Littérature scientifique sur le sujet « Aflatoxigenic fungi »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Aflatoxigenic fungi ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Aflatoxigenic fungi"
Yabe, Kimiko, Haruna Ozaki, Takuya Maruyama, Keisuke Hayashi, Yuki Matto, Marika Ishizaka, Takeru Makita, Syun-ya Noma, Kousuke Fujiwara et Masayo Kushiro. « Improvement of the Culture Medium for the Dichlorvos-Ammonia (DV-AM) Method to Selectively Detect Aflatoxigenic Fungi in Soil ». Toxins 10, no 12 (5 décembre 2018) : 519. http://dx.doi.org/10.3390/toxins10120519.
Texte intégralBowen, K. L., et T. P. Mack. « Relationship of Damage from the Lesser Cornstalk Borer to Aspergillus flavus Contamination in Peanuts2 ». Journal of Entomological Science 28, no 1 (1 janvier 1993) : 29–42. http://dx.doi.org/10.18474/0749-8004-28.1.29.
Texte intégralMircea, Cornelia, Antonia Poiata, Cristina Tuchilus, Luminita Agoroaei, Elena Butnaru et Ursula Stanescu. « Aflatoxigenic fungi isolated from medicinal herbs ». Toxicology Letters 180 (octobre 2008) : S154. http://dx.doi.org/10.1016/j.toxlet.2008.06.340.
Texte intégralCopetti, Marina V., Beatriz T. Iamanaka, José Luís Pereira, Maria H. Fungaro et Marta H. Taniwaki. « Aflatoxigenic fungi and aflatoxin in cocoa ». International Journal of Food Microbiology 148, no 2 (août 2011) : 141–44. http://dx.doi.org/10.1016/j.ijfoodmicro.2011.05.020.
Texte intégralMigahed, Fatma, Manar Abdel-Gwad et Sherif Mohamed. « Aflatoxigenic Fungi Associated with Some Medicinal Plants ». Annual Research & ; Review in Biology 14, no 6 (10 janvier 2017) : 1–20. http://dx.doi.org/10.9734/arrb/2017/34797.
Texte intégralRodrigues, P., A. Venâncio et N. Lima. « Aflatoxigenic Fungi and Aflatoxins in Portuguese Almonds ». Scientific World Journal 2012 (2012) : 1–9. http://dx.doi.org/10.1100/2012/471926.
Texte intégralHassan, Walid, Salem R. Mostafa, Hossam Khalil et Ahmed Abed. « Detection of Aflatoxigenic Fungi in Poultry Feed ». Journal of Applied Veterinary Sciences 6, no 2 (1 avril 2021) : 92–97. http://dx.doi.org/10.21608/javs.2021.68213.1074.
Texte intégralAtanda, O., M. Ogunrinu et F. Olorunfemi. « A neutral red desiccated coconut agar for rapid detection of aflatoxigenic fungi and visual determination of aflatoxins ». World Mycotoxin Journal 4, no 2 (1 janvier 2011) : 147–55. http://dx.doi.org/10.3920/wmj2010.1241.
Texte intégralHameed, Shahina, Nadeem Rashid, Farhat Abbas, Mustafa Rahim Abro, Irfan Shahzad Sheikh, Babar Hilal Ahmad Abbasi, Roha Talat, Samina et Mujahid Farooq. « Mycotoxicolgical evaluation of indigenous varieties of wheat from Quetta, Balochistan, Pakistan. » Pak-Euro Journal of Medical and Life Sciences 2, no 4 (3 avril 2020) : 79–82. http://dx.doi.org/10.31580/pjmls.v2i4.1195.
Texte intégralRen, Xianfeng, Qi Zhang, Wen Zhang, Jin Mao et Peiwu Li. « Control of Aflatoxigenic Molds by Antagonistic Microorganisms : Inhibitory Behaviors, Bioactive Compounds, Related Mechanisms, and Influencing Factors ». Toxins 12, no 1 (1 janvier 2020) : 24. http://dx.doi.org/10.3390/toxins12010024.
Texte intégralThèses sur le sujet "Aflatoxigenic fungi"
Bo-ChenChen et 陳伯辰. « Effects of atmospheric pressure non-thermal plasma treatments on aflatoxigenic fungi and its host ». Thesis, 2015. http://ndltd.ncl.edu.tw/handle/57336092998241536160.
Texte intégral國立成功大學
太空與電漿科學研究所
103
This experiment tests the ability of atmospheric pressure non-thermal plasma treatments in the prevention of aflatoxigenic fungi infection. There are charged particles, electric field, radicals and UV light inside plasmas and these elements might trigger different physical or chemical effects during non-thermal plasma treatments. In this experiment, the experimental samples received indirect plasma treatments with different time duration and gas compositions which mean only the remote effects caused by plasma treatments could be seen. In this work, plasmas were produced by dielectric barrier discharge method. The operation gases were air and a mixed gas of 97% He and 3% O2. After plasma treatments, fungi growth rate was observed by taking pictures and the existence of aflatoxin was qualitatively detected by black light method. The final results show that the radicals in both He/O2 and air plasma might facilitate fungi growth rate which means peanuts received indirect plasma treatments grew fungi faster than control group. The outcomes of aflatoxin detection also show that the fungi grown on all the sample are aflatoxigenic fungi.
Rodrigues, Paula. « Mycobiota and aflatoxigenic profile of Portuguese almonds and chestnuts from production to commercialisation ». Doctoral thesis, 2011. http://hdl.handle.net/10198/3618.
Texte intégralRodrigues, Paula Cristina Azevedo. « Mycobiota and aflatoxigenic profile of Portuguese almonds and chestnuts from production to commercialisation ». Doctoral thesis, 2011. http://hdl.handle.net/1822/12385.
Texte intégralAflatoxin (AF) contamination of nuts is an increasing concern to the consumer’s health. Portugal is a big producer of almonds and chestnuts, but there is no scientific knowledge on the safety of those nuts. AFs B1, B2, G1 and G2 are produced mainly by some species of Aspergillus belonging to section Flavi, which is composed of a large number of very closely related species. While these species are difficult to differentiate morphologically and even genetically, they differ in a characteristic that is of paramount importance for food safety, as only some are responsible for the production of the highly toxigenic AFs. Taxonomy and species identification are therefore subject of great interest, and the establishment of schemes for species and for aflatoxigenic strains identification that are simultaneously accurate, sensitive, robust and expedite is mandatory. This work had three major goals: the first was to provide knowledge on the general mycobiota, aflatoxigenic fungi and AF contamination of Portuguese almonds and chestnuts, and its evolution throughout the various stages of production (field, storage and processing). For this matter, 45 chestnut samples were collected from orchards from Trás-os-Montes. Forty-seven almond samples were collected in Trás-os-Montes at different stages of production: field, storage and processing. All fungi belonging to genus Aspergillus were isolated and identified to the section level, and all isolates belonging to section Flavi were further tested for their aflatoxigenic ability. Fungi representative of other genera were identified to the genus level. Almond samples were tested for AF contamination. The mycobiota of almonds and chestnut was found to vary in terms of both matrix and stage of production. Chestnuts were mainly contaminated with the genera Fusarium, Cladosporium, Alternaria and Penicillium, and the genus Aspergillus was only rarely found, whereas almonds were more contaminated with Aspergillus. No Aspergillus section Flavi were isolated from chestnuts. In almonds, Fusarium, Cladosporium, Alternaria and Penicillium decreased from field to the end of processing, whereas Aspergillus increased significantly, including those from section Flavi. In total, 352 fungi belonging to section Flavi were isolated from Portuguese almonds, of which 231 isolates (66%) were aflatoxigenic. Even so, only one sample from storage was found to be contaminated with AFs (4.97 μg/kg) at a level below the maximum levels recently imposed by the Commission Regulation (EU) No 165/2010. The second goal of this work was to characterise and identify the isolates of Aspergillus section Flavi by applying a polyphasic approach including classic phenotypic and molecular methods as well as the innovative technology protein spectral analysis Matrix-Assisted Laser Desorption/Ionisation-Time of Flight Intact-Cell Mass Spectrometry (MALDI-TOF ICMS), and to devise accurate and sensitive schemes for species identification. For the morphological analysis, fungi were cultured on different media and were characterised for several macro and micro morphological features. Morphological analysis was complemented with biochemical analyses, which consisted of determining the extrolite profiles relative to AFs and cyclopiazonic acid. A group of selected isolates was identified molecularly based on the sequencing of the ITS region and partial calmodulin gene. Spectral analysis was made by MALDI-TOF ICMS to obtain spectra of protein masses. Dendrograms of relatedness were obtained for each set of data and used to compare sensitivity and accurateness of the different approaches. From the preliminary morphological analysis, three morphotypes were identified: as “A. flavus morphotype” (36.4% of the isolates), “A. parasiticus morphotype” (55.4%), and “A. tamarii morphotype” (8.2%). The 3 morphotypes were then divided into 9 phenotypes based on their extrolite profile. Genotypic and spectral analyses clustered the selected isolates into the same 3 groups created by morphological analysis. Furthermore, all sets of data, including the morphological complemented with extrolite profile, were able to further resolve the isolates into more restrictive clusters. They all positioned two of the 9 phenotypes in two unidentified terminal clades closely related to A. parasiticus. The third goal was to test a molecular method based on multiplex PCR and RT-PCR for the ability to differentiate aflatoxigenic and non-aflatoxigenic isolates. Two genes of the AF biosynthetic pathway, aflD (= nor1) and aflQ (= ord1= ordA), were tested for presence and expression (by PCR and RT-PCR, respectively). The presence of both genes did not correlate with aflatoxigenicity. In terms of gene expression, aflD was not considered a good marker for differentiating aflatoxigenic from non-aflatoxigenic isolates, but aflQ showed a good correlation between expression and AFproduction ability. In conclusion, Portuguese almonds and chestnuts seem to be generally safe in terms of AF contamination. Nevertheless, the majority of the isolates of Aspergillus section Flavi obtained from Portuguese almonds was found to be aflatoxigenic, which may constitute a problem in terms of food safety if storage and processing conditions are not effectively controlled. At present, these conditions seem to be guaranteed, since only one almond sample was found to be contaminated. At the species identification level, good agreement was obtained between the 3 methods of analysis since they all generated similar dendrograms with concordant strain clustering. Morphological analysis has shown sensitive and reliable as a preliminary method for species identification only when complemented with the extrolite profile. The calmodulin gene showed to be more robust and reliable as genomic marker for this group of fungi than the ITS region, providing good DNA barcoding potential. MALDI-TOF ICMS results confirmed that this technique is highly reliable for fungal identification, and is faster and less expensive in terms of labour and consumables when compared with other biological techniques, which is essential whenever there is a paucity of characters for defining many fungal species and when high numbers of isolates are involved. Expression analysis of the aflQ gene seems to be a good method for the differentiation of aflatoxigenic and non-aflatoxigenic isolates
A contaminação com aflatoxinas (AFs) dos frutos de casca rija é um problema com interesse crescente no que respeita à saúde do consumidor. A castanha e a amêndoa são produtos agrícolas de elevado interesse económico para Portugal, no entanto não existe conhecimento científico quanto à sua segurança em termos de AFs. As AFs B1, B2, G1 e G2 são micotoxinas de elevado grau toxigénico, e são produzidas por algumas espécies de Aspergillus secção Flavi. Esta secção integra um elevado número de espécies muito próximas, tanto ao nível morfológico como molecular, mas que diferem numa característica de elevado interesse para a segurança alimentar - a sua capacidade para produzir AFs. Por esta razão, a taxonomia e identificação de espécies desta secção revestem-se de grande interesse, pelo que o estabelecimento de esquemas de identificação simultaneamente precisos, sensíveis, robustos e expeditos é imperioso. O presente trabalho teve três objectivos principais. O primeiro objectivo foi obter informação sobre a incidência de fungos filamentosos, com particular incidência sobre os fungos produtores de AFs, e sobre a contaminação com AFs das amêndoas e castanhas portuguesas, e sua evolução ao longo das várias fases de produção. Neste sentido, foram analisadas 45 amostras de castanha colhidas em soutos de Trás-os-Montes e 47 amostras de amêndoa de Trás-os-Montes e Algarve colhidas em diferentes fases de produção (campo, armazenamento e processamento). Todos os fungos do género Aspergillus