Littérature scientifique sur le sujet « Algal lipids »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Algal lipids ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Algal lipids"
Loria, Mark H., James S. Griffin, George F. Wells et Kurt R. Rhoads. « Effects of feast-famine nutrient regimes on wastewater algal biofuel communities ». PLOS ONE 18, no 1 (4 janvier 2023) : e0279943. http://dx.doi.org/10.1371/journal.pone.0279943.
Texte intégralCzerwik-Marcinkowska, Joanna, Katarzyna Gałczyńska, Jerzy Oszczudłowski, Andrzej Massalski, Jacek Semaniak et Michał Arabski. « Fatty Acid Methyl Esters of the Aerophytic Cave Alga Coccomyxa subglobosa as a Source for Biodiesel Production ». Energies 13, no 24 (9 décembre 2020) : 6494. http://dx.doi.org/10.3390/en13246494.
Texte intégralK., Santhoshkumar, Prasanthkumar S. et J. G. Ray. « Chlorococcum humicola (Nageli) Rabenhorst as a Renewable Source of Bioproducts and Biofuel ». Journal of Plant Studies 5, no 1 (29 février 2016) : 48. http://dx.doi.org/10.5539/jps.v5n1p48.
Texte intégralZachleder, Vilém, Veronika Kselíková, Ivan N. Ivanov, Vitali Bialevich, Milada Vítová, Shuhei Ota, Tsuyoshi Takeshita, Shigeyuki Kawano et Kateřina Bišová. « Supra-Optimal Temperature : An Efficient Approach for Overaccumulation of Starch in the Green Alga Parachlorella kessleri ». Cells 10, no 7 (16 juillet 2021) : 1806. http://dx.doi.org/10.3390/cells10071806.
Texte intégralHasnain, Maria, Neelma Munir, Zainul Abideen, Heather Macdonald, Maria Hamid, Zaheer Abbas, Ali El-Keblawy, Roberto Mancinelli et Emanuele Radicetti. « Prospects for Biodiesel Production from Emerging Algal Resource : Process Optimization and Characterization of Biodiesel Properties ». Agriculture 13, no 2 (9 février 2023) : 407. http://dx.doi.org/10.3390/agriculture13020407.
Texte intégralUdiharto, M., Rino Nirwawan et Sri Astuti Rahayu. « The Superiority Of Micro-Algae As A Potential Feedstock For Alternative Energy ». Scientific Contributions Oil and Gas 32, no 1 (17 mars 2022) : 21–26. http://dx.doi.org/10.29017/scog.32.1.829.
Texte intégralBocanegra, Aránzazu, Adrián Macho-González, Alba Garcimartín, Juana Benedí et Francisco José Sánchez-Muniz. « Whole Alga, Algal Extracts, and Compounds as Ingredients of Functional Foods : Composition and Action Mechanism Relationships in the Prevention and Treatment of Type-2 Diabetes Mellitus ». International Journal of Molecular Sciences 22, no 8 (7 avril 2021) : 3816. http://dx.doi.org/10.3390/ijms22083816.
Texte intégralCheban, Larysa, Oleksii Khudyi, Maja Prusińska, Arkadiusz Duda, Lidiia Khuda, Grzegorz Wiszniewski, Olha Kushniryk et Andrzej Kapusta. « Survival, proximate composition, and proteolytic activity of Artemia salina bioencapsulated with different algal monocultures ». Fisheries & ; Aquatic Life 28, no 4 (1 décembre 2020) : 205–15. http://dx.doi.org/10.2478/aopf-2020-0025.
Texte intégralAmeka, G. K., L. K. Doamekpor, A. A. Amadu et A. P. Amamoo. « Production of Biodiesel from Marine Macroalgae occurring in the Gulf of Guinea, off the Coast of Ghana ». Ghana Journal of Science 60, no 1 (31 juillet 2019) : 50–58. http://dx.doi.org/10.4314/gjs.v60i1.5.
Texte intégralKent, Robert A., et Pierre-Yves Caux. « Sublethal effects of the insecticide fenitrothion on freshwater phytopiankton ». Canadian Journal of Botany 73, no 1 (1 janvier 1995) : 45–53. http://dx.doi.org/10.1139/b95-006.
Texte intégralThèses sur le sujet "Algal lipids"
Teece, Mark A. « Biodegradation of algal lipids and significance for sediment studies ». Thesis, University of Bristol, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239071.
Texte intégralChiodza, Kudzai Godknows. « Desulphurisation of fine coal waste tailings using algal lipids ». Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29892.
Texte intégralKing, P. M. « The use of ultrasound on the extraction of microalgal lipids ». Thesis, Coventry University, 2014. http://curve.coventry.ac.uk/open/items/4aabbd22-686a-4284-a18d-23de6bcff203/1.
Texte intégralOlsen, Rebecca Lynn. « Modification of plant and yeast lipids by heterologous expression of protist, algal, and animal desaturases ». Online access for everyone, 2006. http://www.dissertations.wsu.edu/Dissertations/Fall2006/r_olsen_011907.pdf.
Texte intégralJohnson, Michael Ben. « Microalgal Biodiesel Production through a Novel Attached Culture System and Conversion Parameters ». Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/32034.
Texte intégralMaster of Science
Clemente, Ilaria. « Compartmentalized algal-based nanocarriers as vectors for antioxidants : structural and functional characterization ». Doctoral thesis, Università di Siena, 2022. http://hdl.handle.net/11365/1193669.
Texte intégralHamam, Fayez. « Lipase-catalyzed acidolysis of algal oils with a medium-chain fatty acid, capric acid / ». Internet access available to MUN users only, 2003. http://collections.mun.ca/u?/theses,156236.
Texte intégralNeto, Riamburgo Gomes de Carvalho. « Estudo dos mecanismos envolvidos na separaÃÃo e ruptura simultÃneas de biomassa algal pelo uso da tecnologia de eletroflotaÃÃo por corrente alternada ». Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=10985.
Texte intégralDentre as diversas etapas para a transformaÃÃo de microalgas em biodiesel, os processos de separaÃÃo e a ruptura celular dessa biomassa sÃo particularmente importantes, uma vez que as tecnologias disponÃveis para este fim apresentam elevados custos, comprometendo a viabilidade do aproveitamento energÃtico. Este trabalho teve como objetivo geral estudar os mecanismos envolvidos na separaÃÃo e ruptura simultÃneas de biomassa algal pelo uso da tecnologia de eletroflotaÃÃo por corrente alternada (EFCA), com objetivo principal de extrair o conteÃdo lipÃdico da biomassa algal, assim como verificar o potencial da tecnologia na remoÃÃo de nutrientes de efluentes de lagoas de estabilizaÃÃo. Foram realizados ensaios de coagulaÃÃo/floculaÃÃo em jar test com coagulantes sintÃticos (FeCl3 e Al2(SO4)3) e orgÃnicos (Tanfloc SG e SL) com o objetivo de avaliar a decantaÃÃo quimicamente assistida na separaÃÃo de biomassa algal. Foi desenvolvido um reator de EFCA para operar em batelada, utilizando-se eletrodos nÃo consumÃveis e baixa potÃncia elÃtrica. Foi avaliado o seu potencial de separaÃÃo com e sem o auxÃlio dos mesmos coagulantes utilizados nos testes de jarro e, em seguida, buscou-se variar as frequÃncias de operaÃÃo do conjunto de eletrodos com o objetivo de verificar a condiÃÃo Ãtima para separaÃÃo e rompimento celular das microalgas. Foi tambÃm avaliada a capacidade desta metodologia na remoÃÃo de nutrientes presentes nos efluentes e elucidar os mecanismos envolvidos. Foi possÃvel a remoÃÃo de biomassa algal tanto por meio da decantaÃÃo quimicamente assistida quanto pela EFCA, sendo que a segunda à mais atrativa nÃo somente pelas eficiÃncias de remoÃÃo de turbidez e clorofila-a encontradas, como tambÃm pela nÃo necessidade aparente de utilizaÃÃo de coagulantes, o que traz economia ao processo e facilita a reutilizaÃÃo da biomassa algal. A EFCA mostrou-se ainda capaz de promover com eficiÃncia o rompimento celular das microalgas e fazer com que os lipÃdeos liberados se aderissem à biomassa algal separada pelo processo. Foi possÃvel alcanÃar um rendimento lipÃdico de atà 14% em peso de massa seca, mesmo os estudos tendo sido realizados com uma matriz diversa de microalgas proveniente das lagoas de estabilizaÃÃo. O estudo dos mecanismos envolvidos revelou a boa capacidade do sistema em gerar gÃs hidrogÃnio, o qual alÃm de ajudar na separaÃÃo das microalgal pode tornar futuramente o processo energeticamente sustentÃvel. AlÃm disso, foi verificada a geraÃÃo de espÃcies oxidantes que ajudam tanto o processo de separaÃÃo quanto possivelmente de ruptura celular. O efeito de diferentes frequÃncias de vibraÃÃo nos rendimentos lipÃdicos encontrados nÃo foi aparente. Buscou-se ainda a elucidaÃÃo dos mecanismos de remoÃÃo de fÃsforo total, o que provavelmente se deu pela formaÃÃo de ferro durante o processo, cujos valores ficaram na ordem de 2,5 mg/L depois de 70 minutos de batelada. Jà para a remoÃÃo de amÃnia, possivelmente o mecanismo foi de oxidaÃÃo indireta da amÃnia atravÃs do excesso de Ãcido hipocloroso como a forma predominante de conversÃo da mesma em nitrogÃnio gasoso, o qual ajuda no processo de separaÃÃo. A utilizaÃÃo de microalgas diretamente de lagoas de estabilizaÃÃo mostrou-se uma potencial alternativa aos processos de obtenÃÃo de biomassa tradicionalmente utilizados (fotobiorreator e lagoas do tipo raceway), sendo que a tecnologia proposta se mostrou atrativa para todos processos que demandem separaÃÃo algal.
Among the various steps for microalgae transformation in biodiesel, the harvesting and cell disruption processes are particularly important, since technologies available for this purpose have usually high costs, undermining the energy recovery viability. This work studied the mechanisms involved in the simultaneous harvesting and cell disruption of microalgae using electroflotation by alternating current (EFCA), as well as to investigate the system capacity on nutrients removal from waste stabilization ponds effluents. Coagulation/flocculation tests were performed using synthetic (FeCl3 e Al2(SO4)3) and organic (Tanfloc SG e SL) coagulants to evaluate the chemically assisted sedimentation of the algal biomass. The EFCA reactor was designed to operate in batch, using non-consumable electrodes and low electrical power, and evaluated the harvesting potential in the presence and absence of coagulants. After this, experiments were performed varying the electrode frequency to verify the optima condition for simultaneous harvesting and cell disruption of microalgae. The system capacity in terms of nutrients removal was also investigated as well as the mechanisms involved. It was possible to remove algae biomass both using chemically assisted sedimentation and EFCA. However, the electrolytic technology is more attractive, not only for the turbidity and chlorophyll-a efficiencies founded, but also because there is no apparent need of coagulants, which makes the process cheaper and facilitates the microalgae biomass reuse. The EFCA was even able to promote the cell disruption of microalgae and the liberated lipids were able to attach to the algal biomass separated by the process. A lipid yield of 14 % in terms of dry matter was found, even when a complex matrix from waste stabilization ponds was used. The study of the mechanisms involved in EFCA revealed the good system ability to generate hydrogen gas, which contributes to microalgae harvesting and can make the process even more sustainable under an energetic perspective. Furthermore, the generation of oxidant species was found which helps the harvesting and cell disruption process. The effect of different vibration frequencies in the lipid yield was not apparent. We sought to elucidate the mechanisms involved on total phosphorus removal, and probably the removal was due to iron formation in the process, in which the concentrations were close to 2.5 mg/L after 70 minutes batch time. In terms of ammonia removal, possibly the mechanism was an indirect oxidation by excess of hypochlorous acid to form nitrogen gas, which helps the separation process. The use of microalgae from stabilization ponds showed a potential alternative for the processes traditionally used nowadays for microalgae production (photobioreactor and raceway ponds), and showed to be attractive to all processes that demand microalgae harvesting.
Wong, Yee Keung. « Feasibility of using Chlorella vulgaris for the production of algal lipids, for advancement towards a potential application in the manufacture of commodity chemicals and the treatment of wastewater ». HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/254.
Texte intégralWoolsey, Paul A. « Rotating Algal Biofilm Reactors : Mathematical Modeling and Lipid Production ». DigitalCommons@USU, 2011. https://digitalcommons.usu.edu/etd/1107.
Texte intégralLivres sur le sujet "Algal lipids"
D, Cohen Zvi Ph, et Ratledge Colin, dir. Single cell oils : Microbial and algal oils. 2e éd. Urbana, Ill : AOCS Press, 2010.
Trouver le texte intégralKarel, Marcus. Utilization of non-conventional systems for conversion of biomass to food components : Recovery optimization and characterization of algal proteins and lipids ; status report (March 1985 to June 1986). Cambridge, MA : Dept. of Applied Biological Sciences, Massachusetts Institute of Technology, 1986.
Trouver le texte intégralZ, Nakhost, et United States. National Aeronautics and Space Administration, dir. Utilization of non-conventional systems for conversion of biomass to food components : Recovery optimization and characterization of algal proteins and lipids ; status report (March 1985 to June 1986). Cambridge, MA : Dept. of Applied Biological Sciences, Massachusetts Institute of Technology, 1986.
Trouver le texte intégralNakamura, Yuki, et Yonghua Li-Beisson, dir. Lipids in Plant and Algae Development. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25979-6.
