Littérature scientifique sur le sujet « Assembly planning system »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Assembly planning system ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Assembly planning system"
Müller, Rainer, Matthias Vette, Leenhard Hörauf et Christoph Speicher. « Identification of Assembly System Configuration for Cyber-Physical Assembly System Planning ». Applied Mechanics and Materials 840 (juin 2016) : 24–32. http://dx.doi.org/10.4028/www.scientific.net/amm.840.24.
Texte intégralChen, C. L. Philip, et C. A. Wichman. « A systematic approach for design and planning of mechanical assemblies ». Artificial Intelligence for Engineering Design, Analysis and Manufacturing 7, no 1 (février 1993) : 19–36. http://dx.doi.org/10.1017/s0890060400000044.
Texte intégralZorc, Samo, Tomaž Perme et Dragica Noe. « Assembly planning system for an intelligent assembly cell ». IFAC Proceedings Volumes 32, no 2 (juillet 1999) : 85–90. http://dx.doi.org/10.1016/s1474-6670(17)56017-6.
Texte intégralBurggräf, P., M. Dannapfel, T. Adlon, A. Riegauf, K. Müller et C. Fölling. « Agile Montage*/Agile assembly – Assembly planning and assembly system as integral elements of factory planning ». wt Werkstattstechnik online 109, no 09 (2019) : 622–27. http://dx.doi.org/10.37544/1436-4980-2019-09-8.
Texte intégralLiu, Jianhua. « Integrated Virtual Assembly Process Planning System ». Chinese Journal of Mechanical Engineering 22, no 05 (2009) : 717. http://dx.doi.org/10.3901/cjme.2009.05.717.
Texte intégralBikas, Charisis, Angelos Argyrou, George Pintzos, Christos Giannoulis, Kostantinos Sipsas, Nikolaos Papakostas et George Chryssolouris. « An Automated Assembly Process Planning System ». Procedia CIRP 44 (2016) : 222–27. http://dx.doi.org/10.1016/j.procir.2016.02.085.
Texte intégralWang, Wurong, Guanlong Chen, Zhonqin Lin et Xinmin Lai. « Automated Hierarchical Assembly System Construction in Automobile Body Assembly Planning ». Journal of Mechanical Design 127, no 2 (1 mars 2005) : 347–51. http://dx.doi.org/10.1115/1.1829724.
Texte intégralBozhko, A. N. « Structural Analysis of Product and Computer-Aided Assembly Planning in AssemBL Software Package ». Mechanical Engineering and Computer Science, no 8 (22 octobre 2018) : 11–33. http://dx.doi.org/10.24108/0818.0001424.
Texte intégralSunil, V. B., et S. S. Pande. « WebROBOT : Internet based robotic assembly planning system ». Computers in Industry 54, no 2 (juin 2004) : 191–207. http://dx.doi.org/10.1016/j.compind.2003.07.008.
Texte intégralKöhne, Axel. « Integration of Action Planning and Configuration in Assembly System Planning ». IFAC Proceedings Volumes 25, no 28 (octobre 1992) : 276–80. http://dx.doi.org/10.1016/s1474-6670(17)49509-7.
Texte intégralThèses sur le sujet "Assembly planning system"
Kitano, Akira. « A prototype computer-aided assembly planning system ». Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/14059.
Texte intégralYang, Fan. « DISCRETE COMPLIANT MOTION PLANNING SYSTEM FOR ROBOTIC ASSEMBLY ». Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/195237.
Texte intégralShukri, Mohamed Ibrahim. « Computer-aided analysis and planning of a flexible assembly system ». Thesis, University of Salford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315366.
Texte intégralDas, Sanchoy K. « Selection of an optimal set of assembly part delivery dates in a stochastic assembly system ». Thesis, Virginia Tech, 1985. http://hdl.handle.net/10919/45640.
Texte intégralThe scheduling of material requirements at a factory to maximize profits.or productivity is a difficult mathematical problem. The stochastic nature of most production setups introduces additional complications as a result of the uncertainty involved in vendor reliability and processing times. But in developing the descriptive model for a system, a true representation can only be attained if the variability of these elements is considered.
Here we present the development of a normative model based on a new type of descriptive model which considers the element of stochasticity. The arrival time of an assembly part from a vendor is considered to be a normally distributed random variable. We attempt to optimize the system with regard to work-in-process inventory using a dynamic programming algorithm in combination with a heuristic procedure. The decision variable is the prescribed assembly part delivery date. The model is particularly suitable for application in low volume assembly lines, where products are manufactured in discrete batches.
Master of Science
Johansson, Matilda, et Robin Sandberg. « How Additive Manufacturing can Support the Assembly System Design Process ». Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Industriell organisation och produktion, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-30887.
Texte intégralHansson, Tengberg Henrik, et Andreas Adlerborn. « Design of an Assembly System at AERCRETE INDUSTRIES ». Thesis, Jönköping University, Jönköping University, JTH, Industrial Engineering and Management, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-10742.
Texte intégralThe forming of an assembly system is a complex task, which should be considered as never ending. In order to successfully plan and implement an assembly system it is of vital importance that the obstacles and preconditions that have an impact on the system are identified and evaluated. This together with the necessary support activities and the attributes of the product to be assembled constitutes the starting point for the forming of the assembly system.
The aim of this thesis is to link the theoretical findings with the issues stated above, and through this explain a best practice approach when forming the assembly system. The theoretical work aims at describing the nature and activities within assembly and manufacturing systems and explains these in three different levels of strategies divided into Manufacturing strategies, Layout, material flow and design strategies and finally Logistic, material handling and quality strategies. Then the obstacles and preconditions found are discussed and evaluated which set the basis for the forming of the assembly system and by linking these with the relevant theory, conceptual design proposals for the assembly system and the Logistic support system are formed.
These are then evaluated and finally a proposal for the detailed layout of the assembly system is given. This proposal is then to be used as a guideline for the company Aercrete when forming their assembly system.
Bonert, Martin. « Motion planning for multi-robot assembly systems ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0004/MQ45428.pdf.
Texte intégralNguyen, Dang Tan. « Entwicklung eines effizienten Montageplanungssystems auf Basis von Funktionsfolgen ». Universitätsverlag Chemnitz, 2018. https://monarch.qucosa.de/id/qucosa%3A33551.
Texte intégralThe common methodology for designing automated assembly systems involves the assembly planning and the physical development of overall technical solution. To illustrate the concrete task, standardized symbols are connected together in a flowchart. The designer's main task is the selection and the composition of an optimal configuration of the functional carriers as well as their implementation in an overall solution in consideration of the predetermined boundary conditions. One problem is the lack of information content of the previously used handling symbols and the symbols for determining the functional carriers, which describe the assembly and handling planning. The other is the insufficient methods for selecting the functional carriers from the different variants based on minimum cycle time and total acquisition cost. In order to realize an efficient assembly planning system, the objective is therefore to expand the information content of the standardized symbols and equip them with logical interfaces for automated connection in the functional sequence. These new symbols contain the definition of the functions as well as all boundary conditions and parameters for the unambiguous description of the handling task. These parameters are utilised to create requirement lists and search for suitable plant components. In order to select the optimal components of the assembly system, the linear optimization problem regarding the combination of cycle time and total acquisition costs is solved.
Khalil, Eiad. « Intelligent planning and control of multi-assembly systems ». Thesis, Sheffield Hallam University, 2008. http://shura.shu.ac.uk/19909/.
Texte intégralByrne, Carlton B. « Assembly task identification and strategy development using expert systems and neural networks ». Thesis, Cardiff University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266650.
Texte intégralLivres sur le sujet "Assembly planning system"
Shukri, Mohamed Ibrahim. Computer-aided analysis and planning of a flexible assembly system. Salford : University of Salford, 1991.
Trouver le texte intégralStrategieunterstützungsmodelle für Montageplanungen : System Dynamics-Modelle zur Analyse und Gestaltung der Flexibilität von Montagesystemen. Frankfurt am Main : P. Lang, 1988.
Trouver le texte intégralNorth Carolina. General Assembly. Legislative Research Commission. Growth management system : Report to the 1989 General Assembly of North Carolina, 1989 session. [Raleigh, N.C.] : The Commission, 1988.
Trouver le texte intégralNorth Carolina. General Assembly. Legislative Research Commission. Growth management system : Report to the 1989 General Assembly of North Carolina, 1989 session. [Raleigh] : The Commission, 1988.
Trouver le texte intégralNew Jersey. Legislature. General Assembly. Transportation Committee. Committee meeting of Assembly Transportation Committee : Overview of the current status of the E-ZPass system. Trenton, N.J : Office of Legislative Services, Public Information Office, Hearing Unit, 2002.
Trouver le texte intégralNew Jersey. Legislature. General Assembly. Transportation Committee. Committee meeting of Assembly Transportation Committee : Excerpt of meeting dealing with E-ZPass system : overview of the current status of the E-ZPass system. Trenton, N.J : Office of Legislative Services, Public Information Office, Hearing Unit, 2002.
Trouver le texte intégralNew Jersey. Legislature. General Assembly. Transportation Committee. Committee meeting of Assembly Transportation Committee : Assembly Resolution no. 106 (gives Assembly Transportation Committee powers conferred under Ch. 13 of Title 32 of the revised statutes) : overview of the current status of the E-ZPass system. Trenton, N.J : Office of Legislative Services, Public Information Office, Hearing Unit, 2002.
Trouver le texte intégralBonert, Martin. Motion planning for multi-robot assembly systems. Ottawa : National Library of Canada, 1999.
Trouver le texte intégralSawik, Tadeusz. Production Planning and Scheduling in Flexible Assembly Systems. Berlin, Heidelberg : Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58614-9.
Texte intégralChapitres de livres sur le sujet "Assembly planning system"
Nof, Shimon Y., Wilbert E. Wilhelm et Hans-Jürgen Warnecke. « Assembly system design and planning ». Dans Industrial Assembly, 200–258. Boston, MA : Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6393-8_5.
Texte intégralDe Lit, Pierre, et Alain Delchambre. « Preliminary Assembly Planning ». Dans Integrated Design of a Product Family and Its Assembly System, 157–97. Boston, MA : Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0417-7_7.
Texte intégralDe Lit, Pierre, et Alain Delchambre. « Detailed Design for Assembly and Assembly Planning ». Dans Integrated Design of a Product Family and Its Assembly System, 199–224. Boston, MA : Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0417-7_8.
Texte intégralChang, Kai-Hsiung, et William G. Wee. « A Knowledge-Based Mechanical Assembly Planning System ». Dans Expert Systems in Engineering Applications, 291–306. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84048-7_15.
Texte intégralHamza, Karim, Juan F. Reyes-Luna et Kazuhiro Saitou. « Simultaneous Assembly Planning and Assembly System Design Using Multi-objective Genetic Algorithms ». Dans Genetic and Evolutionary Computation — GECCO 2003, 2096–108. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-45110-2_106.
Texte intégralDuda, Jan. « Formal Description of Integrated Process and Assembly System Planning ». Dans Lecture Notes in Mechanical Engineering, 79–89. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68619-6_8.
Texte intégralHsu, Y. Y., W. C. Chen, P. H. Tai et Y. T. Tsai. « A Knowledge-Based Engineering System for Assembly Sequence Planning ». Dans Proceedings of the 36th International MATADOR Conference, 123–26. London : Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-432-6_28.
Texte intégralKhan, A., et M. K. Khan. « A Knowledge-Based Planning System for the Multi-Product Assembly Lines ». Dans Proceedings of the Thirty-Second International Matador Conference, 201–6. London : Macmillan Education UK, 1997. http://dx.doi.org/10.1007/978-1-349-14620-8_32.
Texte intégralFortin, C., C. Mascle, J. R. Rene Mayer, G. M. Cloutier, M. Balazinski, Y. A. Mir et I. Belanger. « An Interactive Computer Aided Process Planning System for Manufacturing, Assembly and Inspection ». Dans Proceedings of the Thirty-Second International Matador Conference, 551–56. London : Macmillan Education UK, 1997. http://dx.doi.org/10.1007/978-1-349-14620-8_87.
Texte intégralHe, Fei, Kang Shen et Ning Guo. « Modeling of Assembly System Complexity and Its Application for Planning Horizon Problem ». Dans Recent Trends in Intelligent Computing, Communication and Devices, 905–18. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9406-5_109.
Texte intégralActes de conférences sur le sujet "Assembly planning system"
Zhang, Weize, Ruofeng Tong et Jinxiang Dong. « Assembly Sequence Planning in VM System ». Dans 2007 11th International Conference on Computer Supported Cooperative Work in Design. IEEE, 2007. http://dx.doi.org/10.1109/cscwd.2007.4281558.
Texte intégralBryan, A., S. J. Hu et Y. Koren. « Assembly System Reconfiguration Planning Using Genetic Algorithm ». Dans ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59066.
Texte intégralNurimbetov, Birzhan, Margulan Issa et Huseyin Atakan Varol. « Robotic Assembly Planning of Tensegrity Structures ». Dans 2019 IEEE/SICE International Symposium on System Integration (SII). IEEE, 2019. http://dx.doi.org/10.1109/sii.2019.8700342.
Texte intégralMorato, Carlos, Krishnanand Kaipa et Satyandra K. Gupta. « Assembly Sequence Planning by Using Multiple Random Trees Based Motion Planning ». Dans ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71243.
Texte intégralZhang Zheng, Xie Cunxi, Shao Ming et Hu Qingchun. « Virtual reality for planning robot flexible assembly system ». Dans 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE, 1999. http://dx.doi.org/10.1109/aim.1999.803256.
Texte intégralTerada, Yuzuru, et Satoshi Murata. « Modular Structure Assembly Using Blackboard Path Planning System ». Dans 23rd International Symposium on Automation and Robotics in Construction. International Association for Automation and Robotics in Construction (IAARC), 2006. http://dx.doi.org/10.22260/isarc2006/0157.
Texte intégralYin, Wensheng. « Connection Knowledge System for the Assembly Sequence Planning ». Dans 2015 6th International Conference on Manufacturing Science and Engineering. Paris, France : Atlantis Press, 2015. http://dx.doi.org/10.2991/icmse-15.2015.246.
Texte intégralBryan, A., S. J. Hu et Y. Koren. « Methodology for Solving the Assembly System Reconfiguration Planning Problem ». Dans ASME 2011 International Manufacturing Science and Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/msec2011-50089.
Texte intégralXiaomei Hu, Wenhua Zhu, Tao Yu et Zonghui Xiong. « A script-driven virtual assembly simulation system based on assembly sequence concurrent planning ». Dans 2009 International Conference on Mechatronics and Automation (ICMA). IEEE, 2009. http://dx.doi.org/10.1109/icma.2009.5246411.
Texte intégralYang, Yahui, et Zezhi Ren. « Research and Application of Assembly Planning and Scheduling System for Automobile Assembly MES ». Dans 2013 Fifth International Conference on Computational and Information Sciences (ICCIS). IEEE, 2013. http://dx.doi.org/10.1109/iccis.2013.319.
Texte intégralRapports d'organisations sur le sujet "Assembly planning system"
African Open Science Platform Part 1 : Landscape Study. Academy of Science of South Africa (ASSAf), 2019. http://dx.doi.org/10.17159/assaf.2019/0047.
Texte intégral