foram isolados e identificados até à secção, e todos os fungos pertencentes à secção Flavi foram identificados até à espécie e caracterizados quanto à sua capacidade aflatoxigénica. Fungos representativos de outros géneros foram identificados apenas até ao género. As amostras de amêndoa foram ainda analisadas quanto à contaminação com AFs. A micobiota das amêndoas e castanhas variou em termos de matriz e de fase de produção. As castanhas mostraram contaminação dominada pelos géneros Fusarium, Cladosporium, Alternaria e Penicillium, sendo o género Aspergillus encontrado com pouca frequência, enquanto nas amêndoas o género Aspergillus foi detectado com elevada incidência. Não foi isolado qualquer fungo da secção Flavi de castanhas. Nas amêndoas, os géneros Fusarium, Cladosporium, Alternaria e Penicillium diminuiram progressivamente desde o campo até ao final do processamento, enquanto a incidência de Aspergillus, incluindo a secção Flavi, aumentou. No total das amostras de amêndoa foram isolados 352 fungos pertencentes à secção Flavi, dos quais 66% eram aflatoxigénicos. No entanto, apenas foi identificada uma amostra contaminada com níveis detectáveis de AFs (4,97 μg/kg), mas inferiores aos níveis máximos impostos pelo Regulamento (CE) Nº 165/2010 da Comissão Europeia. O segundo objectivo do presente trabalho foi caracterizar e identificar os isolamentos de Aspergillus secção Flavi através de uma abordagem polifásica incluindo a caracterização fenotípica clássica e molecular, assim como a inovadora tecnologia de análise espectral de proteínas Matrix- Assisted Laser Desorption/Ionisation-Time of Flight Intact-Cell Mass Spectrometry (MALDI-TOF ICMS), e delinear esquemas robustos e simultaneamente sensíveis de identificação de espécies. A análise macro e micromorfológica em diferentes condições de cultura foi complementada com a análise de extrólitos, nomeadamente AFs e ácido ciclopiazónico (CPA). Um grupo de 24 fungos foi identificado molecularmente pela análise de sequências da região ITS e do gene da calmodulina. A análise espectral por MALDI-TOF ICMS foi aplicada a 69 fungos. Foi construído um dendrograma de similaridade para cada um dos grupos de dados e os resultados foram comparados em termos de precisão, robustez e sensibilidade. Na análise morfológica preliminar foram identificados três morfotipos distintos designados “morfotipo A. flavus” (36,4% dos isolamentos), “morfotipo A. parasiticus” (55,4%), e “morfotipo A. tamarii” (8,2%). Estes morfotipos foram posteriormente divididos em nove fenótipos, com base no seu perfil de extrólitos. As análises genotípica e espectral criaram três grupos (clades) correspondentes aos obtidos na análise morfológica e posicionaram dois dos nove fenótipos em clades terminais relativos a taxa não identificados. O terceiro objectivo deste trabalho foi testar um método baseado em PCR multiplex e RT-PCR para diferenciação de estirpes aflatoxigénicas e não-aflatoxigénicas. Para tal, foram seleccionados dois genes da cadeia biossintética das AFs, aflD (= nor1) e aflQ (= ord1= ordA), para os quais a presença e expressão foram testadas por PCR e RT-PCR, respectivamente. A presença de ambos os genes não se correlacionou com a capacidade aflatoxigénica dos indivíduos testados. Em termos de expressão, apenas o gene aflQ mostrou boa correlação com a produção de AFs, tendo sido considerado um bom marcador molecular da capacidade aflatoxigénica. Em conclusão, as castanhas e amêndoas com origem em Portugal parecem possuir boa qualidade em termos de contaminação com AFs. No entanto, a maioria dos isolamentos de Aspergillus secção Flavi provou ser aflatoxigénica, o que pode constituir um problema de segurança alimentar para as amêndoas, caso as condições de armazenamento e processamento não sejam devidamente controladas. Em termos de identificação de espécies, foi obtido um nível de concordância elevado entre as diferentes abordagens usadas. A análise morfológica mostrou-se um método fiável e sensível para identificação preliminar dos isolamentos apenas se complementada com a análise de extrólitos. O gene da calmodulina mostrou-se mais robusto e sensível do que a região ITS, demonstrando maior potencial como marcador molecular. Os resultados obtidos por MALDI-TOF ICMS confirmaram que esta técnica é altamente fiável na identificação de Aspergillus secção Flavi, tendo como principal vantagem o facto de ser significativamente menos dispendioso, tanto em termos de tempo como de consumíveis, quando comparado com as restantes metodologias. Esta técnica reveste-se de elevada importância nos casos em que estão envolvidos numerosos espécimens com elevada proximidade taxonómica. Relativamente à diferenciação de isolamentos aflatoxigénicos e não-aflatoxigénicos, a análise da expressão do gene aflQ sob condições indutoras da produção de AFs mostrou ser um método fiável.
Kamika, Ilunga. « Determination of aflatoxins in peanut (Arachis hypogaea L.) collected from Kinshasa, Democratic Republic of Congo and Pretoria, South Africa : a comparative study ». Diss., 2013. http://hdl.handle.net/10500/8925.
Texte intégralLife & Consumer Sciences
M. Sc. (Life Sciences)
Chapitres de livres sur le sujet "Aflatoxigenic fungi"
Ali, Sana. « Aflatoxigenic Fungi in Food Grains : Detection, Its Impact on Handlers and Management Strategies ». Dans Fungal Biology, 441–57. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27312-9_20.
Texte intégralBennett, J. W., et K. E. Papa. « The Aflatoxigenic Aspergillus SPP ». Dans Genetics of Plant Pathogenic Fungi, 263–80. Elsevier, 1988. http://dx.doi.org/10.1016/b978-0-12-033706-4.50022-0.
Texte intégral« Genetic and Biological Control of Aflatoxigenic Fungi ». Dans Microbial Food Contamination, 221–56. CRC Press, 2000. http://dx.doi.org/10.1201/9781420039030-19.
Texte intégralCotty, P., D. Bhatnagar et T. Cleveland. « Genetic and Biological Control of Aflatoxigenic Fungi ». Dans Microbial Food Contamination. CRC Press, 2000. http://dx.doi.org/10.1201/9781420039030.ch14.
Texte intégral« Genetic and Biochemical Control of Aflatoxigenic Fungi ». Dans Microbial Food Contamination, 417–48. CRC Press, 2007. http://dx.doi.org/10.1201/9781420008470-21.
Texte intégralBhatnagar, Deepak, Kanniah Rajasekaran, Robert Brown, Jeffrey Cary, Jiujiang Yu et Thomas Cleveland. « Genetic and Biochemical Control of Aflatoxigenic Fungi ». Dans Microbial Food Contamination, Second Edition. CRC Press, 2007. http://dx.doi.org/10.1201/9781420008470.ch14.
Texte intégralL., Robert, Deepak Bhatnagar, Thomas E., Zhi-Yuan Chen et Abebe Menkir. « Development of Maize Host Resistance to Aflatoxigenic Fungi ». Dans Aflatoxins - Recent Advances and Future Prospects. InTech, 2013. http://dx.doi.org/10.5772/54654.
Texte intégralHorn, Bruce. « Ecology and Population Biology of Aflatoxigenic Fungi in Soil ». Dans Food Science and Technology, 95–116. CRC Press, 2005. http://dx.doi.org/10.1201/9781420028171.ch6.
Texte intégralShams-Ghahfarokhi, Masoomeh, Sanaz Kalantari et Mehdi Razzaghi-Abyaneh. « Terrestrial Bacteria from Agricultural Soils : Versatile Weapons against Aflatoxigenic Fungi ». Dans Aflatoxins - Recent Advances and Future Prospects. InTech, 2013. http://dx.doi.org/10.5772/45918.
Texte intégralActes de conférences sur le sujet "Aflatoxigenic fungi"
Alasmar, Reem Moath, et Samir Jaoua. « Investigation and Biological Control of Toxigenic Fungi and Mycotoxins in Dairy Cattle Feeds ». Dans Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0065.
Texte intégral