Articles de revues sur le sujet « Anticancer efficacy »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Anticancer efficacy ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Kisiel-Nawrot, Ewa, Malgorzata Latocha, Andrzej Bak, Violetta Kozik, Josef Jampilek, and Andrzej Zieba. "Anticancer Efficacy of Antibacterial Quinobenzothiazines." Applied Sciences 13, no. 5 (2023): 2886. http://dx.doi.org/10.3390/app13052886.
Texte intégralFarashi-Bonab, Samad, and Nemat Khansari. "Salmonella-based Anticancer Vaccines and their Efficacy." Vaccination Research – Open Journal 4, no. 1 (2019): 5–11. http://dx.doi.org/10.17140/vroj-4-111.
Texte intégralNiedzwiecki, Aleksandra, Mohd Roomi, Tatiana Kalinovsky, and Matthias Rath. "Anticancer Efficacy of Polyphenols and Their Combinations." Nutrients 8, no. 9 (2016): 552. http://dx.doi.org/10.3390/nu8090552.
Texte intégralSun, Shi-Yong. "Enhancing perifosine's anticancer efficacy by preventing autophagy." Autophagy 6, no. 1 (2010): 184–85. http://dx.doi.org/10.4161/auto.6.1.10816.
Texte intégralFu, Chih-Wei, Yun-Jung Hsieh, Tzu Ting Chang, et al. "Anticancer efficacy of unique pyridine-based tetraindoles." European Journal of Medicinal Chemistry 104 (November 2015): 165–76. http://dx.doi.org/10.1016/j.ejmech.2015.09.032.
Texte intégralAlven, Sibusiso, and Blessing Atim Aderibigbe. "The Therapeutic Efficacy of Dendrimer and Micelle Formulations for Breast Cancer Treatment." Pharmaceutics 12, no. 12 (2020): 1212. http://dx.doi.org/10.3390/pharmaceutics12121212.
Texte intégralLi, Fan, Xinqing Fu, Qingqing Huo, and Wantao Chen. "Research Progress on the Nano-Delivery Systems of Antitumor Drugs." Nano LIFE 10, no. 01n02 (2020): 2040006. http://dx.doi.org/10.1142/s1793984420400061.
Texte intégralXu, Tengyan, Chunhui Liang, Debin Zheng, et al. "Nuclear delivery of dual anticancer drug-based nanomedicine constructed by cisplatinum-induced peptide self-assembly." Nanoscale 12, no. 28 (2020): 15275–82. http://dx.doi.org/10.1039/d0nr00143k.
Texte intégralVerma, Poonam, Sanjukta Naik, Pranati Nanda, Silvi Banerjee, Satyanarayan Naik, and Amit Ghosh. "In Vitro Anticancer Activity of Virgin Coconut Oil and its Fractions in Liver and Oral Cancer Cells." Anti-Cancer Agents in Medicinal Chemistry 19, no. 18 (2020): 2223–30. http://dx.doi.org/10.2174/1871520619666191021160752.
Texte intégralSafwat, Mohamed A., Bothaina A. Kandil, Mohamed A. Elblbesy, Ghareb M. Soliman, and Nermin E. Eleraky. "Epigallocatechin-3-Gallate-Loaded Gold Nanoparticles: Preparation and Evaluation of Anticancer Efficacy in Ehrlich Tumor-Bearing Mice." Pharmaceuticals 13, no. 9 (2020): 254. http://dx.doi.org/10.3390/ph13090254.
Texte intégralMafe, Alice N., and Dietrich Büsselberg. "Microbiome Integrity Enhances the Efficacy and Safety of Anticancer Drug." Biomedicines 13, no. 2 (2025): 422. https://doi.org/10.3390/biomedicines13020422.
Texte intégralThanasak, Jitkamol, Sittiruk Roytrakul, Rudee Surarit, et al. "Anticancer properties of peptides and protein hydrolysates derived from Asian water monitor (Varanus salvator) serum." PLOS ONE 20, no. 4 (2025): e0321531. https://doi.org/10.1371/journal.pone.0321531.
