Articles de revues sur le sujet « Anti-amyloidogenic compounds »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Anti-amyloidogenic compounds ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Porzoor, Afsaneh, Benjamin Alford, Helmut Hügel, Danilla Grando, Joanne Caine, and Ian Macreadie. "Anti-Amyloidogenic Properties of Some Phenolic Compounds." Biomolecules 5, no. 2 (2015): 505–27. http://dx.doi.org/10.3390/biom5020505.
Texte intégralHirohata, Mie, Kenjiro Ono, and Masahito Yamada. "Non-Steroidal Anti-Inflammatory Drugs as Anti-Amyloidogenic Compounds." Current Pharmaceutical Design 14, no. 30 (2008): 3280–94. http://dx.doi.org/10.2174/138161208786404173.
Texte intégralSkibiszewska and Jankowska. "Can Short Peptides Be Inhibitors of Serum Amyloid a Protein Aggregation?" Proceedings 22, no. 1 (2019): 38. http://dx.doi.org/10.3390/proceedings2019022038.
Texte intégralTan, Mario A., Mark Wilson D. Lagamayo, Grecebio Jonathan D. Alejandro, and Seong Soo A. An. "Anti-Amyloidogenic and Cyclooxygenase Inhibitory Activity of Guettarda speciosa." Molecules 24, no. 22 (2019): 4112. http://dx.doi.org/10.3390/molecules24224112.
Texte intégralYeo, Ji-Yun, Seul Lee, Min Sung Ko, et al. "Anti-Amyloidogenic Effects of Metasequoia glyptostroboides Fruits and Its Active Constituents." Molecules 28, no. 3 (2023): 1017. http://dx.doi.org/10.3390/molecules28031017.
Texte intégralJaipuria, Aadya, Madison Castillo, James Boksanski, et al. "Extended Chalcones: Synthesis, In Vitro Analysis, and In Vivo Testing Against a Drosophila melanogaster Alzheimer’s Disease Model." Chemistry 6, no. 6 (2024): 1477–94. http://dx.doi.org/10.3390/chemistry6060089.
Texte intégralQuiroz, Jose Paredes, Andi Zeng, Michelle Young, et al. "Homotaurine and Curcumin Analogues as Potential Anti-Amyloidogenic Agents." Chemistry 5, no. 1 (2023): 223–41. http://dx.doi.org/10.3390/chemistry5010018.
Texte intégralMarvastizadeh, Narges, Bahareh Dabirmanesh, Reza H. Sajedi та Khosro Khajeh. "Anti-amyloidogenic effect of artemin on α-synuclein". Biological Chemistry 401, № 10 (2020): 1143–51. http://dx.doi.org/10.1515/hsz-2019-0446.
Texte intégralZiaunys, Mantas, and Vytautas Smirnovas. "Exploring Epigallocatechin-3-Gallate Autoxidation Products: Specific Incubation Times Required for Emergence of Anti-Amyloid Properties." Antioxidants 11, no. 10 (2022): 1887. http://dx.doi.org/10.3390/antiox11101887.
Texte intégralLakey-Beitia, Johant, Jagadeesh Kumar D., Muralidhar Hegde, and K. S. Rao. "Carotenoids as Novel Therapeutic Molecules Against Neurodegenerative Disorders: Chemistry and Molecular Docking Analysis." International Journal of Molecular Sciences 20, no. 22 (2019): 5553. http://dx.doi.org/10.3390/ijms20225553.
Texte intégralJiaranaikulwanitch, Jutamas, Hataichanok Pandith, Sarin Tadtong, et al. "Novel Multifunctional Ascorbic Triazole Derivatives for Amyloidogenic Pathway Inhibition, Anti-Inflammation, and Neuroprotection." Molecules 26, no. 6 (2021): 1562. http://dx.doi.org/10.3390/molecules26061562.
Texte intégralFlorio, Daniele, Maria Cuomo, Ilaria Iacobucci, et al. "Modulation of Amyloidogenic Peptide Aggregation by Photoactivatable CO-Releasing Ruthenium(II) Complexes." Pharmaceuticals 13, no. 8 (2020): 171. http://dx.doi.org/10.3390/ph13080171.
Texte intégralVasarri, Marzia, Matteo Ramazzotti, Bruno Tiribilli, et al. "The In Vitro Anti-amyloidogenic Activity of the Mediterranean Red Seaweed Halopithys Incurva." Pharmaceuticals 13, no. 8 (2020): 185. http://dx.doi.org/10.3390/ph13080185.
