Articles de revues sur le sujet « Atomic defect »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Atomic defect ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Chu, Liu, Jiajia Shi, and Eduardo Souza de Cursi. "The Fingerprints of Resonant Frequency for Atomic Vacancy Defect Identification in Graphene." Nanomaterials 11, no. 12 (2021): 3451. http://dx.doi.org/10.3390/nano11123451.
Texte intégralSozykin, Sergey Anatolevich, Valeriy Petrovich Beskachko, and G. P. Vyatkin. "Atomic Structure and Mechanical Properties of Defective Carbon Nanotube (7,7)." Materials Science Forum 843 (February 2016): 78–84. http://dx.doi.org/10.4028/www.scientific.net/msf.843.78.
Texte intégralSchuler, Bruno, Katherine A. Cochrane, Christoph Kastl, et al. "Electrically driven photon emission from individual atomic defects in monolayer WS2." Science Advances 6, no. 38 (2020): eabb5988. http://dx.doi.org/10.1126/sciadv.abb5988.
Texte intégralKim, Honggyu, Yifei Meng, Ji-Hwan Kwon, Jean-Luc Rouviére, and Jian Min Zuo. "Determination of atomic vacancies in InAs/GaSb strained-layer superlattices by atomic strain." IUCrJ 5, no. 1 (2018): 67–72. http://dx.doi.org/10.1107/s2052252517016219.
Texte intégralHsu, Julia W. P. "Semiconductor Defect Studies Using Scanning Probes." Microscopy and Microanalysis 6, S2 (2000): 704–5. http://dx.doi.org/10.1017/s1431927600036011.
Texte intégralStemmer, S., G. Duscher, E. M. James, M. Ceh, and N. D. Browning. "Atomic Scale Structure-Property Relationships of Defects and Interfaces in Ceramics." Microscopy and Microanalysis 4, S2 (1998): 556–57. http://dx.doi.org/10.1017/s143192760002290x.
Texte intégralWeber, William J., Fei Gao, Ram Devanathan, Weilin Jiang, and Y. Zhang. "Defects and Ion-Solid Interactions in Silicon Carbide." Materials Science Forum 475-479 (January 2005): 1345–50. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.1345.
Texte intégralWang, Zhen, Hangwen Guo, Shuai Shao, et al. "Designing antiphase boundaries by atomic control of heterointerfaces." Proceedings of the National Academy of Sciences 115, no. 38 (2018): 9485–90. http://dx.doi.org/10.1073/pnas.1808812115.
Texte intégralCho, Philip, Aihua Wood, Krishnamurthy Mahalingam, and Kurt Eyink. "Defect Detection in Atomic Resolution Transmission Electron Microscopy Images Using Machine Learning." Mathematics 9, no. 11 (2021): 1209. http://dx.doi.org/10.3390/math9111209.
Texte intégralZiatdinov, Maxim, Ondrej Dyck, Xin Li, et al. "Building and exploring libraries of atomic defects in graphene: Scanning transmission electron and scanning tunneling microscopy study." Science Advances 5, no. 9 (2019): eaaw8989. http://dx.doi.org/10.1126/sciadv.aaw8989.
Texte intégralForde, Aaron, Erik Hobbie, and Dmitri Kilin. "Role of Pb2+ Adsorbents on the Opto-Electronic Properties of a CsPbBr3 Nanocrystal: A DFT Study." MRS Advances 4, no. 36 (2019): 1981–88. http://dx.doi.org/10.1557/adv.2019.268.
Texte intégralMatsunaga, Katsuyuki, Teruyasu Mizoguchi, Atsutomo Nakamura, Takahisa Yamamoto, and Yuichi Ikuhara. "First-Principles Calculations of Titanium Dopants in Alumina." Materials Science Forum 475-479 (January 2005): 3095–98. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.3095.
Texte intégralJones, Jessica Catharine, Ethan Kamphaus, Jeffrey R. Guest, Lei Cheng, and Alex B. F. Martinson. "Targeted Dehydration As a Route to Site-Selective Atomic Layer Deposition at TiO2 Defects." ECS Meeting Abstracts MA2022-02, no. 31 (2022): 1131. http://dx.doi.org/10.1149/ma2022-02311131mtgabs.
Texte intégralYudin, Valeriy, and Alexey Taichenachev. "Mass defect effects in atomic clocks." Laser Physics Letters 15, no. 3 (2018): 035703. http://dx.doi.org/10.1088/1612-202x/aa9aa5.
Texte intégralJIANG, B., J. L. PENG, L. A. BURSILL, and H. WANG. "MICROSTRUCTURE AND PROPERTIES OF FERROELECTRIC Bi4Ti3O12 THIN FILMS." Modern Physics Letters B 13, no. 26 (1999): 933–45. http://dx.doi.org/10.1142/s0217984999001147.
Texte intégralMorifuji, Masato. "Theoretical Study on Effect of Defective Connection to Reservoirs in an Atomic-Scale Conductor." Advances in Condensed Matter Physics 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/2857393.
Texte intégralChen, Jun, Gyeonghee Ryu, and Jamie Warner. "Atomic Structure and Dynamics of Defects and Grain Boundaries in 2D Pd2Se3 Monolayers." Microscopy and Microanalysis 26, S2 (2020): 1636–40. http://dx.doi.org/10.1017/s1431927620018802.
Texte intégralZHANG, S. B. "CATION ANTISITE DEFECTS AND ANTISITE-BASED-DEFECT COMPLEXES IN GaAs." Modern Physics Letters B 04, no. 18 (1990): 1133–36. http://dx.doi.org/10.1142/s0217984990001422.
Texte intégralGao, F., and W. J. Weber. "Atomic-scale simulations of multiple ion–solid interactions and structural evolution in silicon carbide." Journal of Materials Research 17, no. 2 (2002): 259–62. http://dx.doi.org/10.1557/jmr.2002.0035.
Texte intégralIguchi, Hidehiko. "Atomic diffusion mediated by intrinsic point defects in GaAs and AlxGa1−xAs–GaAs superlattices." Journal of Materials Research 6, no. 7 (1991): 1542–52. http://dx.doi.org/10.1557/jmr.1991.1542.
Texte intégralZhou, Wu, Mark P. Oxley, Andrew R. Lupini, Ondrej L. Krivanek, Stephen J. Pennycook, and Juan-Carlos Idrobo. "Single Atom Microscopy." Microscopy and Microanalysis 18, no. 6 (2012): 1342–54. http://dx.doi.org/10.1017/s1431927612013335.
Texte intégralBiborski, Andrzej, L. Zosiak, and Rafal Abdank-Kozubski. "Triple-Defect B2 Binary Intermetallics: Bragg-Williams Solution and Monte Carlo Simulations." Defect and Diffusion Forum 289-292 (April 2009): 361–68. http://dx.doi.org/10.4028/www.scientific.net/ddf.289-292.361.
Texte intégralZhao, Xin-Jing, Hao Hou, Peng-Peng Ding, et al. "Molecular defect-containing bilayer graphene exhibiting brightened luminescence." Science Advances 6, no. 9 (2020): eaay8541. http://dx.doi.org/10.1126/sciadv.aay8541.
Texte intégralWang, Fen Ying, Wei Sun, Yan Feng Dai, Yi Wang Chen, Jian Wei Zhao, and Xiao Lin. "Influence of Atomic Defect on the Deformation Properties of Nanowires Subjected to Uniaxial Tension." Advanced Materials Research 873 (December 2013): 139–46. http://dx.doi.org/10.4028/www.scientific.net/amr.873.139.
Texte intégralJaworske, D., K. de Groh, G. Podojil, T. McCollum, and J. Anzic. "Leveling Coatings for Reducing Atomic Oxygen Defect Density in Graphite Fiber-Epoxy Composites." Journal of the IEST 37, no. 3 (1994): 26–31. http://dx.doi.org/10.17764/jiet.2.37.3.l4133w17742570j2.
Texte intégralDyakonov, Vladimir, Hannes Kraus, V. A. Soltamov, et al. "Atomic-Scale Defects in Silicon Carbide for Quantum Sensing Applications." Materials Science Forum 821-823 (June 2015): 355–58. http://dx.doi.org/10.4028/www.scientific.net/msf.821-823.355.
Texte intégralPENG, QING, JARED CREAN, ALBERT K. DEARDEN, et al. "DEFECT ENGINEERING OF 2D MONATOMIC-LAYER MATERIALS." Modern Physics Letters B 27, no. 23 (2013): 1330017. http://dx.doi.org/10.1142/s0217984913300172.
Texte intégralYu, Sheng, Tikaram Neupane, Bagher Tabibi, Qiliang Li, and Felix Jaetae Seo. "Spin-Resolved Visible Optical Spectra and Electronic Characteristics of Defect-Mediated Hexagonal Boron Nitride Monolayer." Crystals 12, no. 7 (2022): 906. http://dx.doi.org/10.3390/cryst12070906.
Texte intégralNakatomi, Masashi, and Koichi Yamashita. "A THEORETICAL STUDY OF POINT DEFECTS IN ZIRCONIA – SILICON INTERFACES." International Journal of High Speed Electronics and Systems 16, no. 01 (2006): 389–96. http://dx.doi.org/10.1142/s0129156406003710.
Texte intégralWichert, Th. "Atomic Defect Configurations Identified by Nuclear Techniques." Materials Science Forum 83-87 (January 1992): 1081–96. http://dx.doi.org/10.4028/www.scientific.net/msf.83-87.1081.
Texte intégralWager, J. F., and J. A. Van Vechten. "Atomic model for theEL2 defect in GaAs." Physical Review B 35, no. 5 (1987): 2330–39. http://dx.doi.org/10.1103/physrevb.35.2330.
Texte intégralTheodosiou, Constantine E., Mitio Inokuti, and Steven T. Manson. "Quantum defect values for positive atomic ions." Atomic Data and Nuclear Data Tables 35, no. 3 (1986): 473–86. http://dx.doi.org/10.1016/0092-640x(86)90018-5.
Texte intégralTaichenachev, A. V., and V. I. Yudin. "Effects of mass defect in atomic clocks." Journal of Physics: Conference Series 951 (January 2018): 012026. http://dx.doi.org/10.1088/1742-6596/951/1/012026.
Texte intégralPatel, Ajay M., Nipun Gosai, and Anand Y. Joshi. "A Review on Defects in Carbon Nanotubes." Applied Mechanics and Materials 813-814 (November 2015): 145–50. http://dx.doi.org/10.4028/www.scientific.net/amm.813-814.145.
Texte intégralPang, Haosheng, Hongfa Wang, Minglin Li, and Chenghui Gao. "Atomic-Scale Friction on Monovacancy-Defective Graphene and Single-Layer Molybdenum-Disulfide by Numerical Analysis." Nanomaterials 10, no. 1 (2020): 87. http://dx.doi.org/10.3390/nano10010087.
Texte intégralZhang, Zhongli, Jinming Zhang, Yushan Ni, Can Wang, Kun Jiang, and Xuedi Ren. "Multiscale Simulation of Surface Defect Influence in Nanoindentation by the Quasi-Continuum Method." Proceedings 2, no. 14 (2018): 1113. http://dx.doi.org/10.3390/iecc_2018-05246.
Texte intégralČernošek, Zdeněk, Marek Liška, Peter Pelikán, Eva Černošková, Marián Valko, and Miloslav Frumar. "Computer Simulation of Electron Spin Resonance Spectra of Ge25S75and Ge30S70 Bulk Glasses." Collection of Czechoslovak Chemical Communications 62, no. 11 (1997): 1721–29. http://dx.doi.org/10.1135/cccc19971721.
Texte intégralStevens Kalceff, M. A. "Detection of Interstitial Molecules in Wide Band Gap Materials Using Cathodoluminescence Microanalysis." Microscopy and Microanalysis 5, S2 (1999): 732–33. http://dx.doi.org/10.1017/s1431927600016986.
Texte intégralZhang, Zhongli, Yushan Ni, Jinming Zhang, Can Wang, Kun Jiang, and Xuedi Ren. "Multiscale Simulation of Surface Defects Influence Nanoindentation by a Quasi-Continuum Method." Crystals 8, no. 7 (2018): 291. http://dx.doi.org/10.3390/cryst8070291.
Texte intégralVancsó, Péter, Alexandre Mayer, Péter Nemes-Incze, and Géza István Márk. "Wave Packet Dynamical Simulation of Quasiparticle Interferences in 2D Materials." Applied Sciences 11, no. 11 (2021): 4730. http://dx.doi.org/10.3390/app11114730.
Texte intégralMirzade, F. Kh. "On the Propagation of Waves in an Anisotropic Solid with Laser-Induced Atomic Defects." Advances in Condensed Matter Physics 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/547521.
Texte intégralWarner, Jamie, and Alex Robertson. "The atomic structure of defects in graphene." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C514. http://dx.doi.org/10.1107/s2053273314094856.
Texte intégralBundhoo, Fayik. "Evidence of Atomic Dislocation Loops Crystal Lattice Flaws Causing EOS/ESD Damage in 〈100〉 Silicon." International Journal of High Speed Electronics and Systems 23, no. 01n02 (2014): 1420007. http://dx.doi.org/10.1142/s0129156414200079.
Texte intégralHe, Jizhong. "A Correlative Defect Analyzer Combining Glide Test with Atomic Force Microscope." Advances in Tribology 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/657363.
Texte intégralSdoeung, Sayleap, Kohei Sasaki, Katsumi Kawasaki, Jun Hirabayashi, Akito Kuramata та Makoto Kasu. "Probe-induced surface defects: Origin of leakage current in halide vapor-phase epitaxial (001) β-Ga2O3 Schottky barrier diodes". Applied Physics Letters 120, № 9 (2022): 092101. http://dx.doi.org/10.1063/5.0085057.
Texte intégralChen, Gong, Shuai Wu, Chong Qian, and Xiaoming Dou. "Application of the sparse decomposition algorithm in the film defect denoising." Modern Physics Letters B 32, no. 34n36 (2018): 1840117. http://dx.doi.org/10.1142/s0217984918401176.
Texte intégralAl-Zubi, Ali, Gustav Bihlmayer, and Stefan Blügel. "Electronic Structure of Oxygen-Deficient SrTiO3 and Sr2TiO4." Crystals 9, no. 11 (2019): 580. http://dx.doi.org/10.3390/cryst9110580.
Texte intégralNémeth, Péter, István Dódony, Mihály Pósfai, and Peter R. Buseck. "Complex Defect in Pyrite and Its Structure Model Derived from Geometric Phase Analysis." Microscopy and Microanalysis 19, no. 5 (2013): 1303–7. http://dx.doi.org/10.1017/s1431927613001839.
Texte intégralCooke, Jacqueline, Praneeth Ranga, Arkka Bhattacharyya та ін. "Sympetalous defects in metalorganic vapor phase epitaxy (MOVPE)-grown homoepitaxial β-Ga2O3 films". Journal of Vacuum Science & Technology A 41, № 1 (2023): 013406. http://dx.doi.org/10.1116/6.0002303.
Texte intégralGao *, F., and W. J. Weber. "Atomic-level computer simulation of SiC: defect accumulation, mechanical properties and defect recovery." Philosophical Magazine 85, no. 4-7 (2005): 509–18. http://dx.doi.org/10.1080/02678370412331320170.
Texte intégral