Littérature scientifique sur le sujet « Analyse numérique – Éléments finis, Méthode des »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Analyse numérique – Éléments finis, Méthode des ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Analyse numérique – Éléments finis, Méthode des"
Zhang, Yi, Stéphane Commend et Marc Groslambert. « Analyses et modélisations sur les argiles plastiques du Sparnacien du Bassin parisien ». Revue Française de Géotechnique, no 171 (2022) : 3. http://dx.doi.org/10.1051/geotech/2022003.
Texte intégralJellad, Asma. « Identification des propriétés élastoplastiques des films minces de CrN en utilisant la technique de nanoindentation et la modélisation par éléments finis (FEM) ». Matériaux & ; Techniques 111, no 4 (2023) : 403. http://dx.doi.org/10.1051/mattech/2023029.
Texte intégralDemesy, Guillaume, André Nicolet, Frédéric Zolla et Christophe Geuzaine. « Modélisation par la méthode des éléments finis avec onelab ». Photoniques, no 100 (janvier 2020) : 40–45. http://dx.doi.org/10.1051/photon/202010040.
Texte intégralMnasri, Aida, et Ezzeddine Hadj Taieb. « Simulation numérique par éléments finis des écoulements transitoires à surface libre ». La Houille Blanche, no 5-6 (décembre 2019) : 81–92. http://dx.doi.org/10.1051/lhb/2019032.
Texte intégralBonnet, de Marc, et Attilio Frangi. « Analyse des solides déformables par la méthode des éléments finis ». European Journal of Computational Mechanics 16, no 5 (janvier 2007) : 667–68. http://dx.doi.org/10.1080/17797179.2007.9737308.
Texte intégralLe Roux, Daniel, et Hassan Manouzi. « Simulation numérique des modèles de O.A. Ladyzhenskaya par la méthode des éléments finis ». Revue Européenne des Éléments Finis 2, no 4 (janvier 1993) : 517–34. http://dx.doi.org/10.1080/12506559.1993.10511095.
Texte intégralMajdoub, R., J. Gallichand et J. Caron. « Modélisation du lessivage des bromures dans des cases lysimétriques par la méthode numérique des lignes ». Revue des sciences de l'eau 14, no 4 (12 avril 2005) : 465–88. http://dx.doi.org/10.7202/705428ar.
Texte intégralBoun-jad, Mohamed, et Toufik Zebbiche. « Solution de l’équation de Poisson dans un domaine bidimensionnel par la méthode des éléments finis ». Journal of Renewable Energies 16, no 3 (22 octobre 2023) : 441–84. http://dx.doi.org/10.54966/jreen.v16i3.392.
Texte intégralSecretan, Y., M. Leclerc, S. Duchesne et M. Heniche. « Une méthodologie de modélisation numérique de terrain pour la simulation hydrodynamique bidimensionnelle ». Revue des sciences de l'eau 14, no 2 (12 avril 2005) : 187–212. http://dx.doi.org/10.7202/705417ar.
Texte intégralNessab, Walid, Brahim Fersadou et Henda Kahalerras. « Etude d’un jet de ferrofluide confiné en présence de deux sources magnétiques ». MATEC Web of Conferences 261 (2019) : 04002. http://dx.doi.org/10.1051/matecconf/201926104002.
Texte intégralThèses sur le sujet "Analyse numérique – Éléments finis, Méthode des"
Fontvieille, Franck. « Décomposition Asymptotique et éléments finis ». Lyon, INSA, 2004. http://theses.insa-lyon.fr/publication/2004ISAL0029/these.pdf.
Texte intégralThis thesis is devoted to the numerical analysis and simulation by finite element of asymptotic decomposition problems. These are partial differential equation problems, an information about the behaviour of the solutions on a part of the domain is available. This information is used in order to improve the efficiency of numerical methods and is accounted for through the basis functions of the finite element method. It generates particular basis functions : "super-element functions". In a first and very short chapter, we introduce the MAPDD, Method of Asymptotic Partial Domain Decomposition. In a second and thord chapter, one apply and justify \textit{via} asymptotic expansion this strategy for a monodimensionnal singular perturbation problem arising in the shell theory and for Poisson equation on a thin domain. We propose a efficient finite element method which save numerous nodes. Optimal error estimates are given, the same order is obtain with a classical finite element method. In a fourth chapter, one interests in coupling piecewise monodimensionnal and bidimensionnal problems for Poisson equation. One disconnects the domains and glu then by the way of a Lagrange multiplier in a saddle-point problem. Error estimates are given for the finite element approximation of this problem. We show that this approache generalizes the method by "super-element". In a fifth prospective chapter, we deal with the numerical treatment of two problem of the litterature. An adhesive joint, and a transport problem in a least square formulation. We propose a 2D-1D modelisation
Laribi, Imen. « Approximation par éléments finis, analyse a posteriori et simulation de coques anisotropes ». Rouen, 2014. http://www.theses.fr/2014ROUES020.