Texte intégralKleinrichert, Kody, and Bindhu Alappat. "Comparative Analysis of Antioxidant and Anti-Amyloidogenic Properties of Various Polyphenol Rich Phytoceutical Extracts." Antioxidants 8, no. 1 (2019): 13. http://dx.doi.org/10.3390/antiox8010013.
Texte intégralCiaramelli, Carlotta, Alessandro Palmioli, Ada De Luigi, et al. "NMR-driven identification of anti-amyloidogenic compounds in green and roasted coffee extracts." Food Chemistry 252 (June 2018): 171–80. http://dx.doi.org/10.1016/j.foodchem.2018.01.075.
Texte intégralHengge, Regine. "Targeting Bacterial Biofilms by the Green Tea Polyphenol EGCG." Molecules 24, no. 13 (2019): 2403. http://dx.doi.org/10.3390/molecules24132403.
Texte intégralPaudel, Pradeep, Ritu Prajapati, Hyun Jung Lim та ін. "Anti-Glycation, Anti-β-Amyloid Aggregation, and Antioxidant Effect of Cassia Seed-Derived Secondary Metabolites". Journal of Food Biochemistry 2023 (21 жовтня 2023): 1–12. http://dx.doi.org/10.1155/2023/8868031.
Texte intégralMusteikyte, Greta, Mantas Ziaunys, and Vytautas Smirnovas. "Methylene blue inhibits nucleation and elongation of SOD1 amyloid fibrils." PeerJ 8 (August 14, 2020): e9719. http://dx.doi.org/10.7717/peerj.9719.
Texte intégralGaldeano, Carles, Elisabet Viayna, Irene Sola, et al. "Huprine–Tacrine Heterodimers as Anti-Amyloidogenic Compounds of Potential Interest against Alzheimer’s and Prion Diseases." Journal of Medicinal Chemistry 55, no. 2 (2012): 661–69. http://dx.doi.org/10.1021/jm200840c.
Texte intégralNisha, Chaluveelaveedu Murleedharan, Ashwini Kumar, Prateek Nair та ін. "Molecular Docking and In Silico ADMET Study Reveals Acylguanidine 7a as a Potential Inhibitor of β-Secretase". Advances in Bioinformatics 2016 (10 квітня 2016): 1–6. http://dx.doi.org/10.1155/2016/9258578.
Texte intégralDaowtak, Krai, Wilart Pompimon, Milena Salerno, and Chatchanok Udomtanakunchai. "Decelerate amyloid fibrillation by the alkaloids extracted from Stephania venosa." Journal of Associated Medical Sciences 56, no. 3 (2023): 52–59. http://dx.doi.org/10.12982/jams.2023.053.
Texte intégralRamya, S., T. Loganathan, M. Chandran, et al. "Phytochemical Screening, GCMS, FTIR profile of Bioactive Natural Products in the methanolic extracts of Cuminum cyminum seeds and oil." Journal of Drug Delivery and Therapeutics 12, no. 2-S (2022): 110–18. http://dx.doi.org/10.22270/jddt.v12i2-s.5280.
Texte intégralRamya, S., T. Loganathan, M. Chandran, et al. "Phytochemical Screening, GCMS, FTIR profile of Bioactive Natural Products in the methanolic extracts of Cuminum cyminum seeds and oil." Journal of Drug Delivery and Therapeutics 12, no. 2-S (2022): 110–18. http://dx.doi.org/10.22270/jddt.v12i2-s.5280.
Texte intégralAlattiya, Reem Halim, Farah Khalid Tarish, Lina Loai Hashim, and Saad Abdulrahman Hussain. "The Role of Polyphenols in the Treatment of Alzheimer's Disease: Narrative Review." Al-Rafidain Journal of Medical Sciences ( ISSN: 2789-3219 ) 1 (October 13, 2021): 53–61. http://dx.doi.org/10.54133/ajms.v1i.31.
Texte intégralPoliseno, Viviana, Sílvia Chaves, Leonardo Brunetti, et al. "Derivatives of Tenuazonic Acid as Potential New Multi-Target Anti-Alzheimer’s Disease Agents." Biomolecules 11, no. 1 (2021): 111. http://dx.doi.org/10.3390/biom11010111.
Texte intégralRamya, S., T. Loganathan, M. Chandran, et al. "ADME-Tox profile of Cuminaldehyde (4-Isopropylbenzaldehyde) from Cuminum cyminum seeds for potential biomedical applications." Journal of Drug Delivery and Therapeutics 12, no. 2-S (2022): 127–41. http://dx.doi.org/10.22270/jddt.v12i2-s.5286.
Texte intégralRamya, S., T. Loganathan, M. Chandran, et al. "ADME-Tox profile of Cuminaldehyde (4-Isopropylbenzaldehyde) from Cuminum cyminum seeds for potential biomedical applications." Journal of Drug Delivery and Therapeutics 12, no. 2-S (2022): 127–41. http://dx.doi.org/10.22270/jddt.v12i2-s.5286.
Texte intégralRamya, S., T. Loganathan, M. Chandran, et al. "ADME-Tox profile of Cuminaldehyde (4-Isopropylbenzaldehyde) from Cuminum cyminum seeds for potential biomedical applications." Journal of Drug Delivery and Therapeutics 12, no. 2-S (2022): 127–41. http://dx.doi.org/10.22270/jddt.v12i2-s.5286.
Texte intégralHosseinkhani, Ayda, Ali Sahragard, Aida Namdari, and Mohammad M. Zarshenas. "Botanical Sources for Alzheimer’s: A Review on Reports From Traditional Persian Medicine." American Journal of Alzheimer's Disease & Other Dementiasr 32, no. 7 (2017): 429–37. http://dx.doi.org/10.1177/1533317517717013.
Texte intégralLi, Hongyun, Genevieve Evin, Andrew F. Hill, Ya Hui Hung, Ashley I. Bush, and Brett Garner. "Dissociation of ERK signalling inhibition from the anti-amyloidogenic action of synthetic ceramide analogues." Clinical Science 122, no. 9 (2012): 409–20. http://dx.doi.org/10.1042/cs20110257.
Texte intégralQuezada, Elías, Fernanda Rodríguez-Enríquez, Reyes Laguna, et al. "Curcumin–Coumarin Hybrid Analogues as Multitarget Agents in Neurodegenerative Disorders." Molecules 26, no. 15 (2021): 4550. http://dx.doi.org/10.3390/molecules26154550.
Texte intégralKashyap, Priya, Vivekanandan Kalaiselvan, Robin Kumar, and Suresh Kumar. "Ajmalicine and Reserpine: Indole Alkaloids as Multi-Target Directed Ligands Towards Factors Implicated in Alzheimer’s Disease." Molecules 25, no. 7 (2020): 1609. http://dx.doi.org/10.3390/molecules25071609.
Texte intégralMartinez Pomier, Karla, Rashik Ahmed, and Giuseppe Melacini. "Catechins as Tools to Understand the Molecular Basis of Neurodegeneration." Molecules 25, no. 16 (2020): 3571. http://dx.doi.org/10.3390/molecules25163571.
Texte intégralSahu, Columbus, and Ritesh Jain. "Neuroprotective Effects of Terminalia catappa L.: A Promising Natural Remedy for Alzheimer's Disease." International Journal of Pharmaceutical Research and Applications 10, no. 1 (2025): 1138–41. https://doi.org/10.35629/4494-100111381141.
Texte intégralHannan, Md Abdul, Raju Dash, Md Nazmul Haque, et al. "Neuroprotective Potentials of Marine Algae and Their Bioactive Metabolites: Pharmacological Insights and Therapeutic Advances." Marine Drugs 18, no. 7 (2020): 347. http://dx.doi.org/10.3390/md18070347.
Texte intégralAfzal, Sheryar. "Deciphering curcumin and piperine's anti-amyloidogenic capabilities using an in silicomethod: A look at ligand-target complex formation." Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas 24, no. 2 (2025): 256–72. https://doi.org/10.37360/blacpma.25.24.2.19.
Texte intégralRodríguez-Blázquez, Sandra, Laura Pedrera-Cajas, Esther Gómez-Mejía, et al. "The Potential of Plum Seed Residue: Unraveling the Effect of Processing on Phytochemical Composition and Bioactive Properties." International Journal of Molecular Sciences 25, no. 2 (2024): 1236. http://dx.doi.org/10.3390/ijms25021236.
Texte intégralAbdul Manap, Aimi Syamima, Priya Madhavan, Shantini Vijayabalan, Adeline Chia та Koji Fukui. "Explicating anti-amyloidogenic role of curcumin and piperine via amyloid beta (Aβ) explicit pathway: recovery and reversal paradigm effects". PeerJ 8 (30 вересня 2020): e10003. http://dx.doi.org/10.7717/peerj.10003.
Texte intégralCaruana, Mario, Angelique Camilleri, Maria Ylenia Farrugia, et al. "Extract from the Marine Seaweed Padina pavonica Protects Mitochondrial Biomembranes from Damage by Amyloidogenic Peptides." Molecules 26, no. 5 (2021): 1444. http://dx.doi.org/10.3390/molecules26051444.
Texte intégralCichon, Natalia, Weronika Grabowska, Leslaw Gorniak, et al. "Mechanistic and Therapeutic Insights into Flavonoid-Based Inhibition of Acetylcholinesterase: Implications for Neurodegenerative Diseases." Nutrients 17, no. 1 (2024): 78. https://doi.org/10.3390/nu17010078.
Texte intégralNazarova, Anastasia, Igor Shiabiev, Ksenia Shibaeva, et al. "Thiacalixarene Carboxylic Acid Derivatives as Inhibitors of Lysozyme Fibrillation." International Journal of Molecular Sciences 25, no. 9 (2024): 4721. http://dx.doi.org/10.3390/ijms25094721.
Texte intégralMikalauskaite, Kamile, Mantas Ziaunys, and Vytautas Smirnovas. "Lysozyme Amyloid Fibril Structural Variability Dependence on Initial Protein Folding State." International Journal of Molecular Sciences 23, no. 10 (2022): 5421. http://dx.doi.org/10.3390/ijms23105421.
Texte intégralAkter, Sharmin, Takayuki Tohge, Sahithya Hulimane Ananda, Masahiro Kuragano, Kiyotaka Tokuraku, and Koji Uwai. "Anti-Amyloid Aggregation Effects of Gobaishi (Galla chinensis) and Its Active Constituents." Molecules 30, no. 13 (2025): 2720. https://doi.org/10.3390/molecules30132720.
Texte intégralCorti, Roberta, Alysia Cox, Valeria Cassina, et al. "The Clustering of mApoE Anti-Amyloidogenic Peptide on Nanoparticle Surface Does Not Alter Its Performance in Controlling Beta-Amyloid Aggregation." International Journal of Molecular Sciences 21, no. 3 (2020): 1066. http://dx.doi.org/10.3390/ijms21031066.
Texte intégralCoimbra, Judite R. M., Salete J. Baptista, Teresa C. P. Dinis, et al. "Combining Virtual Screening Protocol and In Vitro Evaluation towards the Discovery of BACE1 Inhibitors." Biomolecules 10, no. 4 (2020): 535. http://dx.doi.org/10.3390/biom10040535.
Texte intégralGijsen, Harrie J. M., and Marc Mercken. "-Secretase Modulators: Can We Combine Potency with Safety?" International Journal of Alzheimer's Disease 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/295207.
Texte intégralDhahri, Manel, Mawadda Alghrably, Hamdoon A. Mohammed, et al. "Natural Polysaccharides as Preventive and Therapeutic Horizon for Neurodegenerative Diseases." Pharmaceutics 14, no. 1 (2021): 1. http://dx.doi.org/10.3390/pharmaceutics14010001.
Texte intégralYoun, Kumju, and Mira Jun. "Determination of Potential Lead Compound from Magnolia officinalis for Alzheimer’s Disease through Pharmacokinetic Prediction, Molecular Docking, Dynamic Simulation, and Experimental Validation." International Journal of Molecular Sciences 25, no. 19 (2024): 10507. http://dx.doi.org/10.3390/ijms251910507.
Texte intégralNandkishor, Chavan Dr. Raghunath Wadulkar Dr. Kranti Satpute Sushil Bhalerao Sanika Futane. "Towards A New Frontier in Alzheimer's Disease Treatment: Promising Medicinal Plants and Bioactive Compounds." International Journal of Pharmaceutical Sciences 3, no. 6 (2025): 807–23. https://doi.org/10.5281/zenodo.15597645.
Texte intégralShohag, Sheikh, Shomaya Akhter, Al Amin, et al. "Insights into the Promising Prospect of Medicinal Plants for the Therapeutic Approaches of Alzheimer's Disease." Middle East Research Journal of Medical Sciences 5, no. 02 (2025): 147–77. https://doi.org/10.36348/merjms.2025.v05i02.006.
Texte intégral