Texte intégralWang, Yan, Wei Xie, Juliette Humeau, et al. "Autophagy induction by thiostrepton improves the efficacy of immunogenic chemotherapy." Journal for ImmunoTherapy of Cancer 8, no. 1 (2020): e000462. http://dx.doi.org/10.1136/jitc-2019-000462.
Texte intégralGarattini, S. "Efficacy, safety, and cost of new anticancer drugs." BMJ 325, no. 7358 (2002): 269–71. http://dx.doi.org/10.1136/bmj.325.7358.269.
Texte intégralCalvert, H. "Efficacy, safety, and cost of new anticancer drugs." BMJ 325, no. 7375 (2002): 1302a—1302. http://dx.doi.org/10.1136/bmj.325.7375.1302/a.
Texte intégralSharma, Nikita, Monisha Singhal, R. Mankamna Kumari, et al. "Diosgenin Loaded Polymeric Nanoparticles with Potential Anticancer Efficacy." Biomolecules 10, no. 12 (2020): 1679. http://dx.doi.org/10.3390/biom10121679.
Texte intégralNazari-Vanani, R., K. Karimian, N. Azarpira, and H. Heli. "Capecitabine-loaded nanoniosomes and evaluation of anticancer efficacy." Artificial Cells, Nanomedicine, and Biotechnology 47, no. 1 (2019): 420–26. http://dx.doi.org/10.1080/21691401.2018.1559179.
Texte intégralGaspar, Diana, Ana Salomé Veiga, Chomdao Sinthuvanich, Joel P. Schneider, and Miguel A. R. B. Castanho. "Anticancer Peptide SVS-1: Efficacy Precedes Membrane Neutralization." Biochemistry 51, no. 32 (2012): 6263–65. http://dx.doi.org/10.1021/bi300836r.
Texte intégralKonstantinov, S. M., R. Kaminsky, R. Brun, M. R. Berger, and U. Zillmann. "Efficacy of anticancer alkylphosphocholines in Trypanosoma brucei subspecies." Acta Tropica 64, no. 3-4 (1997): 145–54. http://dx.doi.org/10.1016/s0001-706x(96)00628-6.
Texte intégralDeutsch, Eric, Cyrus Chargari, Lorenzo Galluzzi, and Guido Kroemer. "Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy." Lancet Oncology 20, no. 8 (2019): e452-e463. http://dx.doi.org/10.1016/s1470-2045(19)30171-8.
Texte intégralConforti, F., and L. Pala. "Sex-based heterogeneity of efficacy of anticancer immunotherapy." Annals of Oncology 30 (October 2019): v522—v523. http://dx.doi.org/10.1093/annonc/mdz253.110.
Texte intégralHampton, Tracy. "Newly Designed Protein Augments Efficacy of Anticancer Antibodies." JAMA 310, no. 1 (2013): 22. http://dx.doi.org/10.1001/jama.2013.7878.
Texte intégralSakamoto, Junichi, Koji Oba, Takanori Matsui, and Michiya Kobayashi. "Efficacy of Oral Anticancer Agents for Colorectal Cancer." Diseases of the Colon & Rectum 49 (October 2006): S82—S91. http://dx.doi.org/10.1007/s10350-006-0601-7.
Texte intégralShah, Hassan, Asadullah Madni, Nina Filipczak, et al. "Cisplatin-loaded thermoresponsive liposomes for enhanced anticancer efficacy." Journal of Drug Delivery Science and Technology 84 (June 2023): 104509. http://dx.doi.org/10.1016/j.jddst.2023.104509.
Texte intégralNaumenko, V. A., A. S. Garanina, S. S. Vodopyanov, et al. "Magnetic resonance imaging for predicting personalized antitumor nanomedicine efficacy." NANOMEDICINE, no. 6 (December 30, 2018): 21–24. http://dx.doi.org/10.24075/brsmu.2018.086.
Texte intégralTikhomirova, A. V. "Criteria for Evaluation of Clinical Efficacy of Anticancer Medicines." Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products 9, no. 1 (2019): 34–40. http://dx.doi.org/10.30895/1991-2919-2019-9-1-34-40.
Texte intégralWang, Pu, Jinxiu Wang, Haowen Tan, et al. "Acid- and reduction-sensitive micelles for improving the drug delivery efficacy for pancreatic cancer therapy." Biomaterials Science 6, no. 5 (2018): 1262–70. http://dx.doi.org/10.1039/c7bm01051f.
Texte intégralKochenderfer, J. N., and R. E. Gress. "A Comparison and Critical Analysis of Preclinical Anticancer Vaccination Strategies." Experimental Biology and Medicine 232, no. 9 (2007): 1130–41. http://dx.doi.org/10.3181/0702-mr-42.
Texte intégralKim, Tae Hun, Dong Hoon Suh, Mi-Kyung Kim, and Yong Sang Song. "Metformin against Cancer Stem Cells through the Modulation of Energy Metabolism: Special Considerations on Ovarian Cancer." BioMed Research International 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/132702.
Texte intégralKhan, Mahir, Ryan Huu-Tuan Nguyen, James Love, et al. "Safety and efficacy of COVID-19 vaccination in patients receiving systemic anticancer therapy." Journal of Clinical Oncology 39, no. 28_suppl (2021): 245. http://dx.doi.org/10.1200/jco.2020.39.28_suppl.245.
Texte intégralYoon, Wonsuck, Yongsung Park, Seunghyun Kim, Yongkeun Park, and Chul Yong Kim. "Combined Therapy with microRNA-Expressing Salmonella and Irradiation in Melanoma." Microorganisms 9, no. 11 (2021): 2408. http://dx.doi.org/10.3390/microorganisms9112408.
Texte intégralEity, Tanzila Akter, Md Shimul Bhuia, Raihan Chowdhury, et al. "Anticancer Efficacy of Decursin: A Comprehensive Review with Mechanistic Insights." Future Pharmacology 5, no. 2 (2025): 17. https://doi.org/10.3390/futurepharmacol5020017.
Texte intégralRachamalla, Hari Krishnareddy, Santanu Bhattacharya, Ajaz Ahmad, et al. "Enriched pharmacokinetic behavior and antitumor efficacy of thymoquinone by liposomal delivery." Nanomedicine 16, no. 8 (2021): 641–56. http://dx.doi.org/10.2217/nnm-2020-0470.
Texte intégralAlven, Sibusiso, and Blessing Atim Aderibigbe. "Efficacy of Polymer-Based Nanocarriers for Co-Delivery of Curcumin and Selected Anticancer Drugs." Nanomaterials 10, no. 8 (2020): 1556. http://dx.doi.org/10.3390/nano10081556.
Texte intégralAlanazi, Sitah, ZabnAllah M. Alaizeri, Rashid Lateef, Nawal Madkhali, Abdullah Alharbi, and Maqusood Ahamed. "Zn Doping Improves the Anticancer Efficacy of SnO2 Nanoparticles." Applied Sciences 13, no. 22 (2023): 12456. http://dx.doi.org/10.3390/app132212456.
Texte intégralBretin, Ludovic, Aline Pinon, Soukaina Bouramtane, et al. "Photodynamic Therapy Activity of New Porphyrin-Xylan-Coated Silica Nanoparticles in Human Colorectal Cancer." Cancers 11, no. 10 (2019): 1474. http://dx.doi.org/10.3390/cancers11101474.
Texte intégralMeena, J., and K. S. Santhy. "ANTICANCER EFFICACY OF CYCLEA PELTATA ON HUMAN BREAST CARCINOMA CELLS." INDIAN DRUGS 54, no. 06 (2017): 53–57. http://dx.doi.org/10.53879/id.54.06.10783.
Texte intégralYou, Yuanyuan, Liye Yang, Lizhen He, and Tianfeng Chen. "Tailored mesoporous silica nanosystem with enhanced permeability of the blood–brain barrier to antagonize glioblastoma." Journal of Materials Chemistry B 4, no. 36 (2016): 5980–90. http://dx.doi.org/10.1039/c6tb01329e.
Texte intégralOu, Yuan, Kai Chen, Hao Cai, et al. "Enzyme/pH-sensitive polyHPMA–DOX conjugate as a biocompatible and efficient anticancer agent." Biomaterials Science 6, no. 5 (2018): 1177–88. http://dx.doi.org/10.1039/c8bm00095f.
Texte intégralKah, Glory, Rahul Chandran, and Heidi Abrahamse. "Biogenic Silver Nanoparticles for Targeted Cancer Therapy and Enhancing Photodynamic Therapy." Cells 12, no. 15 (2023): 2012. http://dx.doi.org/10.3390/cells12152012.
Texte intégralD. N. Mehta, P. H. Patel, S. D. Mandal, and G. S. Chakraborthy. "In-silico APPROACH FOR VIRTUAL SCREENING AND MOLECULAR DOCKING OF FLAVONOIDS AS ERBB4 KINASE INHIBITORS IN THE TREATMENT OF CANCER." Rasayan J. Chem 17, no. 02 (2024): 605–10. http://dx.doi.org/10.31788/rjc.2023.1728769.
Texte intégralConte, Claudia, Giovanni Dal Poggetto, Viola Schiano Di Cola, et al. "PEGylated cationic nanoassemblies based on triblock copolymers to combine siRNA therapeutics with anticancer drugs." Biomaterials Science 9, no. 18 (2021): 6251–65. http://dx.doi.org/10.1039/d1bm00909e.
Texte intégralKiełbowski, Kajetan, Paulina Plewa, Jan Zadworny, Estera Bakinowska, Rafał Becht, and Andrzej Pawlik. "Recent Advances in the Development and Efficacy of Anti-Cancer Vaccines—A Narrative Review." Vaccines 13, no. 3 (2025): 237. https://doi.org/10.3390/vaccines13030237.
Texte intégralMatsuno, Yusuke, Mai Hyodo, Haruka Fujimori, Atsuhiro Shimizu, and Ken-ichi Yoshioka. "Sensitization of Cancer Cells to Radiation and Topoisomerase I Inhibitor Camptothecin Using Inhibitors of PARP and Other Signaling Molecules." Cancers 10, no. 10 (2018): 364. http://dx.doi.org/10.3390/cancers10100364.
Texte intégralKarabina, E. V., D. D. Sakaeva, and O. N. Lipatov. "Efficacy of Off-Label Use of Anticancer Drugs in Oncology." Creative surgery and oncology 13, no. 2 (2023): 151–58. http://dx.doi.org/10.24060/2076-3093-2023-13-2-151-158.
Texte intégralAbdelmonem, M., S. E. Hammad, H. H. Elshikh, et al. "Anticancer Efficacy of Biosynthesized Zinc Oxide and Gold Nanoparticles." American Journal of Clinical Pathology 162, Supplement_1 (2024): S121. http://dx.doi.org/10.1093/ajcp/aqae129.269.
Texte intégralWallace, H. M., and A. V. Fraser. "Polyamine analogues as anticancer drugs." Biochemical Society Transactions 31, no. 2 (2003): 393–96. http://dx.doi.org/10.1042/bst0310393.
Texte intégralChen, Qian, Jing Wu, Xiang Li, Ziyi Ye, Hailong Yang, and Lixian Mu. "Amphibian-Derived Natural Anticancer Peptides and Proteins: Mechanism of Action, Application Strategies, and Prospects." International Journal of Molecular Sciences 24, no. 18 (2023): 13985. http://dx.doi.org/10.3390/ijms241813985.
Texte intégralKim, Ryungsa, Takanori Kin, and William T. Beck. "Impact of Complex Apoptotic Signaling Pathways on Cancer Cell Sensitivity to Therapy." Cancers 16, no. 5 (2024): 984. http://dx.doi.org/10.3390/cancers16050984.
Texte intégralKumar, Girish, Tarun Virmani, Ashwani Sharma, and Kamla Pathak. "Codelivery of Phytochemicals with Conventional Anticancer Drugs in Form of Nanocarriers." Pharmaceutics 15, no. 3 (2023): 889. http://dx.doi.org/10.3390/pharmaceutics15030889.
Texte intégral