, is presented. Afterwards the influence of different cooling strategies, like high-pressure lubricoolant supply and cryogenic cooling, during machining of TiAl6V4 is shown.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Aerospace alloy"

1

YANG, LIN. « CORROSION INHIBITOR SYSTEM FOR SUPERPRIMER COATINGS ON AEROSPACE ALLOY ». University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1135970650.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mojarad, Farimani Saeed. « Experimental process development and aerospace alloy formability studies for hydroforming ». Mémoire, École de technologie supérieure, 2013. http://espace.etsmtl.ca/1261/1/MOJARAD_FARIMANI_Saeed.pdf.

Texte intégral
Résumé :
Dans le procédé d’hydroformage, la pression d’un fluide est utilisée pour déformer plastiquement un tube paroi mince à l’intérieur d’une matrice fermée afin de remplir la cavité de la matrice. L’hydroformage des tubes possède de nombreux avantages qui rendent ce procédé très intéressant pour plusieurs industries telles que l’automobile et l’aérospatiale. Mais, à cause de différents facteurs tels que la formabilité des matériaux, l’ordre et les séquences du chargement (force de compression axiale et pression interne pendant le procédé), la géométrie de l’outil et la friction, c’est un procédé de mise en forme assez complexe. Ainsi, la simulation par éléments finis combinée à des méthodes d’optimisation peuvent réduire significativement le coût de l’approche “Essai – Erreur” utilisée dans les méthodes conventionnelles de mise en forme. Dans ce mémoire, pour étudier les effets de différent paramètres tels que les conditions de friction, l’épaisseur du tube et la compression axiale sur la pièce finale, des essais d’hydroformage de tube ont été menés en utilisant une matrice de forme ronde à carrée. Les expériences ont été effectuées sur des tubes d’acier inoxydable 321 de 50.8 mm (2 in) de diamètre et deux différentes épaisseurs ; 0.9 mm et 1.2 mm. L’historique du chargement a été enregistré avec le système d’acquisition de la presse. Un système de mesure de déformation automatique, Argus, a été utilisé pour mesurer les déformations sur les tubes hydroformés. Les données collectées à partir des essais initiaux ont été utilisées pour comparer avec les simulations. Le procédé a été simulé et optimisé à partir des logiciels Ls-Dyna et Ls-Opt, respectivement. Les variations de déformations et d’épaisseurs mesurées à partir des expériences ont été comparées aux résultats de la simulation par éléments finis dans les zones critiques. La comparaison des résultats de la simulation et des expériences sont en bon accord indiquant que l’approche peut être utilisée pour prédire la forme finale et les variations d’épaisseurs de pièces hydroformées pour des applications aérospatiales.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Baxter, Gavin James. « Fatigue damage accumulation in titanium alloy IMI 834 ». Thesis, University of Sheffield, 1994. http://etheses.whiterose.ac.uk/14764/.

Texte intégral
Résumé :
As current aerospace materials are subjected in service to increasingly onerous conditions of stress and temperature, the hazard of fatigue failure becomes more acute. Engineers utilise the methodology of fracture mechanics to estimate fatigue crack growth rates but fatigue crack initiation, which involves the interplay of many microprocesses, is only investigated empirically. The aim of this study was to investigate the fatigue damage accumulation mechanisms in the titanium alloy IMI 834 in order to develop a fundamental understanding of the controlling physical processes and the micromechanisms which occur at the dislocation level. Load controlled four point bend test specimens of IMI 834 were cyclically fatigued to failure with an R ratio of 0.1 over a range of maximum stress levels and the fatigue and fracture surfaces were examined by optical and scanning electron microscopy. The examination of cross-sectional foils prepared from the fatigue surface enabled the fatigue damage to be examined in the T.E.N. as a function of orientation and depth below the specimen surface. The distribution, orientation and type of slip bands were identified in the primary-a and the transformed-fJ grains, and their interaction with secondary phases, precipitates and grain boundaries was determined. The results show that fatigue damage accumulation in INI 834 occurs primarily on basal slip bands in the primary-a phase and on basal and prismatic slip bands in the transformed-fJ phase. The segregation of a-stabilising elements to the primary-a phase during alloy processing allows the formation of an ordered phase which increases the propensity for planar slip on the basal plane. A mechanism for fatigue crack initiation along this plane is proposed. In addition, the occurrence and identification of an interface phase is discussed in the light of current theories regarding this phase.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Henry, Dilys M. « The nature and effects of hydrogen in weldalite aerospace alloy and other commercial aluminium-lithium alloys ». Thesis, Brunel University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340935.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Roets, Philip J. « Development of a hybrid light alloy - carbon fibre aerospace structural panel ». Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4151.

Texte intégral
Résumé :
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2010.
ENGLISH ABSTRACT: The development of light and sti aerospace structural panels is very important in the aerospace industry, e.g. a lighter satellite requires less fuel to launch it into space which in turn saves money for the owner of the satellite. This thesis describes the design, optimisation, manufacturing and testing of a ribbed light alloy core - carbon bre face sheets, sandwich-type, satellite panel operating at launch loading conditions (115 m/s2 accelerations and requiring a minimum structural natural frequency of 90 Hz) to determine the optimum sti ness per mass ratio of the panel. The panel layout was based on a satellite panel designed by SunSpace and Information Systems for the Sumbandila satellite. Only the black box mounting positions of the original panel were used in the optimisation of the new panel. The core of the evaluation panel was manufactured from aluminium (6082-T6). The carbon bre skins were manufactured from unidirectional high modulus carbon bre (K63712) in a [0/90/0] wet layup with the 0± direction in the longitudinal direction of the panel. A three-dimensional model of the panel consisting of 3D wedge elements and containing all the boundary conditions was modelled with the use of the nite element software MSC Patran. The model was optimised with the use of optimisation software Genesis to locate the rib positions. Genesis removes all the elements containing the least amount of stress; only 30% of the core elements were kept while restricting the elements to form an extruded con guration (for milling machining) throughout the thickness of the panel. The rib elements remaining were replaced in MSC Patran by shell elements and the shell element thicknesses were optimised with the use of Genesis to ensure the lightest and sti est possible structure. The optimised rib thicknesses were imported into MSC Patran and the numerically optimised model could then be analysed with MSC Nastran. The numerical model was converted into a manufacturable structure and the core was machined from a solid aluminium sheet. The ribs were machined in the shape of an Ibeam to allow for minimum weight and a su cient bonding area for the two carbon bre face sheets. Elevated circular surfaces, protruding through the carbon bre sheets, were machined in the position of the black box mountings to allow for better heat transfer away from the black boxes. The carbon bre face sheets were bonded to the metal core (3M Scotch-Weld 9323 B/A). The nished panel was put through various tests to determine whether it is suitable for use in the aviation industry. The tests included modal testing, random vibration testing and temperature testing to determine if the structure is durable enough for use in satellites. The test results are promising and show that a substantive amount of money can be saved by reducing the mass on the structure. By using optimisation software and ribbed light alloy - carbon bre face sheets sandwich structures the performance of the structures can be improved without adding mass to the structure.
AFRIKAANSE OPSOMMING: Die ontwikkeling van ligter en stywer lugvaartstruktuur panele is baie belangrik in die lugvaart-industrie, bv. 'n ligter satelliet benodig minder brandstof om tot in 'n wentelbaan lanseer te word. Dit bespaar sodoende lanseerkostes vir die eienaar van die satelliet. In die verslag word die ontwerp, optimering, vervaardiging en toets van 'n gewebde, ligte allooi kern - koolstofveselvel, saamgestelde materiaal, satelliet struktuurpaneel wat onderwerp word aan lanseer belastingstoestande van ongeveer 115 m/s2 versnellings ondersoek. Die tegnieke word gebruik om die optimale styfheid per eenheidsmassa-verhouding te bepaal. Die paneel benodig 'n minimum strukturele eerste natuurlike frekwensie van 90 Hz. Die basiese paneel uitleg is verkry vanaf 'n satellietpaneel wat deur SunSpace and Information Systems ontwerp is vir die basisplaat van die Sumbandila satelliet. Die enigste geometrie wat van die oorspronklike struktuur behou is om die nuwe struktuur te optimeer is die vashegtingspunt-posisies van die swart-kassies. Die kern van die ge-optimeerde struktuur is vervaardig uit gemasjieneerde aluminium (6082-T6). Die koolstofvesel-velle is vervaardig uit enkelrigting hoë-modulus koolstofvesel-doek (K63712). Die oplegging is gedoen met 'n nat-opleggingsproses waar die drie lae van elke vel 'n [0/90/0] oriëntasie het met, die 0± lae in die langsrigting van die paneel. 'n Drie-dimensionele eindige element model van die paneel is geskep met behulp van die MSC Patran sagteware pakket met die model hoofsaaklik opgebou uit 3D wig-elemente. Al die lanseertuig vashegtingsrandwaardes is in die eindige element model ingebou. Om die web posisies te bepaal is die Genesis optimeringsagteware pakket gebruik. Verskeie ontwerpsvoorwaardes is gespesi seer waaraan die optimeringsproses moes voldoen. Slegs 30% van die wig-elemente mag behoue bly in die optimeringsproses en al die elemente deur die dikte van die paneel moet of behou of verwyder word. Dit verseker dat die resultaat masjieneerbaar is met 'n freesmasjien. Die oorblywende wig-elemente is in MSC Patran vervang met dop-elemente. Die dopelemente se diktes is ge-optimeer met Genesis om die ligste en styfste struktuur moontlik te kry. Die ge-optimeerde dop-element diktes is in die MSC Patran model ingetrek. Die numeries ge-optimeerde model is daarna met behulp van MSC Nastran ge-analiseer. Nadat die numeriese model omgeskakel is in 'n vervaardigbare struktuur is die kern gemasjieneer uit 'n soliede blok aluminium. Die webbe is ontwerp en vervaardig in 'n I-balk vorm. Dit laat toe dat die webbe 'n minimum gewig en genoegsame area het waarop die koolstofvesel velle geheg kan word. Verhewe vlakke is gemasjieneer op die aluminium kern in die posisies van die swart-kassie vashegtingpunte. Hierdie verhewe vlakke steek deur die koolstofvesel-vel aan die kant waar die swart-kassies vasgeheg word. Dit verseker 'n metaal-op-metaal verbinding tussen die kern en die swart-kassies vir beter hittegeleiding. 3M Scotch-Weld 9323 B/A epoksie is gebruik om die koolstofvesel-velle aan die aluminium kern te heg. Die voltooide struktuur is aan 'n reeks toetse onderwerp om te bepaal of dit geskik is om in die ruimtevaart-industrie gebruik te kan word. Dit sluit modale toetse, lukrake vibrasie toetse en temperatuursverandering toetse in. Die toetsresultate sal bepaal of die struktuur duursaam genoeg is om in satelliete gebruik te word. Die toetsresultate is belowend en dui daarop dat deur massa te bespaar op die struktuur, 'n aansienlike bedrag op satelliet lanseer-kostes bespaar kan word. Deur optimeringsagteware tesame met gewebde ligte allooi kern - koolstofvesel vel, saamgestelde materiaal strukture te gebruik kan die werksverrigting van die strukture verbeter sonder dat massa bygevoeg word.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Whittaker, Jarrod Talbott. « Ductility and Use of Titanium Alloy and Stainless Steel Aerospace Fasteners ». Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5796.

Texte intégral
Résumé :
The main purpose of this thesis is to investigate the ductility and application of titanium alloys, like titanium 6Al-4V, when used in aerospace fasteners compared to more conventional stainless steel aerospace fasteners such as A286. There have been concerns raised about the safe usability of titanium 6-4 in the aerospace industry due to its lack of strain hardening. However, there is a lack of data pertaining to this concern of safe usage which this thesis aims to address. Tensile tests were conducted to find the ductility indexes of these fasteners which quantify the amount of plastic to elastic elongation. From the tests conducted it was found that the two materials yield and tensile strengths were very similar, though the ductility index of A286 is on average ten times greater than that of titanium 6-4. This thesis includes joint diagram examples that analyze typical joints using both materials. It was found from joint diagram examples that the lower ductility index of the titanium alloy will only be detrimental to use at higher preloads. However, the titanium alloy can be used safely in place of A286 in most loading situations just with narrower safety margins in these controlled examples.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Derry, Christopher Graham. « Characterisation and modelling of toughness in aerospace aluminium alloy friction stir welds ». Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.494597.

Texte intégral
Résumé :
The effect of friction stir welding (FSW) on the toughness properties of two aerospace aluminium alloys has been investigated. Two typical aerospace alloys, high strength AA7449 and medium strength AA6013 have been studied in detail. The mechanical properties have been characterised via hardness testing, toughness testing and tensile testing incorporating strain analysis via digital image correlation. A notched 5ar test has been used to produce a profile of toughness across each of the welds and, in AA7449, through the depth of the welded plate. Each fracture surface was examined via FEGSEM to determine the mode of fracture and the microstructure was characterised, via optical microscopy and FEGSEM, such that the microstructural changes caused by FSW could be linked to the variations in toughness.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Nabhani, Farhad. « The performance of ultra-hard cutting tool materials in maching aerospace alloy TA48 ». Thesis, University of Hull, 1991. http://hydra.hull.ac.uk/resources/hull:4627.

Texte intégral
Résumé :
A study has been made of the respective performance of cubic boron nitride (CBN) and polycrystalline diamond (PCD) cutting tool materials and compared to various coated and uncoated tungsten carbide grades when cutting titanium alloy workpieces. Two important experimental techniques were employed during the course of this work, firstly a quasi-static contact method was employed to establish the workpiece/tool interfacial temperature above which strongly adherent layers may be formed. This technique revealed that the critical temperatures which marked adhesion and welding, were 740, 820 and 800 °C for coated and uncoated carbides, and 760 and 900 °C for PCD and CBN tools respectively. Furthermore, the technique has been used to study the integrity of the bulk tool material, and/or individual coatings on their substrates, when welded junctions formed between the tool and workpiece are separated. With regard to the latter it was observed that in all cases fracture was initiated in the bulk of the harder tool material rather than in the workpiece or at the welded junction interface. Secondly, a quick-stop technique was used to study chip formation and tool wear when cutting with carbides, CBN and PCD tools under nominally the same conditions. The predominant wear mechanisms for each of the tool materials was found to be based on a diffusion/dissolution process. The wear process is discussed in detail for each of the tool materials and reasons advanced for observed differences in performance when removing material from a titanium alloy workpiece. The wear resistance and quality of the machined surface was found to be superior when cutting with the ultra-hard materials than with the carbide grades and in particular the PCD tool was found to produce exceptionally good surface finish. In the case of coated carbide tool grades rapid removal of the coated layers occurred leaving the substrate vulnerable to reaction with the workpiece material and this is considered to explain the seeming absence of beneficial effects when cutting with these grades.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Boag, Adam Paull, et adam boag@gmail com. « The Relationship Between Microstructure and Stable Pitting Initiation in Aerospace Aluminium Alloy 2024-T3 ». RMIT University. Applied Science, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20091028.114831.

Texte intégral
Résumé :
Aluminium alloys are essential to a variety of industry sectors, particularly transport, where they are used in the production of cars and aeroplanes. However, aluminium alloys are susceptible to degradation through corrosion which can compromise the integrity of components manufactured from this material. Therefore research into the means by which these alloys degrade is important. This thesis aims to understand how one of the more potentially damaging types of corrosion, known as pitting corrosion, occurs in the important aluminium alloy 2024-T3 (AA2024-T3). In order to study this phenomenon, this thesis first characterises the alloy microstructure in detail, particularly the type and distribution of intermetallic particles since these play an important role in corrosion processes. The microstructure was studied using an electron microprobe analysis of a 5 mm x 5 mm area of AA2024-T3 and some 80,000 particles were characterised. This investigation was one of the most comprehensive studies to date of any aluminium alloy. Of the particles studied, it was found that the major types included the S and θ phases and a number of compositions based around AlCuFeMn and AlCuFeMnSi. Depletion zones were an integral feature of the alloy microstructure. Pair correlation functions were used to determine the degree of clustering and it was found that there was both inter particle as well as intra particle clustering. Inter particle clustering was observed at length scales well beyond 50 µm. A detailed study of corrosion on AA2024-T3 was undertaken by examining the surface after corrosion over a time period spanning 2.5 minutes to 120 minutes. From this investigation, a hierarchy of the localised corrosion was observed as it was very apparent that particles of particular elemental compositions were more susceptible to attack much sooner than other compositions. Larger corrosion attack sites on the surface, which were called co-operative corrosion, were attributed to intermetallic clustering affects and changes in chemical composition such as Cu-enrichment. These results were used to develop a detailed model of the initiation of stable pitting corrosion in AA2024-T3, which will lead to a better understanding on how to prevent pitting attack on commercially important aluminium alloys. AA2024-T3 is rarely used in the polished state, for real world applications is it generally finished by mechanical or chemical processing. In the final part of this thesis, the influence of clusters on metal finishing was examined using a standard aluminium chemical deoxidiser. It was found that the etch rate of this deoxidiser increased dramatically with the increase in temperature. Under certain processing conditions only the intermetallic particles are etched out and these retain the history of the spatial distribution of the clustering of the intermetallic particles. This leaves a cluster of 'holes' which could trap metal finishing solution and lead to severe subsurface attack
Styles APA, Harvard, Vancouver, ISO, etc.
10

Jerrard, Peter George Eveleigh. « Selective laser melting of advanced metal alloys for aerospace applications ». Thesis, University of Exeter, 2011. http://hdl.handle.net/10036/3576.