Texte intégralThe aim of this work is to propose the a posteriori error estimator of a finite element discretization. These estimators are particulary used to have a mesh adaptivity for a Naghdi's problem for anisotropic shell model with little regularity. In a first step, we propose an existence and uniqueness result of the anisotropic Naghdi solution. We introduce a mixed formulation on a relaxed functional space with an orthogonality constraint. We prove, also, the existence and uniqueness of the solution for continuous and discrete mixed problems. Then, we propose the a posteriori analysis that leads to the construction of error indicators which satisfy optimal estimates that we use to describe a mesh adaptivity strategy. Finally, we present a constraint-free formulation of the Naghdi's problem without any orthogonality constraint that enables us, in particular, to approximate by conforming finite elements the solution with less degrees of freedom instead of the one introduced previously. We formulate the error estimator in terms of quantities of interest and in particular the upper and lower bounds on the error. Numerical tests are given that validate and illustrate our approach
Carrive, Maïté. « Modélisation intrinsèque et analyse numérique d'un problème de coque mince en grands deplacements ». Paris 9, 1995. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1995PA090024.
Texte intégralThis work provides the mathematical foundation for a thin shell model involving large deformations. The model takes full account of the geometric structure. Its formulation is intrinsic in the sense that it does not depend on any surface parametrization and any basis choice. The shell, considered as a splited and fibrated domain, is identified to a mild-surface plus a transverse inextensible director. This hypothesis incorporates finite membrane, bending and transverse shear deformation. The shell balance equation is derived from the three-dimensional equation by integration through the thickness on the actual configuration. The related formulation can be expressed on any configuration by conveying the kinematics and kinetics quantities. Finally, a theoretical justification of the hyperelastic constitutive law relying on the independence of the deformation tensors is obtained. A Cartesian basis is chosen for the numerical application. The study is restricted to a normal director and in the assumption of small deformations but large displacements. The non-linear problem is discretized by Argyris Finite Element and solved by a Newton algorithm. To guarantee the stability of the method and existence and uniqueness theorem for the linearized problem is established. At the end, the method is applied to some test cases, including a collapse
Cavin, Pauline. « Méthode éléments finis avec raffinement spatial et temporel adaptatif et automatique : "STAR-method" (Space Time Automatic Refinement) ». Lyon, INSA, 2006. http://theses.insa-lyon.fr/publication/2006ISAL0034/these.pdf.
Texte intégralComplex numerical simulations of non linear dynamic systems require large computational efforts. The developed method, based on finite element techniques, aims to reduce the computing time. The idea is to optimize the spatial and temporal mesh controlling the solution quality. So, the proposed method solves the problem on different spatial and temporal grids. The method is named "STAR-method" for Space Time Automatic Refinement. With the "STAR-method", an error indicator detects the areas where spatial and temporal discretisations are insufficient to obtain the required precision. The \STAR-method" then automatically refines the meshes in these domains. Results show several advantages of the \STAR-method". The final spatial and temporal meshes become user independent. The local space time mesh refinement focuses the calculational effort only there where it is necessary. With the "STAR-method" the number of degrees of freedom and the number of the time steps are reduced compared to classical FEM. Finally, the solution precision is controlled during the calculation. At the end of calculation, the user obtains the solution with constant precision over the entire calculational domain and the spatial and temporal mesh associated
Colin, Claire. « Analyse et simulation numérique par méthode combinée Volumes Finis - Éléments Finis de modèles de type Faible Mach ». Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I022/document.
Texte intégralIn this thesis, we study some flows characterized by a low Mach number. In a first part, we develop a numerical scheme allowing the resolution of the Navier-Stokes equations in the low Mach number approximation. The continuityequation is solved by a finite volume method, while the momentum and temperature equations are solved by finite elements. The scheme ensures the preservation of constant states. In a second part, we analyze a specific low Mach type model, in which the thermodynamic pressure is considered constant, and the viscosity is a particular function of the temperature. We show the existence, the uniqueness and the regularity of the solutions, as well as a maximum principle result for the temperature. Finally, in a third part, we develop a numerical scheme to simulate the equations of this model. Emphasis is placed on the discretization of the temperature equation, which is of finite volume type. Several schemes are studied and compared on criteria of precision and respect of the maximum principle. The momentum equation is discretized by finite elements, defining a new combined scheme
Tournour, Michel. « Modélisation numérique par éléments finis et éléments finis de frontière du comportement vibroacoustique de structures complexes assemblées et couplées à une cavité ». Compiègne, 1999. http://www.theses.fr/1999COMP1197.
Texte intégralMortazavi, Iraj. « Méthode hybride vortex-éléments finis : étude de la convergence numérique, caractérisation et analyse d'un écoulement complexe ». Lille 1, 1997. http://www.theses.fr/1997LIL10090.
Texte intégralBorges, Nelson. « Méthodes multigrilles en éléments finis : Programmation et estimation de facteur de convergence ». Ecully, Ecole centrale de Lyon, 1986. http://www.theses.fr/1986ECDL0003.
Texte intégralOudin, Fabienne. « Schémas volumes finis pour problèmes elliptiques : analyse a priori et a posteriori par éléments finis mixtes, méthode de décomposition de domaines ». Lyon 1, 1995. http://www.theses.fr/1995LYO10303.
Texte intégralBradji, Abdallah. « Amélioration de l'ordre de convergence dans les méthodes de volumes et éléments finis ». Aix-Marseille 1, 2005. http://www.theses.fr/2005AIX11028.
Texte intégralLivres sur le sujet "Analyse numérique – Éléments finis, Méthode des"
Olivier, Pironneau, dir. Introduction to scientific computing. Chichester : Wiley, 1998.
Trouver le texte intégralPavlou, Dimitrios G. Essentials of the Finite Element Method : For Mechanical and Structural Engineers. Elsevier Science & Technology Books, 2015.
Trouver le texte intégralEssentials of the Finite Element Method : For Mechanical and Structural Engineers. Elsevier Science & Technology Books, 2015.
Trouver le texte intégralKumar, Sandeep, Ashish Pathak et Debashis Khan. Mathematical Theory of Subdivision : Finite Element and Wavelet Methods. Taylor & Francis Group, 2019.
Trouver le texte intégralKumar, Sandeep, Ashish Pathak et Debashis Khan. Mathematical Theory of Subdivision : Finite Element and Wavelet Methods. Taylor & Francis Group, 2019.
Trouver le texte intégralKumar, Sandeep, Ashish Pathak et Debashis Khan. Mathematical Theory of Subdivision : Finite Element and Wavelet Methods. Taylor & Francis Group, 2019.
Trouver le texte intégralNonlinear Modelling And Analysis Of Structures And Solids. Cambridge University Press, 2008.
Trouver le texte intégralGeometric Modeling and Mesh Generation from Scanned Images. Taylor & Francis Group, 2018.
Trouver le texte intégralZhang, Yongjie Jessica. Geometric Modeling and Mesh Generation from Scanned Images. Taylor & Francis Group, 2018.
Trouver le texte intégralChapitres de livres sur le sujet "Analyse numérique – Éléments finis, Méthode des"
Cuillière, Jean-Christophe. « 5. Intégration numérique ». Dans Introduction à la méthode des éléments finis, 77–94. Dunod, 2016. http://dx.doi.org/10.3917/dunod.cuill.2016.01.0077.
Texte intégralYASTREBOV, Vladislav A. « Méthodes numériques en contact micromécanique ». Dans Modélisation numérique en mécanique fortement non linéaire, 87–145. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9081.ch3.
Texte intégralMOËS, Nicolas. « Méthodes des éléments finis étendus (XFEM) et des level sets épaisses (TLS) ». Dans Modélisation numérique en mécanique fortement non linéaire, 275–307. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9081.ch6.
Texte intégralActes de conférences sur le sujet "Analyse numérique – Éléments finis, Méthode des"
Hadj SaÏd, M., L. Thollon, Y. Godio-Raboutet, J. H. Catherine, C. M. Chossegros et D. Tardivo. « Modélisation 3D de l’os maxillaire dans l’analyse par éléments finis en implantologie orale : une nouvelle approche utilisant CBCT et anthropométrie ». Dans 66ème Congrès de la SFCO. Les Ulis, France : EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206603022.
Texte intégralForay, Pierre, Luisa N. Equihua-Anguiano et Marc Boulon. « Simulation numérique des ancres à succion en deux et trois dimensions en utilisant la méthode des éléments finis ». Dans Journées Nationales Génie Côtier - Génie Civil. Editions Paralia, 2008. http://dx.doi.org/10.5150/jngcgc.2008.069-f.
Texte intégral