Littérature scientifique sur le sujet « Apprentissage continu en ligne »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Apprentissage continu en ligne ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Apprentissage continu en ligne"
Fierro Porto, Mónica, et Lily Schofield. « Le numérique comme facilitateur de nouvelles interactions étudiantes entre apprenants experts : un cours en ligne pour enseigner l’anglais de spécialité ». Médiations et médiatisations, no 5 (29 janvier 2021) : 68–89. http://dx.doi.org/10.52358/mm.vi5.165.
Texte intégralMANZONI-DE-ALMEIDA, Daniel, Patrícia MARZIN-JANVIER et Patrícia GIMENEZ CAMARGO. « Intersectional pedagogy in nursing education ». Revue Education, Santé, Sociétés, Volume 10, Numéro 2 (30 novembre 2024) : 1–34. https://doi.org/10.17184/eac.9060.
Texte intégralPapin, Kevin, et Gabriel Michaud. « Rétroaction corrective synchrone et écriture collaborative en ligne : perceptions d’enseignants de français langue seconde ». Canadian Journal of Applied Linguistics 26, no 2 (15 août 2023) : 60–80. http://dx.doi.org/10.37213/cjal.2023.33027.
Texte intégralLiu, Yiqi. « Pedagogy of multiliteracies in CLIL : Innovating with the social systems, genre and multimodalities framework ». OLBI Journal 11 (15 mars 2022) : 31–56. http://dx.doi.org/10.18192/olbij.v11i1.6173.
Texte intégralJoan Casademont, Anna, Nancy Gagné et Èric Viladrich Castellanas. « Allers-retours entre recherche et pratique : Analyse de besoins et capsules de microapprentissage en apprentissage d’une langue tierce ou additionnelle ». Médiations et médiatisations, no 12 (29 novembre 2022) : 8–33. http://dx.doi.org/10.52358/mm.vi12.288.
Texte intégralMinuk, Alexandra, Pamela Beach et Elena Favret. « Evaluating Online Environments for Elementary Teachers’ Literacy-Oriented Professional Learning ». Alberta Journal of Educational Research 69, no 1 (17 mars 2023) : 118–40. http://dx.doi.org/10.55016/ojs/ajer.v69i1.75743.
Texte intégralMarchand, Louise. « Pour une éducation médicale avec apprentissage en ligne ». Pédagogie Médicale 3, no 3 (août 2002) : 180–87. http://dx.doi.org/10.1051/pmed:2002029.
Texte intégralAndlauer, Leticia. « Apprentissages informels au sein des communautés de joueurs en ligne ». Diversité 185, no 1 (2016) : 167–72. http://dx.doi.org/10.3406/diver.2016.4323.
Texte intégralHamida, Soufiane, Bouchaib Cherradi, Abdelhadi Raihani et Hassan Ouajji. « Evaluation des apprentissages au sein d’un environnement de type MOOC adaptatif ». ITM Web of Conferences 39 (2021) : 03005. http://dx.doi.org/10.1051/itmconf/20213903005.
Texte intégralFournier, Helene, et Rita Kop. « DE NOUVELLES DIMENSIONS À L’AUTO-APPRENTISSAGE DANS UN ENVIRONNEMENT D’APPRENTISSAGE EN RÉSEAU ». Canadian Journal for the Study of Adult Education 26, no 1 (18 février 2014) : 35–55. http://dx.doi.org/10.56105/cjsae.v26i1.3028.
Texte intégralThèses sur le sujet "Apprentissage continu en ligne"
Wagner, Baptiste. « Apprentissage continu en ligne pour la classification d'images et la détection d'objets ». Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALT111.
Texte intégralIn this thesis, we focus on the problem of online continual learning in artificial neural networks, which involves learning continuously from a data stream. The main challenge is that integrating new information from the stream tends to overwrite previously acquired knowledge, a phenomenon known as catastrophic forgetting.In the field of online continual learning, our research focus on two important applications in computer vision: image classification and object detection. In these cases, the data stream consists of a sequence of images.In image classification, the neural network must progressively learn to classify images from new classes without forgetting the previous ones. The most common method to address this problem is experience replay, which involves retraining the model with images from previously seen classes stored in external memory. However, this method is less suitable when both storage capacity and computational resources are limited. We propose a new method based on a one-vs-all classifier training scheme to overcome this limitation. Our method, called ILOVA (Incremental Learning of One-Vs-All classifiers), offers a better trade-off between accuracy, forgetting, computational time, and memory footprint compared to state-of-the-art methods and proves particularly effective with very limited memory, down to a single image per class.In object detection, many test scenarios are constructed from real video sequences in which objects can reappear multiple times at different moments in the data stream. However, this phenomenon of reappearance, which we call natural replay, is poorly documented, and its impact on performance and forgetting remains poorly understood. We propose a new metric, called NRS (Natural Replay Score), which quantifies the degree of natural replay in a scenario, and show that it is impossible to properly evaluate model forgetting in its presence. The next part of our study focuses on analyzing forgetting in the Faster R-CNN architecture when used for online object detection. On the one hand, our results show that periodic recalls reduce forgetting. On the other hand, we propose a new protocol, called Module Probing, which allows us to measure forgetting locally within the architecture. We show that forgetting is concentrated in the classification layer of Faster R-CNN. Finally, these analyses lead us to propose a method called Configurable Recall, based on experience replay. Our method optimizes the frequency and duration of the recalls and uses a modified loss function to limit forgetting in the classification layer. By combining these two elements, we significantly reduce forgetting in the Faster R-CNN architecture
Oulhadj, Hamouche. « Des primitives aux lettres : une méthode structurelle de reconnaissance en ligne de mots d'écriture cursive manuscrite avec un apprentissage continu ». Paris 12, 1990. http://www.theses.fr/1990PA120045.
Texte intégralYang, Rui. « Online continual learning for 3D detection of road participants in autonomous driving ». Electronic Thesis or Diss., Bourgogne Franche-Comté, 2023. http://www.theses.fr/2023UBFCA021.
Texte intégralAutonomous driving has witnessed remarkable progress over the past decades, and machine perception stands as a critical foundational issue, encompassing the detection and tracking of road participants such as vehicles, pedestrians, and cyclists. While vision-based object detection has achieved significant progress thanks to deep learning techniques, challenges still exist in 3D detection.Firstly, non-visual sensors, such as 3D LiDAR, demonstrate unparalleled advantages in achieving precise detection and adaptability to varying lighting conditions. However, the complexity of handling points cloud data, which can be challenging to interpret, coupled with the high cost of manual annotation, pose primary challenges in the use of 3D LiDAR.Secondly, concerns arise from the lack of interpretability in deep learning models, coupled with their heavy reliance on extensive training data, which often necessitates costly retraining for acceptable generalization performance when adapting to new scenes or environments.This dissertation addresses these challenges from three main perspectives: Generation of Samples, Preservation of Knowledge, and Avoidance of Catastrophic Forgetting. We introduce the concept of Online Continual Learning (OCL) and propose a general framework that encompasses detection, tracking, learning, and control. This framework enables models to update in real-time, preserving knowledge rather than raw data, and effectively mitigating the performance degradation caused by catastrophic forgetting.The main work of this dissertation includes: 1) Generation of Samples: To address sparse point clouds generated by 3D LiDAR and the labor-intensive manual annotation, we leverage the advantages of multi-sensor data and employ an efficient online transfer learning framework. This framework effectively transfers mature image-based detection capabilities to 3D LiDAR-based detectors. An innovative aspect is the "learn-by-use" process, achieved through closed-loop detection, facilitating continuous self-supervised learning. A novel information fusion strategy is proposed to combine spatio-temporal correlations, enhancing the effectiveness of knowledge transfer. 2) Preservation of Knowledge: Online Learning (OL) is introduced to address knowledge preservation without retaining training data. An improved Online Random Forest (ORF) model is incorporated, enabling rapid model training with limited computational resources and immediate deployment. The ORF model's parameters are dynamically shared throughout the training process to address the unknown data distribution. The exploration of ORF tree structures ensures independence in training processes, enhancing the model's ability to capture complex patterns and variations. Implementing octrees improves storage efficiency and model access. 3) Avoidance of Catastrophic Forgetting: To tackle the inevitable forgetting problem in online learning frameworks during long-term deployment, we propose the Long Short-Term Online Learning (LSTOL) framework. LSTOL combines multiple short-term learners based on ensemble learning with a long-term controller featuring a probabilistic decision mechanism. This framework ensures effective knowledge maintenance and adapts to changes during long-term deployment, without making assumptions about model types and data continuity. Cross-dataset evaluations on tasks such as 3D detection of road participants demonstrate the effectiveness of LSTOL in avoiding forgetting
Hocquet, Guillaume. « Class Incremental Continual Learning in Deep Neural Networks ». Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPAST070.
Texte intégralWe are interested in the problem of continual learning of artificial neural networks in the case where the data are available for only one class at a time. To address the problem of catastrophic forgetting that restrain the learning performances in these conditions, we propose an approach based on the representation of the data of a class by a normal distribution. The transformations associated with these representations are performed using invertible neural networks, which can be trained with the data of a single class. Each class is assigned a network that will model its features. In this setting, predicting the class of a sample corresponds to identifying the network that best fit the sample. The advantage of such an approach is that once a network is trained, it is no longer necessary to update it later, as each network is independent of the others. It is this particularly advantageous property that sets our method apart from previous work in this area. We support our demonstration with experiments performed on various datasets and show that our approach performs favorably compared to the state of the art. Subsequently, we propose to optimize our approach by reducing its impact on memory by factoring the network parameters. It is then possible to significantly reduce the storage cost of these networks with a limited performance loss. Finally, we also study strategies to produce efficient feature extractor models for continual learning and we show their relevance compared to the networks traditionally used for continual learning
Désoyer, Adèle. « Appariement de contenus textuels dans le domaine de la presse en ligne : développement et adaptation d'un système de recherche d'information ». Thesis, Paris 10, 2017. http://www.theses.fr/2017PA100119/document.
Texte intégralThe goal of this thesis, conducted within an industrial framework, is to pair textual media content. Specifically, the aim is to pair on-line news articles to relevant videos for which we have a textual description. The main issue is then a matter of textual analysis, no image or spoken language analysis was undertaken in the present study. The question that arises is how to compare these particular objects, the texts, and also what criteria to use in order to estimate their degree of similarity. We consider that one of these criteria is the topic similarity of their content, in other words, the fact that two documents have to deal with the same topic to form a relevant pair. This problem fall within the field of information retrieval (ir) which is the main strategy called upon in this research. Furthermore, when dealing with news content, the time dimension is of prime importance. To address this aspect, the field of topic detection and tracking (tdt) will also be explored.The pairing system developed in this thesis distinguishes different steps which complement one another. In the first step, the system uses natural language processing (nlp) methods to index both articles and videos, in order to overcome the traditionnal bag-of-words representation of texts. In the second step, two scores are calculated for an article-video pair: the first one reflects their topical similarity and is based on a vector space model; the second one expresses their proximity in time, based on an empirical function. At the end of the algorithm, a classification model learned from manually annotated document pairs is used to rank the results.Evaluation of the system's performances raised some further questions in this doctoral research. The constraints imposed both by the data and the specific need of the partner company led us to adapt the evaluation protocol traditionnal used in ir, namely the cranfield paradigm. We therefore propose an alternative solution for evaluating the system that takes all our constraints into account
Boudjema, Cédric. « La fonction éducative des musées dans la société numérique : analyse comparative de l'offre pédagogique en ligne de huit musées nationaux dans quatre pays (France, Angleterre, Australie, Etats-Unis) ». Thesis, Lille 3, 2016. http://www.theses.fr/2016LIL30013/document.
Texte intégralThis research studies museum internet sites and in particular the pedagogy of eight national institutions in four different countries and suggests that online museums are educational content players.The interest is to investigate the educational content of the internet sites using a content analysis and implementing a comparison between the four countries and the types of internet sites to be able to understand the practices – and especially what Jean Davallon calls « the anticipation by the “sender” » that the visitor will engage in (the sender aiming for example to keep the attention of the latter or to provide guidance in the contents), the typology of content and the teaching strategies put in place by the online museum institutions. The online educational offer is defined here as a permanent activity as a source of building knowledge, consultation, criticism, and entertainment, from the museum resources. This offer is also constructed according to the consistent rules of Web design.We have chosen to study the online pedagogy according to a constructivist approach that drives us to privilege certain key concepts : individual learning ways, learning processes, cognitive strategies, meta-cognitive strategies, {learning styles}, taxonomy. From a methodological point of view, this thesis relies on a qualitative approach and privileges a content analysis from an analysis grid with eleven categories : the corpus is composed of eight internet sites and of two types of national museums : the art museums and the science museums with an educational section. The thesis is composed of two tomes. The tome 2 contains the complete analysis of the sites and the tome 1 includes three parts. In the first part, the research discusses the educational role of museums with its specificities and complexities. This part defines the historical context of the educational function of museums that very early on developed an educational strategy for the public. It also shows the specificity of museums in informal education as a place of learning concepts and development that develop two types of mediation. The museum favours the formulation of questions; it orientates reflexion and raises questions. It then shows the museum as an important partner and complementary to school. Finally, this part precises the historical context of online museums of the four countries from our analysis and the progressive development of the cultural policies of the present and the progressive actions put into place by the museums.Secondly, the research focuses on the thematic analysis of the internet sites and on their educational sections and attempts to show the successive steps of the content analysis via the analysis grid constructed for this research. Firstly, it is about showing the ergonomics of the sites to progressively arrive upon the general treatment of the educational sections of the sites, that is to say to identify the mechanisms of underlying internet sites and of their educational sections and secondly to identify the differences between the types of museums and their countries. Finally, the third part of the research attaches importance to the typology of the online educational content and focuses on the strategies put into place in the sites as well as the pedagogy deployed. The internet sites are thus viewed as interconnected elements, intended for a target audience and reinforcing the social role of the museum. The schools and the teaching body are a privileged population; a prominent place for them is underlined
Munos, Rémi. « Apprentissage par renforcement, étude du cas continu ». Paris, EHESS, 1997. http://www.theses.fr/1997EHESA021.
Texte intégralSors, Arnaud. « Apprentissage profond pour l'analyse de l'EEG continu ». Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAS006/document.
Texte intégralThe objective of this research is to explore and develop machine learning methods for the analysis of continuous electroencephalogram (EEG). Continuous EEG is an interesting modality for functional evaluation of cerebral state in the intensive care unit and beyond. Today its clinical use remains more limited that it could be because interpretation is still mostly performed visually by trained experts. In this work we develop automated analysis tools based on deep neural models.The subparts of this work hinge around post-anoxic coma prognostication, chosen as pilot application. A small number of long-duration records were performed and available existing data was gathered from CHU Grenoble. Different components of a semi-supervised architecture that addresses the application are imagined, developed, and validated on surrogate tasks.First, we validate the effectiveness of deep neural networks for EEG analysis from raw samples. For this we choose the supervised task of sleep stage classification from single-channel EEG. We use a convolutional neural network adapted for EEG and we train and evaluate the system on the SHHS (Sleep Heart Health Study) dataset. This constitutes the first neural sleep scoring system at this scale (5000 patients). Classification performance reaches or surpasses the state of the art.In real use for most clinical applications, the main challenge is the lack of (and difficulty of establishing) suitable annotations on patterns or short EEG segments. Available annotations are high-level (for example, clinical outcome) and therefore they are few. We search how to learn compact EEG representations in an unsupervised/semi-supervised manner. The field of unsupervised learning using deep neural networks is still young. To compare to existing work we start with image data and investigate the use of generative adversarial networks (GANs) for unsupervised adversarial representation learning. The quality and stability of different variants are evaluated. We then apply Gradient-penalized Wasserstein GANs on EEG sequences generation. The system is trained on single channel sequences from post-anoxic coma patients and is able to generate realistic synthetic sequences. We also explore and discuss original ideas for learning representations through matching distributions in the output space of representative networks.Finally, multichannel EEG signals have specificities that should be accounted for in characterization architectures. Each EEG sample is an instantaneous mixture of the activities of a number of sources. Based on this statement we propose an analysis system made of a spatial analysis subsystem followed by a temporal analysis subsystem. The spatial analysis subsystem is an extension of source separation methods built with a neural architecture with adaptive recombination weights, i.e. weights that are not learned but depend on features of the input. We show that this architecture learns to perform Independent Component Analysis if it is trained on a measure of non-gaussianity. For temporal analysis, standard (shared) convolutional neural networks applied on separate recomposed channels can be used
Salperwyck, Christophe. « Apprentissage incrémental en ligne sur flux de données ». Phd thesis, Université Charles de Gaulle - Lille III, 2012. http://tel.archives-ouvertes.fr/tel-00845655.
Texte intégralOrseau, Laurent. « Imitation algorithmique : Apprentissage Incrémental En-ligne de Séquences ». Rennes, INSA, 2007. http://www.theses.fr/2007ISAR0014.
Texte intégralIn continual learning, an agent is continually interacting with its environment. At each time step, it receives inputs, uses a small amount of computations (online) and gives outputs. There is no real definition of a goal to learn, the agent must acquire more and more knowledge, incrementally, and re-use it in more complex tasks. In this framework, we are interested in learning complex sequences, involving recurrence, variables and conditions. But the agent cannot use a large number of trials and error, because of its interaction with the environment. How then can learning be possible from a small number of examples?Traditional methods that are able to solve such complex tasks do not fit in the continual learning framework, because difficulties become harder. To simplify the task, an imitation protocol is used, allowing the agent to learn by seeing a teacher doing, but this respects the continual learning constraints and keeps a high autonomy. Imitation is usually used in a robotic framework, so we extend it to learn more complex sequences~: this is Algorithmic Imitation. A learning system, CSAAL, is then developed and tested on experiments showing that it is indeed able to learn complex sequences within few examples. An extension of this system, H-CSAAL, allows to re-use hierarchically recurrent functions, increasing both the autonomy of the agent and its generalization capacities
Livres sur le sujet "Apprentissage continu en ligne"
Austria), Verbal-Workshop (2005 Graz. eLernen, eLearning, apprentissage en ligne in der sprachenbezogenen Lehre : Prinzipien, Praxiserfahrungen und Unterrichtskonzepte. Frankfurt am Main : P. Lang, 2008.
Trouver le texte intégralAustria), Verbal-Workshop (2005 Graz. eLernen, eLearning, apprentissage en ligne in der sprachenbezogenen Lehre : Prinzipien, Praxiserfahrungen und Unterrichtskonzepte. Frankfurt am Main : P. Lang, 2008.
Trouver le texte intégralStoyko, Peter. Learning@large : an e-learning guide for managers = : Apprentissage@la portée de tous : un guide d'apprentissage en ligne pour gestionnaires. [Ottawa] : Canadian Centre for Management Development = Centre canadien de gestion, 2003.
Trouver le texte intégral1954-, Shank Patti, dir. The online learning idea book : 95 proven ways to enhance technology-based and blended learning. San Francisco : Pfeiffer, 2007.
Trouver le texte intégralAl-Hakkak, Ghalib. Manuel d'arabe en ligne - Semaines 1 2 3 : Apprentissage en autonomie. Createspace Independent Publishing Platform, 2018.
Trouver le texte intégralCAWS, Catherine, Marie-Josée HAMEL, Catherine JEANNEAU et Christian OLLIVIER. Formation en langues et littératie numérique en contextes ouverts. Editions des archives contemporaines, 2021. http://dx.doi.org/10.17184/eac.9782813003911.
Texte intégralChapitres de livres sur le sujet "Apprentissage continu en ligne"
DOUANLA, Adèle. « Enseigner en période de confinement ». Dans Les écoles africaines à l’ère du COVID-19, 291–306. Editions des archives contemporaines, 2024. http://dx.doi.org/10.17184/eac.7936.
Texte intégral« Remerciements ». Dans Formation et apprentissage en ligne, XIII. Presses de l'Université du Québec, 2019. http://dx.doi.org/10.1515/9782760550889-002.
Texte intégralDuplàa, Emmanuel. « Les transformations d’établissement et la formation en ligne ». Dans Formation et apprentissage en ligne, 115–38. Presses de l'Université du Québec, 2019. http://dx.doi.org/10.1515/9782760550889-013.
Texte intégralAmireault, Valérie, Simon Collin et Alexandra H. Michaud. « Perception d’utilité du cours FEL (francisation en ligne) au Québec ». Dans Formation et apprentissage en ligne, 67–83. Presses de l'Université du Québec, 2019. http://dx.doi.org/10.1515/9782760550889-010.
Texte intégralDelisle, Esther. « L’application empirique d’un référentiel de compétences en encadrement à distance à une population étudiante ». Dans Formation et apprentissage en ligne, 9–23. Presses de l'Université du Québec, 2019. http://dx.doi.org/10.1515/9782760550889-006.
Texte intégralHamel, Mireille. « La pédagogie de l’empathie et son impact sur les apprentissages en ligne ». Dans Formation et apprentissage en ligne, 51–66. Presses de l'Université du Québec, 2019. http://dx.doi.org/10.1515/9782760550889-009.
Texte intégralLafleur, France, et Ghislain Samson. « Conclusion générale ». Dans Formation et apprentissage en ligne, 167–71. Presses de l'Université du Québec, 2019. http://dx.doi.org/10.1515/9782760550889-016.
Texte intégralSamson, Ghislain, et France Lafleur. « Introduction ». Dans Formation et apprentissage en ligne, 1–6. Presses de l'Université du Québec, 2019. http://dx.doi.org/10.1515/9782760550889-005.
Texte intégralPeraya, Daniel. « Préface ». Dans Formation et apprentissage en ligne, VII—XII. Presses de l'Université du Québec, 2019. http://dx.doi.org/10.1515/9782760550889-001.
Texte intégralVillemure, René. « Postface ». Dans Formation et apprentissage en ligne, 173–75. Presses de l'Université du Québec, 2019. http://dx.doi.org/10.1515/9782760550889-017.
Texte intégralActes de conférences sur le sujet "Apprentissage continu en ligne"
Ghedhahem, Zeineb. « Cap sur le premier MOOC FOFLE en Afrique francophone pour se (re)mettre à flot ». Dans XXV Coloquio AFUE. Palabras e imaginarios del agua. Valencia : Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/xxvcoloquioafue.2016.3049.
Texte intégral