Texte intégralM, Tillett David, Solar Energy Research Institute, Georgia Institute of Technology. School of Applied Biology et Georgia Institute of Technology. School of Chemical Engineering, dir. Effects of fluctuating environments on the selection of high yielding microalgae. Golden, Colo : Solar Energy Research Institute, 1987.
Trouver le texte intégralKhotimchenko, S. V. Lipidy morskikh vodorosleĭ-makrofitov i trav : Struktura, raspredelenie, analiz. Vladivostok : Dalʹnauka, 2003.
Trouver le texte intégralKnoshaug, Eric P. Current status of the Department of Energy's Aquatic Species Program lipid-focused algae collection. Golden, CO : National Renewable Energy Laboratory, 2009.
Trouver le texte intégralRatledge, Colin, et Zvi Cohen. Single Cell Oils : Microbial and Algal Oils. AOCS, 2015.
Trouver le texte intégralAlgae Biofuels : Algal Fuel Producers, High Lipid Content Microalgae, Chevron Corporation, List of Algal Fuel Producers, Botryococcus Braunii. Books LLC, 2010.
Trouver le texte intégralNakamura, Yuki, et Yonghua Li-Beisson. Lipids in Plant and Algae Development. Springer London, Limited, 2016.
Trouver le texte intégralChapitres de livres sur le sujet "Algal lipids"
Kannan, Dheeban Chakravarthi, et Vikram M. Pattarkine. « Recovery of Lipids from Algae ». Dans Algal Biorefineries, 297–310. Dordrecht : Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7494-0_12.
Texte intégralGuldhe, Abhishek, Krishan Ramluckan, Poonam Singh, Ismail Rawat, Suresh Kumar Mahalingam et Faizal Bux. « Catalytic Conversion of Microalgal Lipids to Biodiesel : Overview and Recent Advances ». Dans Algal Biofuels, 315–29. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51010-1_15.
Texte intégralGuschina, Irina A., et John L. Harwood. « Algal Lipids and Their Metabolism ». Dans Algae for Biofuels and Energy, 17–36. Dordrecht : Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5479-9_2.
Texte intégralWainman, Bruce C., Ralph E. H. Smith, Hakumat Rai et John A. Furgal. « Irradiance and Lipid Production in Natural Algal Populations ». Dans Lipids in Freshwater Ecosystems, 45–70. New York, NY : Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0547-0_4.
Texte intégralGuschina, Irina A., et John L. Harwood. « Algal lipids and effect of the environment on their biochemistry ». Dans Lipids in Aquatic Ecosystems, 1–24. New York, NY : Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-89366-2_1.
Texte intégralGupta, Adarsha, Avinesh R. Byreddy et Munish Puri. « Extraction of Lipids and Carotenoids from Algal Sources ». Dans Food Bioactives, 137–52. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51639-4_6.
Texte intégralPatterson, Glenn W. « Sterol Synthesis and Distribution and Algal Phylogeny ». Dans The Metabolism, Structure, and Function of Plant Lipids, 631–36. Boston, MA : Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4684-5263-1_111.
Texte intégralAbdullah, Mohd Azmuddin, Hann Ling Wong, Syed Muhammad Usman Shah et Pek Chin Loh. « Algal Pathways and Metabolic Engineering for Enhanced Production of Lipids, Carbohydrates, and Bioactive Compounds ». Dans Phycobiotechnology, 363–430. Series statement : Innovations in biotechnology ; volume 3 : Apple Academic Press, 2020. http://dx.doi.org/10.1201/9781003019510-14.
Texte intégralGuldhe, Abhishek, Bhaskar Singh, Faiz Ahmad Ansari, Yogesh Sharma et Faizal Bux. « Extraction and Conversion of Microalgal Lipids ». Dans Algae Biotechnology, 91–110. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-12334-9_6.
Texte intégralRavindran, B., Mayur B. Kurade, Akhil N. Kabra, Byong-Hun Jeon et Sanjay Kumar Gupta. « Recent Advances and Future Prospects of Microalgal Lipid Biotechnology ». Dans Algal Biofuels, 1–37. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51010-1_1.
Texte intégralActes de conférences sur le sujet "Algal lipids"
Samek, O., Z. Pilát, J. Ježek, M. Šerý, S. Bernatová, P. Zemánek, L. Nedbal et M. Trtílek. « Raman microspectroscopy monitoring of lipids in algal cells ». Dans Frontiers in Optics. Washington, D.C. : OSA, 2011. http://dx.doi.org/10.1364/fio.2011.ftua6.
Texte intégralBeal, Colin M., Robert E. Hebner, Michael E. Webber, Rodney S. Ruoff et A. Frank Seibert. « The Energy Return on Investment for Algal Biocrude : Results for a Research Production Facility ». Dans ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-38244.
Texte intégralWogan, David M., Michael Webber et Alexandre K. da Silva. « A Resource-Limited Approach to Estimating Algal Biomass Production With Geographical Fidelity ». Dans ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90154.
Texte intégralBucy, Harrison, et Anthony J. Marchese. « Oxidative Stability of Algae Derived Methyl Esters Containing Varying Levels of Methyl Eicosapentaenoate and Methyl Docosahexaenoate ». Dans ASME 2011 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/icef2011-60047.
Texte intégralWogan, David M., Alexandre K. da Silva et Michael Webber. « Assessing the Potential for Algal Biofuels Production in Texas ». Dans ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90235.
Texte intégralMahapatra, Durga Madhab, H. N. Chanakya et T. V. Ramachandra. « Bioenergy generation from components of a Continuous algal bioreactor : Analysis of lipids, spectroscopic and thermal properties ». Dans 2013 Annual IEEE India Conference (INDICON). IEEE, 2013. http://dx.doi.org/10.1109/indcon.2013.6725886.
Texte intégralBandhu, Sheetal, et Debashish Ghosh. « Genetic modification to enhance single cell oil production in the oleagineous yeast Rhodotorula mucilaginosa ». Dans 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/bdpk2930.
Texte intégralKhot, Mahesh Balwant. « Life cycle assessment (LCA) of microbial oil-derived fuels and other non-fuel products ». Dans 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/imol9786.
Texte intégralUrmanova, Dilyara. « Petroleum Systems Modeling and Hydrocarbon Migration and Oil Potential Assessment of the Southern Side of Pre-Caspian Basin, Kazakhstan ». Dans SPE Annual Caspian Technical Conference. SPE, 2021. http://dx.doi.org/10.2118/207036-ms.
Texte intégralUrmanova, Dilyara. « Petroleum Systems Modeling and Hydrocarbon Migration and Oil Potential Assessment of the Southern Side of Pre-Caspian Basin, Kazakhstan ». Dans SPE Annual Caspian Technical Conference. SPE, 2021. http://dx.doi.org/10.2118/207036-ms.
Texte intégralRapports d'organisations sur le sujet "Algal lipids"
Sukenik, Assaf, Paul Roessler et John Ohlrogge. Biochemical and Physiological Regulation of Lipid Synthesis in Unicellular Algae with Special Emphasis on W-3 Very Long Chain Lipids. United States Department of Agriculture, janvier 1995. http://dx.doi.org/10.32747/1995.7604932.bard.
Texte intégralDavis, Ryan, Daniel Fishman, Edward D. Frank, Mark S. Wigmosta, Andy Aden, Andre M. Coleman, Philip T. Pienkos, Ricahrd J. Skaggs, Erik R. Venteris et Michael Q. Wang. Renewable Diesel from Algal Lipids : An Integrated Baseline for Cost, Emissions, and Resource Potential from a Harmonized Model. Office of Scientific and Technical Information (OSTI), juin 2012. http://dx.doi.org/10.2172/1044475.
Texte intégralDavis, Ryan, Mary J. Biddy et Susanne B. Jones. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway. Office of Scientific and Technical Information (OSTI), mars 2013. http://dx.doi.org/10.2172/1073585.
Texte intégralDavis, R., M. Biddy et S. Jones. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway. Office of Scientific and Technical Information (OSTI), mars 2013. http://dx.doi.org/10.2172/1076625.
Texte intégralDavis, R., C. Kinchin, J. Markham, E. C. D. Tan, L. M. L. Laurens, D. Sexton, D. Knorr, P. Schoen et J. Lukas. Process Design and Economics for the Conversion of Algal Biomass to Biofuels : Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products. Office of Scientific and Technical Information (OSTI), septembre 2014. http://dx.doi.org/10.2172/1271650.
Texte intégralDavis, R., C. Kinchin, J. Markham, E. Tan, L. Laurens, D. Sexton, D. Knorr, P. Schoen et J. Lukas. Process Design and Economics for the Conversion of Algal Biomass to Biofuels : Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products. Office of Scientific and Technical Information (OSTI), septembre 2014. http://dx.doi.org/10.2172/1159351.
Texte intégralGoodenough, Ursula. Systems Biology of Lipid Body Formation in the Green Alga Chlamydomonas reinhardtii. Office of Scientific and Technical Information (OSTI), novembre 2017. http://dx.doi.org/10.2172/1408918.
Texte intégral