Texte intégral
Résumé :
Research focused on the selective laser melting (SLM) of stainless steels and aluminium alloys. For steels, the possibility of creating a magnetically graded material was demonstrated as well as the ability to improve consolidation with austenitic and martensitic stainless steel powder mixtures. Stainless Steel/CoCr hybrid samples were also manufactured and tested to investigate the advantages of functionally graded materials (FGMs). Al alloy research began with examining the requirements for successful Al alloy consolidation in SLM and through experimentation it was found that Al alloys with good welding properties were the best choice: pure Al was found to be completely unsuitable. 6061 Al alloy was then used as a base material to manufacture Al-Cu alloy samples. Single layer SLM samples were produced first, which resulted in recognised Al-Cu microstructures forming. Multilayer Al alloy SLM research resulted in the discovery of the theorised ability to manufacture Al-Cu alloy parts with a nanocrystalline Al matrix with dispersed Al2Cu quasicrystals, resulting in a material comparable to a metal matrix composite that showed excellent corrosion resistance and compressive strength. Finally, a demonstration part was made to test the capability of the SLM process producing an aerospace type geometry using a customised Al alloy. Observations during manufacture and post process analysis showed that Al alloys were susceptible to changes in mechanical properties due to the geometry of the manufactured part.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Livres sur le sujet "Aerospace alloy"

1

Gangloff, R. P. NASA-UVa light aerospace alloy and structures technology program (LA²ST). [Washington, D.C : National Aeronautics and Space Administration, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gangloff, R. P. NASA-UVa light aerospace alloy and structures technology program (LA²ST). [Washington, D.C : National Aeronautics and Space Administration, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gangloff, R. P. NASA-UVa light aerospace alloy and structures technology program (LA²ST). [Washington, D.C : National Aeronautics and Space Administration, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Xian jin hang kong lü he jin cai liao yu ying yong : Advanced areanautical aluminum alloy materials technology and application. Beijing : Guo fang gong ye chu ban she, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Starke, E. A. NASA-UVa Light Aerospace Alloy and Structure Technology Program supplement : aluminum-based materials for high speed aircraft. Hampton, Va : Langley Research Center, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Gangloff, R. P. NASA-UVa Light Aerospace Alloy and Structures Technology Program (LA2ST) : A progress report, January 1, 1991 to June 30, 1991. Charlottesville, VA : School of Engineering & Applied Science, University of Virginia, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Gangloff, R. P. NASA-UVa Light Aerospace Alloy and Structures Technology Program (LA2ST) : A progress report, January 1, 1991 to June 30, 1991. Charlottesville, VA : School of Engineering & Applied Science, University of Virginia, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Tack, Andrew J. The effect of microstructure and loading variables on fatigue crack propagation in three aerospace bearing steels anda low alloy steel. Birmingham : University of Birmingham, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Gialanella, Stefano, et Alessio Malandruccolo. Aerospace Alloys. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-24440-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Starke, E. A. NASA-UVa light aerospace alloy and structures technology program supplement : aluminum-based materials for high speed aircraft : semi-annual report, July 1, 1992-December 31, 1992. Hampton, Va : Langley Research Center, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Aerospace alloy"

1

Bhattacharjee, A., B. Saha et J. C. Williams. « Titanium Alloys : Part 2—Alloy Development, Properties and Applications ». Dans Aerospace Materials and Material Technologies, 117–48. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2134-3_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Balan, K. P., et A. Venugopal Reddy. « Aero Steels : Part 1—Low Alloy Steels ». Dans Aerospace Materials and Material Technologies, 149–71. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2134-3_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Srinivas, M., et A. Venugopal Reddy. « Aero Steels : Part 2—High Alloy Steels ». Dans Aerospace Materials and Material Technologies, 173–98. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2134-3_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wanhill, R. J. H. « Structural Alloy Testing : Part 1—Ambient Temperature Properties ». Dans Aerospace Materials and Material Technologies, 159–83. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2143-5_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Schick, Justin R., Darren J. Hartl et Dimitris C. Lagoudas. « Incorporation of Shape Memory Alloy Actuators into Morphing Aerostructures ». Dans Morphing Aerospace Vehicles and Structures, 231–60. Chichester, UK : John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119964032.ch10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zheng, Qingjun, Banqiu Wu et Ramana G. Reddy. « In-SituFormation of AIN Reinforced Al Alloy Composites Using Ammonia ». Dans Lightweight Alloys for Aerospace Application, 295–307. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787922.ch27.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Reynolds, Anthony P., Bob Wheeler et Kumar V. Jata. « Deformation, Fracture and Fatigue in a Dispersion Strengthened Aluminum Alloy ». Dans Lightweight Alloys for Aerospace Application, 87–97. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787922.ch8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Fleck, P., K. Koziar, G. Davila, H. Pech, E. Fromer, M. Leal, J. Foyos, E. W. Lee et O. S. Es-Said. « The Effect of Retrogression and Reaging on 7249 Aluminum Alloy ». Dans Lightweight Alloys for Aerospace Application, 99–108. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787922.ch9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sinha, V., M. J. Mills et J. C. Williams. « Dwell-Fatigue Behavior of Ti-6Al-2Sn-4Zr-2Mo-0.1Si Alloy ». Dans Lightweight Alloys for Aerospace Application, 193–207. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787922.ch18.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Verhaeghe, Geert, et Paul Hilton. « Laser Welding of Low-Porosity Aerospace Aluminum Alloy ». Dans Proceedings of the 34th International MATADOR Conference, 241–46. London : Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-0647-0_36.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Aerospace alloy"

1

Shrimpton, G. R. D., et H. C. Angus. « Aluminum-Lithium Alloy Forgings for Aerospace ». Dans Aerospace Technology Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 1988. http://dx.doi.org/10.4271/881404.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Henriques, Vinicius Andr\ae Rodrigues, Jos\ae Luis de Oliveira, Edevaldo Faria Diniz et Ana Carolina Silva Machado Dutra. « Gamma Ti-Al Alloy Production for Aerospace Applications ». Dans SAE Brasil 2011 Congress and Exhibit. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 2011. http://dx.doi.org/10.4271/2011-36-0042.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Naydenkin, E. V., I. P. Mishin, I. V. Ratochka et V. A. Vinokurov. « High-strength nanostructured titanium alloy for aerospace industry ». Dans ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4932850.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Novotny, Paul M., et Thomas J. McCaffrey. « An Advanced Alloy for Landing Gear and Aircraft Structural Applications - Aerometr® 100 Alloy ». Dans Aerospace Technology Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 1992. http://dx.doi.org/10.4271/922040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Verhaeghe, G., P. Hilton et S. Barnes. « Achieving Low-Porosity Laser Welds in Aerospace Aluminium Alloy ». Dans Aerospace Manufacturing Technology Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 2003. http://dx.doi.org/10.4271/2003-01-2895.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yoshinouchi, T., H. Yoshizawa, N. Tsuno et S. Ikeda. « Metal Injection Molding of Alloy 718 for Aerospace Applications ». Dans Superalloys. John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.7449/2014/superalloys_2014_437_446.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Roach, T. A. « Alloy 718 Fasteners : Versatility and Reliability for Aerospace Design ». Dans Superalloys. TMS, 1989. http://dx.doi.org/10.7449/1989/superalloys_1989_381_389.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Keener, Steven G. « Advanced Low-cost Titanium-alloy Materials for Aerospace Fastener Applications ». Dans Aerospace Technology Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 2007. http://dx.doi.org/10.4271/2007-01-3839.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Yan, Jingxuan, Xierong Hu, Jiaxiong Fang et Guosen Xu. « Study of the recombination mechanisms and carrier lifetimes in Hg0.8Cd0.2Te alloy ». Dans Aerospace Sensing, sous la direction de Eustace L. Dereniak et Robert E. Sampson. SPIE, 1992. http://dx.doi.org/10.1117/12.137806.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Haag, Chris, Monish Tandale et John Valasek. « Characterization of Shape Memory Alloy Behavior and Position Control Using Reinforcement Learning ». Dans Infotech@Aerospace. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-7160.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Aerospace alloy"

1

Rodriguez, Salvador, Andrew Kustas et Graham Monroe. Metal Alloy and RHEA Additive Manufacturing for Nuclear Energy and Aerospace Applications. Office of Scientific and Technical Information (OSTI), juillet 2020. http://dx.doi.org/10.2172/1644167.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Dawson, Paul, Matthew Miller, Kevin McNelis, Amanda Oczkowski, Jun-Sang Park et James Williams. A New Multiscale Methodology for Evaluating Distributions of Residual Stress in Processed Aerospace Alloys. Fort Belvoir, VA : Defense Technical Information Center, mars 2013. http://dx.doi.org/10.21236/ada582421.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie