Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Atg18.

Thèses sur le sujet « Atg18 »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 43 meilleures thèses pour votre recherche sur le sujet « Atg18 ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.

1

Stephan, Joseph. « An Evolutionary Proteomics Approach For The Identification Of Pka Targets In Saccharomyces Cerevisiae Identifies Atg1 And Atg13, Two Proteins That Play A Central Role In The Regulation Of Autophagy By The Ras/Pka Pathway And The Tor Pathway ». The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1218042573.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Jenzer, Céline. « Physiopathologie de l’autophagie au cours du développement embryonnaire chez Caenorhabditis elegans ». Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS201.

Texte intégral
Résumé :
La macroautophagie est un processus cellulaire qui permet la dégradation et le recyclage de constituants cytoplasmiques par formation de vésicules à double membrane, les autophagosomes qui fusionnent ensuite avec les lysosomes. Ce processus intervient dans divers processus physiologiques tels que le développement, la longévité, la mort cellulaire et dans des pathologies humaines comme des cancers ou maladies neurodégénératives. Mes travaux de thèse ont révélé l’existence de rôles séquentiels et spécifiques des protéines autophagiques, LGG-1 et LGG-2, homologues d’Atg8/LC3 chez le nématode Caenorhabditis elegans. Cette étude a été réalisée dans l’embryon précoce sur une population particulière d’autophagosomes responsables d’un processus physiologique stéréotypé : la dégradation des mitochondries paternelles au moment de la fécondation. Nous avons montré que LGG-1 est recruté au niveau des autophagosomes précoces et permet le recrutement de LGG-2 qui intervient plus tardivement dans le processus autophagique pour permettre la fusion des autophagosomes avec les lysosomes. De plus, la fonction de LGG-1 peut être complémentée par son homologue humain témoignant de l’intérêt du système modèle C. elegans pour l’analyse des homologues d’Atg8.Par ailleurs, des études récentes ont démontré que la protéine autophagique LC3 était recrutée au cours de la phagocytose des corps apoptotiques. Ce processus a été appelé LAP pour LC3-associated phagocytosis. Par des approches génétiques et cellulaires, utilisant la microscopie optique et électronique, j’ai montré qu’il existait une implication différente de protéines autophagiques LGG-1 et LGG-2 dans la dégradation des corps apoptotiques chez C. elegans. La protéine LGG-2, spécifiquement, joue un rôle dans la cellule phagocytaire afin de dégrader le corps apoptotique. Ces travaux suggèrent également une implication de l’autophagie dans le corps apoptotique pour permettre la phagocytose
Macroautophagy is a major ubiquitous catabolic process which allows the bulk degradation and recycling of cytoplasmic constituents by formation of double membrane vesicles called autophagosomes which then fuse with lysosomes. This process is involved in a large variety of physiological processes such as development, anti-aging, cell death and in human pathologies like cancers or neurodegenerative diseases. My thesis work revealed the existence of sequential and specific roles of autophagic proteins LGG-1 and LGG-2, homologs of Atg8/LC3 in Caenorhabditis elegans. In this study, we focused on a particular population of autophagosomes involved in a physiological process in early embryos: the degradation of paternal mitochondria during fertilization. We showed that LGG-1 is recruited at the early autophagosomes and allows LGG -2 recruitment which acts later in the autophagic process to allow the fusion of autophagosomes with lysosomes. Moreover, the function of LGG -1 can be complemented with its human homologs revealing the interest of the C. elegans model system for analyzing Atg8 homologs.Furthermore, recent studies have identified the recruitment of autophagic proteins during phagocytosis of apoptotic cells in the so called LC3-associated phagocytosis (LAP). By genetic and cellular approaches, using optical and electron microscopy, I showed that there is a different involvement of autophagic proteins, LGG-1 and LGG-2 in the degradation of apoptotic cells in C. elegans. LGG-2 protein, specifically, plays a role in phagocytic cell to degrade apoptotic corpses. Moreover, this work suggest a function of autophagy in the apoptotic corpses to allow phagocytosis
Styles APA, Harvard, Vancouver, ISO, etc.
3

[Verfasser], Archna, et Michael [Akademischer Betreuer] Steinert. « Role of ATG12-ATG5 conjugate in autophagy regulation / Archna ; Betreuer : Michael Steinert ». Braunschweig : Technische Universität Braunschweig, 2017. http://d-nb.info/1175817538/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Khaliq, Samira. « Characterization of Atg18p and its role in cellular trafficking in Saccharomyces cerevisiae ». Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4010/.

Texte intégral
Résumé :
Ptdins3P and PtdIns(3,5)P2 are phosphoinositides which act as signaling lipids in eukaryotic cells, mediating trafficking through spatio-temporal regulation of effector proteins. Atg18p, a yeast PROPPIN, binds PtdIns3P and PtdIns(3,5)P2 and this study focuses on characterization of Atg18p in order to gain insight into its functions. In vivo localization of GFP-Atg18p under various conditions indicates that the localization of Atg18p is under dual control of lipid binding as well as protein interactions, especially Vac7p. In vivo investigations of Atg18p mutants (in the highly conserved lipid binding domain) indicate that Atg18p lipid binding is slightly distinct from K. lactis Hsv2p lipid binding. In addition, Fourier transform ion cyclotron resonance mass spectrometry data indicates that Atg18p-lipid binding could be affected through possible modifications. The experiments carried out in this research also show that Atg18p binds Vps41p and Apl5p independently, through particular sites which overlap its lipid binding domain and hence offers a plausible explanation for in vivo localization of Atg18p during various processes e.g salt stress and autophagy.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Leveque, Maude. « Elucidating the canonical and non-canonical functions of the autophagy protein TgATG8 in the apicomplexan parasite Toxoplasma gondii ». Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT031.

Texte intégral
Résumé :
L'autophagie est un processus d'auto-dégradation conservé chez la plupart des eucaryotes. Généralement induit par un stress nutritif, il requiert la formation d'un compartiment à double membrane appelé l’autophagosome qui séquestre et transporte des composants intracellulaires dégradés et recyclés dans le lysosome. La protéine ATG8, qui occupe une position centrale dans ce processus, est recrutée aux membranes de l’autophagosome par un système de conjugaison très régulé. Toxoplasma gondii est un protozoaire parasite appartenant au phylum des Apicomplexes, qui contient une machinerie d'autophagie réduite. Suite à un stress nutritif, ce parasite intracellulaire obligatoire est néanmoins capable de générer des autophagosomes décorés par TgATG8. De façon surprenante, en condition normale de croissance intracellulaire, cette protéine se localise principalement à l’apicoplaste, un plaste non photosynthétique acquis par endosymbiose secondaire qui contient des voies métaboliques essentielles à la survie du parasite. Le but de ma thèse a été d’élucider les fonctions canoniques et non canoniques d‘ATG8 chez Toxoplasma. La première partie de cette étude porte sur la caractérisation fonctionnelle et spatio-temporelle de l'association de TgATG8 avec l’apicoplaste. Nous avons montré que TgATG8 est recrutée aux extrémités de l’apicoplaste en élongation, ce qui permet le maintien de l’organelle à travers les générations en le connectant aux centrosomes pour une répartition dans les deux cellules filles. La deuxième partie de ce travail vise à isoler et identifier par spectrométrie de masse des partenaires putatifs de TgATG8 qui seraient impliqués dans l’autophagie ou dans le rôle non-canonique à l’apicoplaste. Nous avons analysé la localisation subcellulaire de neuf candidats et des caractérisations fonctionnelles ont été entreprises pour trois protéines. Bien que nous n’ayons pas pu confirmer leurs interactions avec TgATG8, cela a permis l'identification de nouvelles protéines parasitaires: une phospholipase à l’apicoplaste essentielle à la survie du parasite, un régulateur potentiel du cycle cellulaire et un composant du cytosquelette du parasite
Autophagy is a self-degradative process evolutionary conserved among eukaryotes. Typically induced by starvation, it involves the formation of a double membrane compartment called the autophagosome to sequester and deliver intracellular components for lysosomal degradation and recycling. The protein ATG8 occupies a central position in this process and is recruited to autophagosomal membranes by a highly regulated conjugation system. Toxoplasma gondii is a parasitic protist belonging to the Apicomplexa phylum, which possesses a reduced autophagy machinery. This obligate intracellular parasite is nevertheless able to generate TgATG8-decorated autophagosomes upon nutrient stress. Surprisingly, during normal intracellular parasite growth, TgATG8 mainly localizes to the apicoplast, a non-photosynthetic plastid acquired by secondary endosymbiosis which hosts essential metabolic pathways. My thesis aimed to elucidate the canonical and non-canonical roles of ATG8 in Toxoplasma. The first part of this study is the functional and spatio-temporal characterization of TgATG8 association with the apicoplast. We showed TgATG8 is recruited to both ends of the elongating plastid during parasite division, and allows the maintenance of the organelle across generations by permitting its centrosome-driven distribution into the two daughter cells. The second part of this work is the isolation and mass spectrometry-based identification of putative TgATG8-interacting proteins that would be involved in autophagy-related or non-canonical functions. We analyzed the subcellular localization of nine candidates and functional studies were conducted for three proteins. Although we were unable to confirm their interactions with TgATG8, this approach allowed the identification of novel and important parasite proteins: an essential apicoplast phospholipase, a potential regulator of the cell cycle, and a component of the parasite cytoskeleton
Styles APA, Harvard, Vancouver, ISO, etc.
6

Chew, Leon Harold. « Structural characterization of the Atg1 kinase complex by single particle electron microscopy ». Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/45666.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mayrhofer, Peter [Verfasser], et Thomas [Akademischer Betreuer] Wollert. « Atg11 initiates selective autophagy in yeast by tethering Atg9 vesicles / Peter Mayrhofer ; Betreuer : Thomas Wollert ». München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1209472384/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yeh, Yuh-Ying. « The regulation of Atg1 protein kinase activity is important to the autophagy process in Saccharomyces cerevisiae ». The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1290439442.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Matscheko, Nena Magdalena [Verfasser], et Stefan [Akademischer Betreuer] Jentsch. « Revealing the molecular mechanism of Atg11 and the initation of selective autophagy / Nena Magdalena Matscheko ; Betreuer : Stefan Jentsch ». München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2016. http://d-nb.info/1171705336/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sanwald, Julia [Verfasser], Dieter [Gutachter] Willbold et Björn [Gutachter] Stork. « The ATG8 Protein GABARAP in Secretion, Transport, and Autophagy / Julia Sanwald ; Gutachter : Dieter Willbold, Björn Stork ». Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2021. http://d-nb.info/1225146569/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Munzel, Lena [Verfasser], Michael [Akademischer Betreuer] Thumm, Michael [Gutachter] Thumm et Gerhard [Gutachter] Braus. « Atg21 restricts Atg8 lipidation to a novel vacuole-phagophore contact site / Lena Munzel ; Gutachter : Michael Thumm, Gerhard Braus ; Betreuer : Michael Thumm ». Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://d-nb.info/1202604927/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Budovskaya, Yelena V. « An Evaluationary Proteomics Approach for the Identification of Substrates of the Camp-Dependent Protein Kinase in Saccharomyces Cerevisiae ». Connect to this title online, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1104152442.

Texte intégral
Résumé :
Thesis (Ph. D.)--Ohio State University, 2005.
Title from first page of PDF file. Document formatted into pages; contains xiv, 128 p.; also includes graphics (some col.) Includes bibliographical references (p. 117-132).
Styles APA, Harvard, Vancouver, ISO, etc.
13

Hofmann, Benjamin [Verfasser], Günther [Akademischer Betreuer] [Gutachter] Woehlke et Friedrich C. [Gutachter] Simmel. « Spatial Coordination of Atg8-Lipidation in Selective and Non-selective Autophagy / Benjamin Hofmann ; Gutachter : Günther Woehlke, Friedrich C. Simmel ; Betreuer : Günther Woehlke ». München : Universitätsbibliothek der TU München, 2016. http://d-nb.info/1123729158/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

三河, 拓己. « 分裂酵母Vps1とAtg8の酸化ストレス抵抗性における機能の解析 ». 京都大学 (Kyoto University), 2010. http://hdl.handle.net/2433/120351.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Seegobin, Matthew. « Examining Parkinson’s Disease Linked DJ-1 and its Interaction with Autophagy Related ATG5 and ATG12 & ; Understanding PINK1’s Functional Interaction with Mitochondrial m-AAA Protease AFG3L2 ». Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/35701.

Texte intégral
Résumé :
Mutations in DJ-1 and PTEN-induced putative kinase 1 (PINK1) have been linked to familial early-onset Parkinson’s disease. However, their functional role is not well understood. Through a mass-spectrometry screen we identified protein interaction candidates ATG5 and ATG12 for DJ-1 and AFG3-like AAA ATPase 2 (AFG3L2) for PINK1. Examination of ATG5, ATG12, and DJ-1 by co-immunoprecipitation through multiple methods, did not validate the interaction. In contrast, the interaction between m-AAA protease AFG3L2 and PINK1 was validated. AFG3L2 selectively stabilized and can differentially cleave PINK1 in-vitro. We observed endogenous mitophagy in AFG3L2 null cells. Furthermore, we elucidated a novel function of mitochondrially-targeted PINK1 fragments in rescuing endogenous mitochondrial fragmentation, increasing both mitochondrial length and networking. Although further examination is needed, these studies provide a greater understanding of the functional interaction between PINK1 and AFG3L2 and provide evidence that DJ-1, ATG5 and ATG12 may not interact.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Perna, Marco [Verfasser], Johannes [Akademischer Betreuer] Buchner et Sevil [Akademischer Betreuer] Weinkauf. « In vitro reconstitution of the Atg1-kinase complex : Revealing the molecular mechanism of autophagy initiation / Marco Perna. Gutachter : Sevil Weinkauf ; Johannes Buchner. Betreuer : Johannes Buchner ». München : Universitätsbibliothek der TU München, 2014. http://d-nb.info/1059857049/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Walker, Dawn Marie. « The Study of Autophagy in Plasmodium falciparum ». The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1385586661.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Vogt, Benjamin [Verfasser], Kay [Akademischer Betreuer] Hofmann et R. Jürgen [Akademischer Betreuer] Dohmen. « A bioinformatical approach for a reliable determination of short motifs for SUMO and Atg8 interaction in Saccharomyces cerevisiae / Benjamin Vogt. Gutachter : Kay Hofmann ; R. Jürgen Dohmen ». Köln : Universitäts- und Stadtbibliothek Köln, 2014. http://d-nb.info/1051077400/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Mitter, Anne Lisa [Verfasser], Michael [Akademischer Betreuer] Thumm, Silvio [Gutachter] Rizzoli et Stefanie [Gutachter] Pöggeler. « Dissecting the molecular function of the ubiquitin-like Atg8 during autophagosome biogenesis in S. cerevisiae / Anne Lisa Mitter ; Gutachter : Silvio Rizzoli, Stefanie Pöggeler ; Betreuer : Michael Thumm ». Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2018. http://d-nb.info/1180026357/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Juris, Lisa Angelika [Verfasser], Michael [Akademischer Betreuer] Thumm, Volker [Akademischer Betreuer] Lipka, Karin [Akademischer Betreuer] Kühnel, Stefanie [Akademischer Betreuer] Pöggeler, Detlef [Akademischer Betreuer] Doenecke et Dieter [Akademischer Betreuer] Schmitt. « Atg21 functions during autophagy as a scaffold for the E3 ubiquitin-­‐like complex in Atg8 lipidation / Lisa Angelika Juris. Gutachter : Michael Thumm ; Volker Lipka ; Karin Kühnel ; Stefanie Pöggeler ; Detlef Doenecke ; Dieter Schmitt. Betreuer : Michael Thumm ». Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2015. http://d-nb.info/1065882351/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Juris, Lisa Angelika Verfasser], Michael [Akademischer Betreuer] Thumm, Volker [Akademischer Betreuer] Lipka, Karin [Akademischer Betreuer] Kühnel, Stefanie [Akademischer Betreuer] Pöggeler, Detlef [Akademischer Betreuer] [Doenecke et Dieter [Akademischer Betreuer] Schmitt. « Atg21 functions during autophagy as a scaffold for the E3 ubiquitin-­‐like complex in Atg8 lipidation / Lisa Angelika Juris. Gutachter : Michael Thumm ; Volker Lipka ; Karin Kühnel ; Stefanie Pöggeler ; Detlef Doenecke ; Dieter Schmitt. Betreuer : Michael Thumm ». Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2015. http://d-nb.info/1065882351/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Busse, Ricarda. « Insights into membrane binding of PROPPINs and Reconstitution of mammalian autophagic conjugation systems ». Doctoral thesis, 2013. http://hdl.handle.net/11858/00-1735-0000-0001-B95B-B.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Scacioc, Andreea. « Structural, biochemical and computational studies on PROPPINs, proteins important in autophagy ». Doctoral thesis, 2014. http://hdl.handle.net/11858/00-1735-0000-0028-8675-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Suttangkakul, Anongpat. « Characterization of ATG1 regulatory complex in Arabidopsis thaliana ». 2008. http://www.library.wisc.edu/databases/connect/dissertations.html.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Schalk, Amanda Marie. « Structural and functional characterization of the autophagy proteins Atg5 and Atg16L1 and their interaction partners ». Doctoral thesis, 2011. http://hdl.handle.net/11858/00-1735-0000-0006-AE0A-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Ho, Kung-Hsien, et 何恭憲. « Characterization of different functional sites of Atg8 in Saccharomyces cerevisiae ». Thesis, 2007. http://ndltd.ncl.edu.tw/handle/96863953850893804690.

Texte intégral
Résumé :
碩士
國立臺灣大學
動物學研究研究所
95
Autophagy is a highly conserved membrane trafficking pathway, which is evoked during stress condition, such as nutrient starvation. Excess or abnormal intracellular macromolecules are sequestered by the double-membrane vesicle, autophagosome, and transported to the vacuole/lysosome for degradation and recycling of nutrient. The released amino acids are used in synthesis of proteins required for cells to adapt to the changed environment. Atg8 is an essential regulator for autophagosome biogenesis. It is post-translationally conjugated to lipid at its C-terminus and is proposed to be the membrane modifier that may be functionally similar to coat proteins. Besides, Atg8 also interacts directly with the autophagic cargo receptor, Atg19. We are interested in whether the Atg8-mediated vesicle expansion process and cargo sorting are coupled. Here we identified 6 residues on Atg8 surface that are required for the modification and/or physiological function of it. Residue Arg28 is specific for the cargo receptor binding; Tyr49, Leu50, Leu55, and Phe79 are involved in different steps of its post-translational modification; and Lys48 is important for perhaps the biogenesis of autophagosome.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Ho, Kung-Hsien. « Characterization of different functional sites of Atg8 in Saccharomyces cerevisiae ». 2007. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-2507200716025600.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Tang, Hong-Wen, et 唐弘文. « Induction of autophagy and apoptosis by Atg1 to promote cell death ». Thesis, 2007. http://ndltd.ncl.edu.tw/handle/39694543867412379166.

Texte intégral
Résumé :
碩士
臺灣大學
生化科學研究所
95
Atg1 encodes a Serine/Threonine kinase. In yeast, studies have found the requirement for Atg1 kinase activity in both CVT and autophagy. Atg1 interacts with multiple components of the autophagic machinery, and multiple signaling pathways converge on Atg1 to regulate autophagy. Thus, Atg1 is likely to represent a nodal point for controlling multiple steps in the autophagic process in response to various stresses. However, in higher eukaryotes, the role of Atg1 is still unclear. It has been shown that autophagy can induce cells death. However, the molecular mechanism underlying the autophagic cell death program is unclear. I have examined a potential role for Atg1 in cell death using Drosophila melanogaster as a model system. My results demonstrate that dAtg1 is sufficient to cause cell death due to the induction of autophagy and apoptosis. These findings provide a direct evidence that autophagy and apoptosis are interconnected. I have also identified a novel protein, dDlk. My results demonstrated that dDlk can induce cell death. The biochemical and genetic data reveal that dDlk interacts with dAtg1 and functions downstream of dAtg1-mediated cell death. Thus, dDlk may be an important downstream player in mediating dAtg1’s biological effects on promoting cell death. I am currently investigating whether dDlk is mediated by Atg1 and what is the biological function of Atg1 in cell death.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Chuang, Li-Jin, et 莊麗瑾. « A Screen for modifiers of Atg1-mediated signaling in Drosophila development ». Thesis, 2010. http://ndltd.ncl.edu.tw/handle/35138851153829891550.

Texte intégral
Résumé :
碩士
臺灣大學
生化科學研究所
98
Abstracts Autophagy is a highly conserved cellular process that involves vesicle-mediated sequestration and degradation of cytoplasmic proteins and organelles. Atg1 is a Ser/Thr kinase that is regulated by TOR-dependent signaling. In yeast, studies have found the requirement for Atg1 kinase activity in both CVT and autophagy. Thus, Atg1 is representing a nodal point for controlling multiple steps in autophagic process in response to various stresses. I have examined that overexpression of Drosophila Atg1 in the developing compound eye triggers cell death and results in eye roughness. Although a number of proteins have been found to associate with Atg1, the identification of Atg1 substrates important for autophagy remains a difficult task. To identify novel genes involved in the Atg1-mediated pathway, I carried out a dominant modifier screen of the Atg1-induced rough eye phenotype using contiguous chromosomal deficiencies that represent more than 70% of the Drosophila genome. Of the 277 deficiencies tested, 26 were identified as suppressors of Atg1 signaling. I characterize a subset of autosomal regions that strongly interact with Atg1. Three novel genes will likely identify Atg1 regulators and should shed some light on how cells are regulated by the balance between cell survival and cell death. I am currently investigating whether these regulators have physical interaction with Atg1 and what is the biological function in cell death.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Tseng, Ben-Lyu, et 曾本嵂. « Study on the Role of atg8 and Autophagy in Planarian Regeneration ». Thesis, 2012. http://ndltd.ncl.edu.tw/handle/26054051918736145532.

Texte intégral
Résumé :
碩士
國立臺灣大學
動物學研究所
100
Autophagy mediates the bulk turnover of cytoplasmic constituents in lysosomes, an important process for cellular metabolism. Autophagy can be induced by various stress stimuli, e.g., nutrient depletion or hypoxic stress. Upon autophagy activation, Atg8 is one of the autophagic proteins that mediate this pathway. Lipidation of Atg8 is used as a marker to monitor autophagy activity. Planarian, due to its high regenerative ability, has been used as the animal model with which to study regeneration. During regeneration, both apoptosis and cell proliferation are evoked in planarian and the separated worm is regenerated into a well-proportioned small planarian. In order to verify if autophagy participates in planarian regeneration, we cloned the atg8 homolog (Djatg8) from Dugesia japonica, which is the only available species of planarian in Taiwan. Sequence analysis of Djatg8 indicated that it highly conserves with human GABARAP (GABA receptor associated protein). Whole mount in situ hybridization of Djatg8 showed that it is expressed throughout the whole body, including pharynx and neuron system. Expression of YFP-tagged Djatg8 in HeLa cells revealed its subcellular localization at autophagosomes/autolysosmes. We also show the functional conservation of Djatg8 in yeast autophagy pathway. By detecting the lipidation of Djatg8, we found that irradiation induces autophage pathway, while there was no significant up-regulation of autophagy during regeneration or starvation process. However, RNAi of Djatg8 does not affect the regeneration of planarian. Our results suggested that autophagy is not the major anabolic process in planarian reorganization, while the ubiquitous expression of Djatg8 implied that autophagy may be involved in other critical functions of planarian.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Tsau, Ming-Tong, et 曹明通. « Cloning and analysis of autophagy-related protein 8 (ATG8) in shrimp ». Thesis, 2013. http://ndltd.ncl.edu.tw/handle/64770529536616165081.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Tang, Hong-Wen. « Induction of autophagy and apoptosis by Atg1 to promote cell death ». 2007. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-2507200723562000.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Munzel, Lena. « Atg21 restricts Atg8 lipidation to a novel vacuole-phagophore contact site ». Doctoral thesis, 2019. http://hdl.handle.net/21.11130/00-1735-0000-0003-C14A-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Varberg, Joseph M. « Biochemical and pharmacological characterization of the Atg8 conjugation system in toxoplasma gondii ». Diss., 2017. http://hdl.handle.net/1805/14602.

Texte intégral
Résumé :
Indiana University-Purdue University Indianapolis (IUPUI)
Toxoplasma gondii is an important human pathogen that infects millions of people worldwide and causing severe and potentially lethal disease in immunocompromised individuals. Recently, a homologue for the autophagy protein Atg8 (TgAtg8) was identified in Toxoplasma that is required for both canonical and noncanonical processes essential for parasite viability. Importantly, TgAtg8 functionality requires its conjugation to phosphatidylethanolamine through the activity of the Atg8 conjugation system. In this thesis, we characterized the proteins that interact with TgAtg8 and TgAtg3, a component of the Atg8 conjugation system, to further define their functions in Toxoplasma and identify opportunities for targeted inhibition of Atg8-related processes. We previously identified that TgAtg8 is acetylated at lysine 23 (K23) and assessed the role of this modification in this thesis. Using mutagenesis, we showed that K23 acetylation did not modulate the interaction with TgAtg3, but appeared to promote TgAtg8 protein stability. Additionally, endogenous mutation of K23 to the nonacetylatable amino acid arginine resulted in severe impairment of parasite replication and spontaneous differentiation into bradyzoites. To gain insight into the role of TgAtg8 in Toxoplasma biology, we next characterized TgAtg8 and TgAtg3 interacting proteins using affinity purification and mass spectrometry. We identified a novel group of interacting proteins that are unique to Toxoplasma, including the dynamin-related protein DrpC. Functional characterization of DrpC identified a potential role of TgAtg8 in trafficking of membrane from the Golgi to the nascent daughter parasites during replication. Lastly, we examined a group of small molecules recently identified as Atg3-Atg8 inhibitors in Plasmodium falciparum and assessed their activity against Toxoplasma. Although the compounds effectively inhibited Toxoplasma replication, they did so through novel mechanisms of action unrelated to the disruption of the TgAtg3-Atg8 interaction. Together, this work provides insight into the function of the Atg8 conjugation system in Toxoplasma that will help guide the future development of novel therapeutics targeting Atg8-related processes.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Wu, Jui-Hsuan, et 吳睿軒. « Characterization of function of MLF, ATG8 and FYVE containing protein in Giardia lamblia ». Thesis, 2017. http://ndltd.ncl.edu.tw/handle/z5fcks.

Texte intégral
Résumé :
碩士
國立臺灣大學
微生物學研究所
105
Giardia lamblia is an early-branching and widely distributed intestinal protozoan parasites. People get infected by drinking the contaminated water. G. lamblia have two stages in the life cycle: a binucleate trophozoite and a quadrinucleate cyst. G. lamblia trophozoite parasitizies in small intestine and encysts by PH value changes. Autophagy is a self-degradative process of organisms that is an important balance of cell cycle in development and metabolism. In the previous reference, ATG8 was associated with the autophagosomes formation in Saccharomyces cerevisiae, and can be used as markers of autophagy. FYVE protein promotes autophagosomes formation in human and interacts with human autophagy-related protein-LC3 .We found localization of myeloid leukemia factor (MLF) in the vesicles. We’ve discovered autophagosome maker protein LC3/ATG8 related protein and FYVE protein that may transport vesicles in the Giardia by search genome database. This research will determine G. lamblia autophagy related mechanism. We observed ATG8 and FYVE proteins both located in MLF vesicles. MLF over expression can induce CWP1 protein level. In earlier experiments, we found the G. lamblia cell cycle relate CDK2 protein is cytosolic, but CDK2dm with a deletion of 49-1742a.a localized in MLF contained vesicles. To test the characteristics of these vesicles, we performed the starvation analysis, and treated PBS to cause starvation response in Giardia wild type WB strain. We found increased levels of MLF protein expression. We tested various autophagy inhibitors. Chloroquine inhibits the fusion of autophagosomes with lysosomes, and causes increased autophagosome formation. Nocodazole causes lysosomal damage, and decreases fusion ability of autophagosomes with lysosomes, resulting in an increase in autophagosome formation. MG132 is a proteasome inhibitor, that increases damage proteins and autophagy formation. Wortmannin is phagophore inhibitor and can inhibit autophagy formation. Dithiothreitol (DTT) can interfere the folding of proteins in ER, and induce expression of autophagosme maker protein-LC3. Puromycin (PU) and G418 will cause Giardia death. E. coli can induce autophagy (Xenophagy) in mammal cell, and can be used to test Xenophagy in Giardia. First, we treated chloroquine, nocodazole, MG132, wortmannin, DTT, G418, puromycin (PU) , and E. coli in the Giardia wild type WB cells. We found increased numbers of MLF vesicles and increased MLF protein expression by chloroquine, nocodazole, MG132, wortmannin, DTT, G418, puromycin and E. coli treatment. The expression of BIP protein was also increased in the chloroquine treatment experimental group. Then we tested the starvation effect in pATG8 experession strain. Increased numbers of ATG8 vesicles and increased ATG8 protein expression was found. We treated chloroquine, nocodazole, MG132, DTT, G418, and E. coli in the pATG8 expression strain, and found increased numbers of ATG8 vesicles and increased ATG8 protein expression. Using immunoprecipitation methods, we found that ATG8 proteins interacted with BIP. We transfected human LC3b gene in Giardia and created Giardia’s human LC3b expression strain-pLC3b. We found pLC3b interacted with G. lamblia MLF protein. The results showed that human LC3b was similar to G. lamblia ATG8 protein. Next we tested the starvation effect in pFYVE experession strain. Increased numbers of FYVE vesicles and increased FYVE protein expression was found. We treated chloroquine, nocodazole, MG132, DTT, G418, and E. coli in the pFYVE expression strain, and found increased numbers of FYVE vesicles and increased FYVE protein expression. We created Giardia’s mutation strain-pFYVEm1, and found that pFYVEml expression strain, expressed lower level of CWP1 protein than pFYVE expression strain. Using immunoprecipitation methods, we found that FYVE proteins interacted with BIP, and FYVE protein also interacted with ATG8 protein. MLF protein may be an autophagy related protein in Giardia. We also wanted to know the function of human MLF2 protein in Giardia. We transfected human MLF2 gene in Giardia and created Giardia’s human MLF2 expression strain-phMLF2. We tested the starvation effect in phMLF2 experession strain. Increased numbers of hMLF2 and increased hMLF2 protein expression was found. We treated chloroquine, nocodazole, MG132, DTT, G418, and E. coli in the phMLF2 expression strain, and found increased numbers of hMLF2 vesicles and increased hMLF2 protein expression. Using immunoprecipitation methods, we found hMLF2 proteins interacted with G. lamblia MLF protein. We treat chloroquine in the pCDK2dm expression strain, and found increased numbers of CDK2dm vesicles and increased CDK2dm protein expression. Next, we transfected pMLFHA plasmid in the CDK2dm expression strain. And found increased level of MLF and CDK2dm proteins and number of those vesicles, but reduced CWP1 protein expression. We provide evidence that the MLF、ATG8 and FYVE protein expression increased and numbers of vesicles by autophagy inhibitors trement. Using a mutant protein model CDK2dm, we also know that vesicles may transport mutant protein. Key words: Giardia lamblia, Autophagy, ATG8, FYVE domain, MLF, Chloroquine
Styles APA, Harvard, Vancouver, ISO, etc.
36

Mitter, Anne Lisa. « Dissecting the molecular function of the ubiquitin-like Atg8 during autophagosome biogenesis in S. cerevisiae ». Doctoral thesis, 2018. http://hdl.handle.net/11858/00-1735-0000-002E-E39E-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Fineis, Peter. « Autophagic regulation of Wolbachia in Drosophila ». Thesis, 2019. https://hdl.handle.net/2144/41522.

Texte intégral
Résumé :
Over the past 20 years numerous major arbovirus outbreaks including Yellow Fever virus, West Nile virus, dengue virus, Chikungunya virus, and most recently Zika virus, have highlighted the need for novel methods of control for these diseases. Wolbachia are maternally transmitted endosymbionts that inhabit a large portion of arthropods, including Aedes aegypti, Aedes albopictus, and Culex pipiens, which are three mosquito vectors that transmit these viruses. Wolbachia have been shown to reduce vector competency in these mosquitos. However, the molecular pathways at the Wolbachia-host cell interface are mostly unknown. For fundamental biological questions and for vector control approaches, there is a need to further our understanding of host-symbiont interactions at the molecular level. From this, autophagy has been suggested as one possible mechanism at this interface. Autophagy is a conserved, cellular, homeostasis process that involves degrading cytoplasmic contents, including organelles and protein aggregates. Canonical autophagy can be a large, bulky process, or a more targeted, selective one. There is the potential for Wolbachia to both benefit from the nutrients generated from bulk autophagy, but also be targeted in the host’s immune response, as selective autophagy has been shown to aid in removal of intracellular pathogens. Here we describe how autophagy plays a role in regulating Wolbachia in Drosophila melanogaster as a model for mosquitos. Using antibody and FISH staining we visualized differences in Wolbachia density after knocking down autophagy genes. Knocking down Atg1, an important factor in initiating autophagy, was sufficient for increasing Wolbachia density in polar cells, but other components like Atg7 and Ref(2)p were not. Results varied based on the Wolbachia strain infection, showing that autophagy differentially affects Wolbachia according to the strain. These findings further our understanding of molecular host-symbiont interactions and provide additional tools to Wolbachia based vector control strategies.
2021-10-09T00:00:00Z
Styles APA, Harvard, Vancouver, ISO, etc.
38

Juris, Lisa Angelika. « Atg21 functions during autophagy as a scaffold for the E3 ubiquitin-­‐like complex in Atg8 lipidation ». Doctoral thesis, 2014. http://hdl.handle.net/11858/00-1735-0000-0022-5D90-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Semerádová, Hana. « Vazba paralogů EXO70 na ATG8 a funkční rozdělení rodiny EXO70 dle účasti v autofagii (Arabidopsis thaliana) ». Master's thesis, 2015. http://www.nusl.cz/ntk/nusl-343788.

Texte intégral
Résumé :
The exocyst, an octameric protein complex conserved among all eukaryotes, mediates tethering of the vesicle prior to its fusion with the target membrane. Apart from the function of exocyst in exocytosis, new studies from both mammalian and plant fields report its involvement in the cellular self-eating process called autophagy. In land plants the number of paralogs of some exocyst subunits is extraordinarily large. There are 23 paralogs of Exo70 subunit in Arabidopsis thaliana. It is supposed that these paralogs have acquired functional specialization during the evolution - including involvement in autophagy. Using yeast two- hybrid assay it is shown here that Exo70B1 and Exo70B2, but not other Arabidopsis Exo70 paralogs interact with Atg8, an autophagosomal marker. The proximity of these two paralogs and Atg8 in vivo was confirmed by independent Förster resonance energy transfer (FRET) method. Interestingly, interaction of Atg8f with Exo70B2 paralog appears to be stronger than with Exo70B1. Exo70B1-mRUBY expressed under the natural promoter shows punctate membrane structures that are mostly static. That changes after the tunicamycin treatment - movement of some of these dots was induced. Homology modeling of Exo70B1 and Exo70B2 proteins tertiary structure in combination with bioinformatic prediction based...
Styles APA, Harvard, Vancouver, ISO, etc.
40

Werner, Antonia. « The interplay of SmNBR1 and SmATG8 in selective autophagy of the filamentous fungus Sordaria macrospora ». Doctoral thesis, 2017. http://hdl.handle.net/11858/00-1735-0000-002E-E38F-B.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Welter, Evelyn. « Identification of novel components involved in selective and unselective autophagic pathways ». Doctoral thesis, 2011. http://hdl.handle.net/11858/00-1735-0000-000D-F0AE-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Montino, Marco. « Dissecting molecular elements of mitophagy and the lysis of intravacuolar vesicles ». Doctoral thesis, 2015. http://hdl.handle.net/11858/00-1735-0000-0023-965C-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Otto, Florian Bo. « Dissection of the molecular machinery of micro- and macronucleophagy ». Doctoral thesis, 2019. http://hdl.handle.net/21.11130/00-1735-0000-0005-1297-C.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie