Littérature scientifique sur le sujet « Autonomous Driving »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Autonomous Driving ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Autonomous Driving"
Poledna, S., F. Eichler et P. Schöggl. « Autonomous Driving ». Sonderprojekte ATZ/MTZ 24, S1 (août 2019) : 47. http://dx.doi.org/10.1007/s41491-019-0029-8.
Texte intégralWalch, Marcel, Kristin Mühl, Martin Baumann et Michael Weber. « Autonomous Driving ». International Journal of Mobile Human Computer Interaction 9, no 2 (avril 2017) : 58–74. http://dx.doi.org/10.4018/ijmhci.2017040104.
Texte intégralFuchs, Andreas. « Autonomous Driving ». ATZoffhighway worldwide 11, no 1 (mars 2018) : 3. http://dx.doi.org/10.1007/s41321-018-0013-3.
Texte intégralSalow, Holger. « Autonomous driving ». ATZ worldwide 110, no 1 (janvier 2008) : 14–18. http://dx.doi.org/10.1007/bf03224976.
Texte intégralHan, Joong-hee, Chi-ho Park, Young Yoon Jang, Ja Duck Gu et Chan Young Kim. « Performance Evaluation of an Autonomously Driven Agricultural Vehicle in an Orchard Environment ». Sensors 22, no 1 (24 décembre 2021) : 114. http://dx.doi.org/10.3390/s22010114.
Texte intégralKöster, Oliver. « Mandatory Autonomous Driving ? » ATZelectronics worldwide 14, no 3 (mars 2019) : 66. http://dx.doi.org/10.1007/s38314-019-0016-6.
Texte intégralTyler, Neil. « Safer Autonomous Driving ». New Electronics 51, no 18 (9 octobre 2018) : 8. http://dx.doi.org/10.12968/s0047-9624(23)60679-0.
Texte intégralSTAYTON, ERIK, MELISSA CEFKIN et JINGYI ZHANG. « Autonomous Individuals in Autonomous Vehicles : The Multiple Autonomies of Self-Driving Cars ». Ethnographic Praxis in Industry Conference Proceedings 2017, no 1 (novembre 2017) : 92–110. http://dx.doi.org/10.1111/1559-8918.2017.01140.
Texte intégralBaber, J., J. Kolodko, T. Noel, M. Parent et L. Vlacic. « Cooperative autonomous driving - Intelligent vehicles sharing city roads cooperative autonomous driving ». IEEE Robotics & ; Automation Magazine 12, no 1 (mars 2005) : 44–49. http://dx.doi.org/10.1109/mra.2005.1411418.
Texte intégralHurair, Mohammad, Jaeil Ju et Junghee Han. « Environmental-Driven Approach towards Level 5 Self-Driving ». Sensors 24, no 2 (12 janvier 2024) : 485. http://dx.doi.org/10.3390/s24020485.
Texte intégralThèses sur le sujet "Autonomous Driving"
Tirumaladasu, Sai Subhakar, et Shirdi Manjunath Adigarla. « Autonomous Driving : Traffic Sign Classification ». Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-17783.
Texte intégralÁvila, Emanuel da Silva. « Servo-pilot for autonomous driving ». Master's thesis, Universidade de Aveiro, 2010. http://hdl.handle.net/10773/2537.
Texte intégralForam simulados numericamente jogos de recursos públicos em redes usando algoritmo de Monte Carlo. Foram usadas redes regulares unidimensionais em anel, redes regulares bidimensionais (rede quadrada) e redes scale-free. São apresentados os métodos seguidos, a teoria e os algoritmos usados. Estes jogos apresentam uma transição de fase entre uma fase dominada por oportunistas de uma fase dominada por cooperadores em função de um parâmetro de rendimento das contribuições. Foi encontrado um intervalo, dependente do número médio de vizinhos, para o qual a fracção de configurações sobreviventes tende para 1 quando o tamanho da rede aumenta. Foi também encontrada uma dependência no valor de parâmetro crítico de transição no número médio de vizinhos para as configurações sobreviventes. Esses efeitos foram observados em todos os tipos de rede estudados neste trabalho. ABSTRACT: Public goods games were numerically simulated in networks using Monte Carlo Algorithm. Regular one-dimensional ring networks, regular two-dimensional lattice networks and scale-free networks had been used. The methods followed, the theory and the algorithms used are presented. This games have a phase transition between one phase dominated by defectors from one dominated by cooperators in function of the value of efficiency from the contributions. It was found an interval, dependent on the average number of neighbors, where the fraction of surviving configurations tens to 1 when the size of the network increases. It was found dependence in the critical value of transition value with the average number of neighbors. Both effects were observed in all types of networks studied in this work.
Hernández, Juárez Daniel. « Embedded 3D Reconstruction for Autonomous Driving ». Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/671166.
Texte intégralEl objetivo de esta tesis es estudiar algoritmos de reconstrucción 3D aptos para la conducción autónoma. Para ello, necesitamos implementaciones y representaciones rápidas del entorno 3D que tengan en cuenta la información geométrica y semántica. El uso de la paralelización de CUDA y GPU permite aprovechar el hardware de alto rendimiento flexible y programable para cumplir con los estrictos requisitos de tiempo. La tesis presenta tres contribuciones principales. Primero, describimos la paralelización del conocido algoritmo de estéreo basado en Semi-Global Matching (SGM), que estima la profundidad de dos imágenes estéreo. Implementamos un diseño de paralelización eficiente que se ejecuta sobre GPU de bajo consumo de energía y logra un rendimiento en tiempo real. Como segunda contribución, presentamos una mejora del modelo de representación 3D llamado Stixel World que da cuenta de las superficies inclinadas. La extensión del modelo ayuda a representar escenas reales que fallan bajo los supuestos anteriores y, mediante una regularización eficiente del modelo, mantiene la misma precisión del modelo anterior. También proponemos una estrategia algorítmica para acelerar el proceso, lo que reduce la cantidad de combinaciones de Stixel probadas. Finalmente, explicamos nuestras estrategias de paralelización para el algoritmo de segmentación de Stixel. Proponemos una estrategia de paralelización que se adapta a la arquitectura masivamente paralela de las GPU. También estudiamos las diferentes técnicas de aceleración disponibles para Stixels y cómo se pueden implementar de manera eficiente para esta arquitectura. Además, nuestro enfoque reduce la complejidad computacional del algoritmo al reformular el modelo.
The objective of this thesis is to study 3D reconstruction algorithms suitable for autonomous driving. In order to do so, we need fast implementations and representations of the 3D environment that take into account geometric and semantic information. The use of CUDA and GPU parallelization allows to leverage flexible and programmable high performance hardware to fulfill the strong time requirements. The thesis presents three main contributions. First, we describe the parallelization of the well-known stereo matching algorithm based on Semi-Global Matching (SGM), which estimates depth from two stereo images. We deploy an efficient parallelization design that runs on top of low-energy consumption GPUs and achieves real-time performance. As our second contribution, we present an improvement of the 3D representation model called the Stixel World that accounts for slanted surfaces. The extension of the model helps representing real scenes that fail under the previous assumptions, and, by an efficient model regularization, keeps the same accuracy of the previous model. We also propose an algorithmic strategy to speed up the process, which reduces the amount of Stixel combinations tested by the dynamic programming approach. Finally, we explain our parallelization strategies for the Stixel segmentation algorithm. We propose a parallelization strategy that fits the massively parallel architecture of GPUs. We also study the different speed up techniques available for Stixels and how they can be implemented efficiently for this architecture. Additionally, our approach reduces the computational complexity of the algorithm by reformulating the measurement depth model, relying on the confidence of the depth estimation and the identification of invalid values to handle outliers.
Zivkovic, A. (Aleksandar). « Development of autonomous driving using ROS ». Master's thesis, University of Oulu, 2018. http://urn.fi/URN:NBN:fi:oulu-201806062488.
Texte intégralLiebenwein, Lucas. « Contract-based safety verification for autonomous driving ». Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120366.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 77-83).
The safe, successful deployment of autonomous systems under real-world conditions, in part, hinges upon providing rigorous performance and safety guarantees. This thesis considers the problem of establishing and verifying the safety of autonomous systems. To this end, we present a novel framework for the synthesis of safety constraints for autonomous systems, so-called safety contracts, that can be applied to and used by a wide set of real-world systems by acting as a design requirement for the controller implementation of the system. The contracts consider a large variety of road models, guarantee that the controlled system will remain safe with respect to probabilistic models of traffic behavior, and ensure that it will follow the rules of the road. We generate contracts using reachability analysis in a reach-avoid problem under consideration of dynamic obstacles, i.e., other traffic participants. Contracts are then derived directly from the reachable sets. By decomposing large road networks into local road geometries and defining assume-guarantee contracts between local geometries, we enable computational tractability over large spatial domains. To efficiently account for the behavior of other traffic participants, we iteratively alternate between falsification to generate new traffic scenarios that violate the safety contract and reachable set computation to update the safety contract. These counterexamples to collision-free behavior are found by solving a gradient-based trajectory optimization problem. We demonstrate the practical effectiveness of the proposed methods in a set of experiments involving the Manhattan road network as well as interacting multi-car traffic scenarios.
by Lucas Liebenwein.
S.M.
Yin, Ji. « Trajectory Planning for Off-road Autonomous Driving ». Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233397.
Texte intégralDetta examensarbete utvecklar en trajektoriegenerering som baseras på ett Formula racing scenario. Den föreslagna trajektoriegenerering ger en tidsoptimal off-road-lösning och medför sekventiella kontrollsignaler till fordonen att följa trajektorien. Utsignaler från trajektoriegenerering är den tidsoptimal trajektorien, styrvinkel och motsvarande kraft for broms och gaspådrag. Trajektoriegenerering är designad med två funktioner, utforskningsläget baserat på Rapidly-exploring Random Tree (RRT) och optimeringsläget som baseras på det optimala Rapidly-exploring Random Tree (RRT). Utforskningsläget genererar en tillåten och säker trajektorie i realtid, men den är inte optimal; Optimeringsläget ger den optimala trajektorien men kan inte bli genererad i realtid. Systemstrukturen gör det möjligt att ha utforskningsläget körandes, medans optimeringsläget körs i bakgrunden; när optimeringsprocessen är färdig kan fordonet följa den optimala trajektorien. En lokal trajektoriegenererings-metod tar med dynamiska off-road krav för fordonet när planeringen görs. Prestandan av systemet är avgjort på en simulerat racerbana.Många aspekter såsom tidoptima och fordonsstabilitet har tagits med i beräkningen. En ny styrmetod har föreslagits; där metoden snabbt genererar en trajektorie baserad på slumpmässiga insignaler. Med mer effektiv framtida implementering av planeringen, exempelvis parallellberäkning, blir optimeringsläget en lovande trajektoriegenerering i realtid.
Jaritz, Maximilian. « 2D-3D scene understanding for autonomous driving ». Thesis, Université Paris sciences et lettres, 2020. https://pastel.archives-ouvertes.fr/tel-02921424.
Texte intégralIn this thesis, we address the challenges of label scarcity and fusion of heterogeneous 3D point clouds and 2D images. We adopt the strategy of end-to-end race driving where a neural network is trained to directly map sensor input (camera image) to control output, which makes this strategy independent from annotations in the visual domain. We employ deep reinforcement learning where the algorithm learns from reward by interaction with a realistic simulator. We propose new training strategies and reward functions for better driving and faster convergence. However, training time is still very long which is why we focus on perception to study point cloud and image fusion in the remainder of this thesis. We propose two different methods for 2D-3D fusion. First, we project 3D LiDAR point clouds into 2D image space, resulting in sparse depth maps. We propose a novel encoder-decoder architecture to fuse dense RGB and sparse depth for the task of depth completion that enhances point cloud resolution to image level. Second, we fuse directly in 3D space to prevent information loss through projection. Therefore, we compute image features with a 2D CNN of multiple views and then lift them all to a global 3D point cloud for fusion, followed by a point-based network to predict 3D semantic labels. Building on this work, we introduce the more difficult novel task of cross-modal unsupervised domain adaptation, where one is provided with multi-modal data in a labeled source and an unlabeled target dataset. We propose to perform 2D-3D cross-modal learning via mutual mimicking between image and point cloud networks to address the source-target domain shift. We further showcase that our method is complementary to the existing uni-modal technique of pseudo-labeling
Oliveira, José Ricardo Marques de. « World representation for an autonomous driving robot ». Master's thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/2121.
Texte intégralCondução autónoma constitui a deslocação de um agente, robô ou veículo, de um qualquer ponto no espaço para um outro, sem qualquer intervenção humana, por forma a atingir objectivos pré-estabelecidos. Para conduzir de forma autónoma, usando planeamento de trajectória, é crucial que o agente consiga representar abstractamente tanto o conhecimento a priori acerca do mundo, como a informação que este vai adquirindo à medida que avança. Para alcançar este propósito, desenvolveu-se um sistema para ser usado na pista da Competição de Condução Autónoma do Festival Nacional de Robótica. Este sistema caracteriza-se por ser flexível e modular. Tais características permitem não são a adição componentes na pista acima referida, mas também a fácil expansão do suporte a outros tipos de pistas ou circuitos. Concluiu-se, pois, que o modelo de representação mais adequado para o sistema que se pretendia desenvolver seria um modelo híbrido, na medida em que, ao nível global tal representação seria topológica e ao nível local métrica. Ou seja, dividindo a pista em secções, estas são a base para a representação topológica, sendo depois cada secção mapeada internamente de forma métrica. Ao integrar o trabalho desta dissertação com o sistema global lograva-se alcançar um sistema de Condução Autónoma susceptível de planear a curto e médio prazo, com vista a melhorar o desempenho dos robôs usados no projecto, relativamente à solução anteriormente usada, que era baseada num sistema reactivo com alguma memória e noção de estado, mas sem planeamento de trajectória. ABSTRACT: Autonomous driving is the movement of an agent, robot or vehicle, from some point in space to another one, without any human intervention, in order to achieve predetermined goals. To drive autonomously using trajectory planning, it is vital to have an abstraction of the knowledge about the world, be it a priori or information that the agent acquires during the driving. For this, we developed a system capable of abstractly represent, not only the track for the Autonomous Driving Competition of the Portuguese Robotics Open, but also, tracks with similar characteristics. The system was developed in a exible and modular manner, in order to allow the addition of new elements to the stated track and the easy expansion to support other types of tracks and circuits. The conclusion was that the most appropriate representation model for the system we were trying to develop was an hybrid model, in that, at a global level the representation would be topological and at a local level it would be metrical. In other words, dividing the track into sections, these are the basis for the topological representation, being each of the sections then mapped internally using a metrical representation. Integrating the work of this dissertation in the global system, one hoped to achieve a Autonomous Driving system capable of short and medium term planning, with the goal of improve the performance of the ROTA project robots, comparatively with the previous solution, which was based in a reactive system with some memory and to some degree stateful.
Sequeira, Miguel da Rosa Carvalhal. « Perception and intelligent localization for autonomous driving ». Master's thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/2172.
Texte intégralVisão por computador e fusão sensorial são temas relativamente recentes, no entanto largamente adoptados no desenvolvimento de robôs autónomos que exigem adaptabilidade ao seu ambiente envolvente. Esta dissertação foca-se numa abordagem a estes dois temas para alcançar percepção no contexto de condução autónoma. O uso de câmaras para atingir este fim é um processo bastante complexo. Ao contrário dos meios sensoriais clássicos que fornecem sempre o mesmo tipo de informação precisa e atingida de forma determinística, as sucessivas imagens adquiridas por uma câmara estão repletas da mais variada informação e toda esta ambígua e extremamente difícil de extrair. A utilização de câmaras como meio sensorial em robótica é o mais próximo que chegamos na semelhança com aquele que é o de maior importância no processo de percepção humana, o sistema de visão. Visão por computador é uma disciplina científica que engloba àreas como: processamento de sinal, inteligência artificial, matemática, teoria de controlo, neurobiologia e física. A plataforma de suporte ao estudo desenvolvido no âmbito desta dissertação é o ROTA (RObô Triciclo Autónomo) e todos os elementos que consistem o seu ambiente. No contexto deste, são descritas abordagens que foram introduzidas com fim de desenvolver soluções para todos os desafios que o robô enfrenta no seu ambiente: detecção de linhas de estrada e consequente percepção desta, detecção de obstáculos, semáforos, zona da passadeira e zona de obras. É também descrito um sistema de calibração e aplicação da remoção da perspectiva da imagem, desenvolvido de modo a mapear os elementos percepcionados em distâncias reais. Em consequência do sistema de percepção, é ainda abordado o desenvolvimento de auto-localização integrado numa arquitectura distribuída incluindo navegação com planeamento inteligente. Todo o trabalho desenvolvido no decurso da dissertação é essencialmente centrado no desenvolvimento de percepção robótica no contexto de condução autónoma.
Computer vision and sensor fusion are subjects that are quite recent, however widely adopted in the development of autonomous robots that require adaptability to their surrounding environment. This thesis gives an approach on both in order to achieve perception in the scope of autonomous driving. The use of cameras to achieve this goal is a rather complex subject. Unlike the classic sensorial devices that provide the same type of information with precision and achieve this in a deterministic way, the successive images acquired by a camera are replete with the most varied information, that this ambiguous and extremely dificult to extract. The use of cameras for robotic sensing is the closest we got within the similarities with what is of most importance in the process of human perception, the vision system. Computer vision is a scientific discipline that encompasses areas such as signal processing, artificial intelligence, mathematics, control theory, neurobiology and physics. The support platform in which the study within this thesis was developed, includes ROTA (RObô Triciclo Autónomo) and all elements comprising its environment. In its context, are described approaches that introduced in the platform in order to develop solutions for all the challenges facing the robot in its environment: detection of lane markings and its consequent perception, obstacle detection, trafic lights, crosswalk and road maintenance area. It is also described a calibration system and implementation for the removal of the image perspective, developed in order to map the elements perceived in actual real world distances. As a result of the perception system development, it is also addressed self-localization integrated in a distributed architecture that allows navigation with long term planning. All the work developed in the course of this work is essentially focused on robotic perception in the context of autonomous driving.
Wei, Junqing. « Autonomous Vehicle Social Behavior for Highway Driving ». Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/919.
Texte intégralLivres sur le sujet "Autonomous Driving"
Maurer, Markus, J. Christian Gerdes, Barbara Lenz et Hermann Winner, dir. Autonomous Driving. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48847-8.
Texte intégralFan, Rui, Sicen Guo et Mohammud Junaid Bocus, dir. Autonomous Driving Perception. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4287-9.
Texte intégralJurgen, Ronald K., dir. Autonomous Vehicles for Safer Driving. Warrendale, PA : SAE International, 2013. http://dx.doi.org/10.4271/0768080398.
Texte intégralJurgen, Ronald K. Autonomous Vehicles for Safer Driving. Warrendale, PA : SAE International, 2013. http://dx.doi.org/10.4271/pt-158.
Texte intégralShi, Weisong, et Liangkai Liu. Computing Systems for Autonomous Driving. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81564-6.
Texte intégralChai, Zhanxiang, Tianxin Nie et Jan Becker. Autonomous Driving Changes the Future. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-6728-5.
Texte intégralLangheim, Jochen, dir. Energy Consumption and Autonomous Driving. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19818-7.
Texte intégralKröger, Fabian. From Automated to Autonomous Driving. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-49881-7.
Texte intégralGamba, Jonah. Radar Signal Processing for Autonomous Driving. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9193-4.
Texte intégralZhang, Xinyu, Jun Li, Zhiwei Li, Huaping Liu, Mo Zhou, Li Wang et Zhenhong Zou. Multi-sensor Fusion for Autonomous Driving. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3280-1.
Texte intégralChapitres de livres sur le sujet "Autonomous Driving"
Maurer, Markus. « Introduction ». Dans Autonomous Driving, 1–7. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48847-8_1.
Texte intégralBeiker, Sven. « Deployment Scenarios for Vehicles with Higher-Order Automation ». Dans Autonomous Driving, 193–211. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48847-8_10.
Texte intégralHeinrichs, Dirk. « Autonomous Driving and Urban Land Use ». Dans Autonomous Driving, 213–31. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48847-8_11.
Texte intégralCyganski, Rita. « Automated Vehicles and Automated Driving from a Demand Modeling Perspective ». Dans Autonomous Driving, 233–53. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48847-8_12.
Texte intégralWinner, Hermann, et Walther Wachenfeld. « Effects of Autonomous Driving on the Vehicle Concept ». Dans Autonomous Driving, 255–75. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48847-8_13.
Texte intégralBeiker, Sven. « Implementation of an Automated Mobility-on-Demand System ». Dans Autonomous Driving, 277–95. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48847-8_14.
Texte intégralWagner, Peter. « Traffic Control and Traffic Management in a Transportation System with Autonomous Vehicles ». Dans Autonomous Driving, 301–16. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48847-8_15.
Texte intégralFriedrich, Bernhard. « The Effect of Autonomous Vehicles on Traffic ». Dans Autonomous Driving, 317–34. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48847-8_16.
Texte intégralWinkle, Thomas. « Safety Benefits of Automated Vehicles : Extended Findings from Accident Research for Development, Validation and Testing ». Dans Autonomous Driving, 335–64. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48847-8_17.
Texte intégralFlämig, Heike. « Autonomous Vehicles and Autonomous Driving in Freight Transport ». Dans Autonomous Driving, 365–85. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48847-8_18.
Texte intégralActes de conférences sur le sujet "Autonomous Driving"
Zhang, Jimuyang, Zanming Huang, Arijit Ray et Eshed Ohn-Bar. « Feedback-Guided Autonomous Driving ». Dans 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 15000–15011. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.01421.
Texte intégralWalch, Marcel, Kristin Lange, Martin Baumann et Michael Weber. « Autonomous driving ». Dans AutomotiveUI '15 : The 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. New York, NY, USA : ACM, 2015. http://dx.doi.org/10.1145/2799250.2799268.
Texte intégralAlexandra, Popa, Toderean Bianca, Toderean Liana-Maria, Ulici Ioana-Anamaria, Rusu-Both Roxana et Miclea Liviu-Cristian. « Intelligent Autonomous Driving ». Dans 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC). IEEE, 2018. http://dx.doi.org/10.1109/icstcc.2018.8540757.
Texte intégralZhang, Ya-Qin. « Towards Autonomous Driving ». Dans WSDM '23 : The Sixteenth ACM International Conference on Web Search and Data Mining. New York, NY, USA : ACM, 2023. http://dx.doi.org/10.1145/3539597.3572331.
Texte intégralLienen, Christian, Mathis Brede, Daniel Karger, Kevin Koch, Dalisha Logan, Janet Mazur, Alexander Philipp Nowosad, Alexander Schnelle, Mohness Waizy et Marco Platzner. « AutonomROS : A ReconROS-based Autonomous Driving Unit ». Dans 2023 Seventh IEEE International Conference on Robotic Computing (IRC). IEEE, 2023. http://dx.doi.org/10.1109/irc59093.2023.00056.
Texte intégralBiral, Francesco, Enrico Bertolazzi, Daniele Bortoluzzi et Paolo Bosetti. « Development and Testing of an Autonomous Driving Module for Critical Driving Conditions ». Dans ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68487.
Texte intégralVictor, Trent. « The Role of Attention in Increasingly Autonomous Driving ». Dans Driving Assessment Conference. Iowa City, Iowa : University of Iowa, 2015. http://dx.doi.org/10.17077/drivingassessment.1573.
Texte intégralFan, Shiwei, Xiangxu Li et Fei Li. « Intention-Driven Trajectory Prediction for Autonomous Driving ». Dans 2021 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2021. http://dx.doi.org/10.1109/iv48863.2021.9575253.
Texte intégralHäuslschmid, Renate, Max von Bülow, Bastian Pfleging et Andreas Butz. « SupportingTrust in Autonomous Driving ». Dans IUI'17 : 22nd International Conference on Intelligent User Interfaces. New York, NY, USA : ACM, 2017. http://dx.doi.org/10.1145/3025171.3025198.
Texte intégralYashwanth, S. D., Srimadh V. Rao, Rakshit, Yashass P. Meharwade et Ramesh Kivade. « Autonomous Driving Using YOLOP ». Dans 2022 IEEE North Karnataka Subsection Flagship International Conference (NKCon). IEEE, 2022. http://dx.doi.org/10.1109/nkcon56289.2022.10127088.
Texte intégralRapports d'organisations sur le sujet "Autonomous Driving"
Albus, James, John Evans, Craig Schlenoff, Tony Barbera, Elena Messina et Stephen Balakirsky. Achieving intelligent performance in autonomous driving. Gaithersburg, MD : National Institute of Standards and Technology, 2003. http://dx.doi.org/10.6028/nist.ir.7166.
Texte intégralChen, Guang. Multi-agent Collaborative Perception for Autonomous Driving : Unsettled Aspects. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, août 2023. http://dx.doi.org/10.4271/epr2023017.
Texte intégralWang, Shenlong, et David Forsyth. Safely Test Autonomous Vehicles with Augmented Reality. Illinois Center for Transportation, août 2022. http://dx.doi.org/10.36501/0197-9191/22-015.
Texte intégralJoress, Howie. Driving U.S. Innovation in Materials and Manufacturing Using AI and Autonomous Labs. Gaithersburg, MD : National Institute of Standards and Technology, 2024. http://dx.doi.org/10.6028/nist.sp.1320.
Texte intégralQuinn, Brian, Jordan Bates, Michael Parker et Sally Shoop. A detailed approach to autonomous vehicle control through Ros and Pixhawk controllers. Engineer Research and Development Center (U.S.), novembre 2021. http://dx.doi.org/10.21079/11681/42460.
Texte intégralFavarò, Francesca M. Impact of Smart Phones’ Interaction Modality on Driving Performance for Conventional and Autonomous Vehicles. Mineta Transportation Institute, janvier 2020. http://dx.doi.org/10.31979/mti.2020.1813.
Texte intégralMukherjee, Amitangshu. Semantic Domain Adaptation for Deep Networks via GAN-based Data Augmentation for Autonomous Driving. Ames (Iowa) : Iowa State University, janvier 2019. http://dx.doi.org/10.31274/cc-20240624-1273.
Texte intégralPorcel Magnusson, Cristina. Unsettled Topics Concerning Coating Detection by LiDAR in Autonomous Vehicles. SAE International, janvier 2021. http://dx.doi.org/10.4271/epr2021002.
Texte intégralFrydman, Roman, Søren Johansen, Anders Rahbek et Morten Nyboe Tabor. Asset Prices Under Knightian Uncertainty. Institute for New Economic Thinking Working Paper Series, décembre 2021. http://dx.doi.org/10.36687/inetwp172.
Texte intégralRazdan, Rahul. Unsettled Topics Concerning Human and Autonomous Vehicle Interaction. SAE International, décembre 2020. http://dx.doi.org/10.4271/epr2020025.
Texte intégral