Littérature scientifique sur le sujet « Autonomous Driving Systems »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Autonomous Driving Systems ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Autonomous Driving Systems"

1

Walch, Marcel, Kristin Mühl, Martin Baumann, and Michael Weber. "Autonomous Driving." International Journal of Mobile Human Computer Interaction 9, no. 2 (2017): 58–74. http://dx.doi.org/10.4018/ijmhci.2017040104.

Texte intégral
Résumé :
Autonomous vehicles will need de-escalation strategies to compensate when reaching system limitations. Car-driver handovers can be considered one possible method to deal with system boundaries. The authors suggest a bimodal (auditory and visual) handover assistant based on user preferences and design principles for automated systems. They conducted a driving simulator study with 30 participants to investigate the take-over performance of drivers. In particular, the authors examined the effect of different warning conditions (take-over request only with 4 and 6 seconds time budget vs. an additional pre-cue, which states why the take-over request will follow) in different hazardous situations. Their results indicated that all warning conditions were feasible in all situations, although the short time budget (4 seconds) was rather challenging and led to a less safe performance. An alert ahead of a take-over request had the positive effect that the participants took over and intervened earlier in relation to the appearance of the take-over request. Overall, the authors' evaluation showed that bimodal warnings composed of textual and iconographic visual displays accompanied by alerting jingles and spoken messages are a promising approach to alert drivers and to ask them to take over.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Maeng, Joon Young. "Autonomous Vehicle and Civil Liability Standard ―Legalization of Autonomous Driving and Evaluation Thereof―." Korean Association of Civil Law 110 (March 31, 2025): 407–48. https://doi.org/10.52554/kjcl.2025.110.407.

Texte intégral
Résumé :
With the introduction of autonomous vehicles, various aspects of autonomous driving are being legislated in laws and subordinate rules in our legal system. Motor Vehicle Management Act broadly defines autonomous vehicles, while the Road Traffic Act broadly divides autonomous driving systems into fully autonomous driving systems and partial autonomous driving systems. Regarding the autonomous driving stage, autonomous vehicles are defined as partially autonomous vehicles and fully autonomous vehicles, and in the subordinate rule of the Motor Vehicle Management Act, autonomous driving systems is divided into partial autonomous driving systems, conditional full autonomous driving systems, and fully autonomous driving systems. These laws and rules adopted autonomous driving stage classification of SAE J3016. In relation to the duty of care of autonomous vehicle drivers, the Road Traffic Act stipulates the driver's duty to directly operate and drive in response to the driving requirements of the autonomous driving system, and establishes criminal punishment provisions for violations thereof. Regarding autonomous vehicle owner’s liability, the Guarantee of Automobile Accident Compensation Act establishes definitions for autonomous vehicle accidents, thus declaring that owner’s liability would be recognized for accidents during autonomous driving, and insurance companies could prove defects in autonomous vehicles and make claims against manufacturers, etc. In this way, it can be evaluated that autonomous vehicles are being legislated quite actively in our legal system, and the basic validity of the specific contents and disciplinary direction could be affirmed. However, in relation to the classification of autonomous driving stages, it can be pointed out that there is an unclear parts between the law and the subordinate rules regarding the autonomous driving system. Also, there is a need to reasonably restrict interpretation in relation to the content of the driver's duty of care of autonomous vehicles, especially interpreting the criminal punishment provisions. With regard to the regulation requiring insurance companies to prove defects regarding autonomous vehicles accident, mitigation and reasonable distribution of the burden of proof regarding product liability may still be raised.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Yaakub, Salma, and Mohammed Hayyan Alsibai. "A Review on Autonomous Driving Systems." International Journal of Engineering Technology and Sciences 5, no. 1 (2018): 1–16. http://dx.doi.org/10.15282/ijets.v5i1.2800.

Texte intégral
Résumé :
Autonomous vehicles are one of the promising solutions to reduce traffic crashes and improve mobility and traffic system. An autonomous vehicle is preferable because it helps in reducing the need for redesigning the infrastructure and because it improves the vehicle power efficiency in terms of cost and time taken to reach the destination. Autonomous vehicles can be divided into 3 types: Aerial vehicles, ground vehicles and underwater vehicles. General, four basic subsystems are integrated to enable a vehicle to move by itself which are: Position identifying and navigation system, surrounding environment situation analysis system, motion planning system and trajectory control system. In this paper, a review on autonomous vehicles and their related technological applications is presented to highlight the aspects of this industry as a part of industry 4.0 concept. Moreover, the paper discusses the best autonomous driving systems to be applied on our wheelchair project which aims at converting a manual wheelchair to a smart electric wheelchair
Styles APA, Harvard, Vancouver, ISO, etc.
4

Cai, Lipeng. "Key Sensing Systems in Autonomous Driving." Highlights in Science, Engineering and Technology 119 (December 11, 2024): 242–48. https://doi.org/10.54097/ws6xrd83.

Texte intégral
Résumé :
With the rapid and dynamic evolution of autonomous driving technology. The escalating demand for transportation that is not only safer but also more efficient has spurred an intense exploration of advanced sensing technologies. This article centers on the sensor system within the domain of autonomous driving. The principal methods encompass an in-depth study of various distinct sensors such as lidar, cameras, radar, and ultrasonic sensors. The research findings reveal that these sensor systems can synergistically collaborate to furnish highly precise environmental perception. Specifically, lidar offers elaborate 3D depictions, granting vehicles a comprehensive understanding of the surrounding landscape. Cameras capture essential visual cues, providing detailed information regarding road signs, traffic conditions, and the presence of pedestrians or other vehicles. Radar effectively detects the velocity and distance of objects, significantly enhancing the vehicle's capacity to anticipate potential hazards. Moreover, ultrasonic sensors play a critical role in short-range detection, ensuring safety during parking and low-speed operations. The conclusion is that the seamless cooperation and continuous refinement of these sensor systems are of utmost significance for successfully realizing autonomous driving. This not only elevates traffic safety to a higher level but also holds profound implications for enhancing efficiency and convenience on the roads.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Henschke, Adam. "Trust and resilient autonomous driving systems." Ethics and Information Technology 22, no. 1 (2019): 81–92. http://dx.doi.org/10.1007/s10676-019-09517-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zheng, Yiwen. "Application of a Multifunctional Image Processing System Based on C in Autonomous Driving." Applied and Computational Engineering 160, no. 1 (2025): 120–27. https://doi.org/10.54254/2755-2721/2025.tj23501.

Texte intégral
Résumé :
Autonomous driving technology is a current research hotspot in the fields of artificial intelligence and computer vision. Its core relies on environmental information obtained from sensors such as cameras and radars. Image processing technology plays a crucial role in autonomous driving, including tasks such as lane detection, obstacle recognition, and environmental perception. With the rapid development of autonomous driving technology, the demand for image processing systems has significantly increased, especially in terms of real-time performance, accuracy, and multifunctionality. Existing image processing tools are mostly single-functional, making it difficult to meet the complex and varied demands of autonomous driving scenarios. Therefore, developing a system that integrates multiple image processing functions can effectively enhance the environmental perception capabilities of autonomous driving systems and provide reliable data support for subsequent path planning and decision-making. This study developed a multifunctional image processing system based on C, focusing on the system's architecture, module division, and algorithm implementation. Experimental results show that the system can effectively improve the environmental perception capabilities of autonomous driving systems and perform well in terms of processing efficiency and user satisfaction.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Yang, Liangjun. "Autonomous Driving Control Strategy Based on Deep Reinforcement Learning." Applied and Computational Engineering 128, no. 1 (2025): 79–85. https://doi.org/10.54254/2755-2721/2025.20209.

Texte intégral
Résumé :
This paper discusses an autonomous driving control strategy based on Deep Reinforcement Learning (DRL), which aims to improve the decision-making ability of autonomous driving system in complex traffic environments. Deep reinforcement learning has a wide range of applications in many fields, such as robotics and medicine. Autonomous driving has emerged as a significant research focus in recent years. By combining deep learning and reinforcement learning, the model is able to autonomously learn and optimize driving behavior under dynamically changing road conditions. The DRL-based control strategy performs well in vehicle obstacle avoidance, pedestrian recognition, and traffic rule compliance in the face of complex environments such as city streets, intersections, and congested road sections, significantly improving the safety and efficiency of autonomous driving. This article will first introduce deep reinforcement learning. Then, the autonomous driving control strategy based on deep reinforcement learning is introduced. This research provides valuable insights for developing and implementing DRL-based autonomous driving systems.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Geng, Lichao. "Autonomous Driving Driven by Artificial Intelligence: Development Status and Future Prospects." Computers and Artificial Intelligence 2, no. 2 (2025): 29–36. https://doi.org/10.70267/cai.25v2n2.2936.

Texte intégral
Résumé :
This paper aims to explore the current status and future development trends of artificial intelligence technology in the field of autonomous driving. By analyzing the application of artificial intelligence technologies such as computer vision, deep learning and reinforcement learning in autonomous driving, this paper shows that autonomous driving is currently a hot topic in society. At present, L2 and L3 autonomous driving systems have been launched. In the future, autonomous driving may develop in the direction of vehicle‒road collaboration and L4 unmanned delivery. In addition, we still face many challenges, such as the accuracy attenuation of computer vision algorithms in extreme weather and the proportion of responsibility between car companies and users in autonomous driving accidents.
Styles APA, Harvard, Vancouver, ISO, etc.
9

V S, Amar. "Autonomous Driving using CNN." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (2021): 3633–36. http://dx.doi.org/10.22214/ijraset.2021.35771.

Texte intégral
Résumé :
Human beings are currently addicted to automation and robotics technologies. The state-of-the-art in deep learning technologies and AI is the subject of this autonomous driving. Driving with automated driving systems promises to be safe, enjoyable, and efficient.. It is preferable to train in a virtual environment first and then move to a real-world one. Its goal is to enable a vehicle to recognise its surroundings and navigate without the need for human intervention. The raw pixels from a single front-facing camera were directly transferred to driving commands using a convolution neural network (CNN). This end-to-end strategy proved to be remarkably effective, The system automatically learns internal representations of the essential processing stages such as detecting useful road components using only the human steering angle as the training signal. We never expressly taught it to recognise the contour of roadways, for example. In comparison to explicit issue decomposition, such as lane marking detection, Our end-to-end solution optimises all processing processes at the same time, including path planning and control. We believe that this will lead to improved performance and smaller systems in the long run. Internal components will self-optimize to maximise overall system performance, resulting in improved performance.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Fu, Zichen. "The Current Development and Future Prospects of Autonomous Driving Driven by Artificial<b> </b>Intelligence." Computers and Artificial Intelligence 2, no. 1 (2025): 8–15. https://doi.org/10.70267/cai.25v2n1.0815.

Texte intégral
Résumé :
This paper explores the application and development of artificial intelligence in autonomous driving and analyses its current status, challenges, and future trends. Autonomous driving systems integrate multiple core technologies in vehicle perception and driving decision-making, achieving a leap from assisted driving to commercial deployment. Leveraging emerging methods such as machine learning, deep learning, and reinforcement learning, autonomous driving systems have significantly improved perception accuracy, decision-making capabilities, and environmental adaptability. However, current autonomous driving systems still face technical bottlenecks, including insufficient model generalizability and low training efficiency, while also encountering legal and societal challenges such as data privacy protection, accident liability determination, and algorithmic ethical biases. In the future, high-precision multimodal perception architectures, edge computing deployment solutions, and the construction of a vehicle‒road collaborative ecosystem will be key breakthrough directions for enabling fully autonomous driving across all scenarios.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Autonomous Driving Systems"

1

Al-Khoury, Fadi. "Safety of Machine Learning Systems in Autonomous Driving." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-218020.

Texte intégral
Résumé :
Machine Learning, and in particular Deep Learning, are extremely capable tools for solving problems which are difficult, or intractable to tackle analytically. Application areas include pattern recognition, computer vision, speech and natural language processing. With the automotive industry aiming for increasing amount of automation in driving, the problems to solve become increasingly complex, which appeals to the use of supervised learning methods from Machine Learning and Deep Learning. With this approach, solutions to the problems are learned implicitly from training data, and inspecting their correctness is not possible directly. This presents concerns when the resulting systems are used to support safety-critical functions, as is the case with autonomous driving of automotive vehicles. This thesis studies the safety concerns related to learning systems within autonomous driving and applies a safety monitoring approach to a collision avoidance scenario. Experiments are performed using a simulated environment, with a deep learning system supporting perception for vehicle control, and a safety monitor for collision avoidance. The related operational situations and safety constraints are studied for an autonomous driving function, with potential faults in the learning system introduced and examined. Also, an example is considered for a measure that indicates trustworthiness of the learning system during operation.<br>Maskininlärning, och i synnerhet deep learning, är extremt kapabla verktyg för att lösa problem  som är svåra, eller omöjliga att hantera analytiskt. Applikationsområden inkluderar  mönsterigenkänning, datorseende, tal‐ och språkförståelse. När utvecklingen inom bilindustrin  går mot en ökad grad av automatisering, blir problemen som måste lösas alltmer komplexa,  vilket har lett till ett ökat användande av metoder från maskininlärning och deep learning. Med  detta tillvägagångssätt lär sig systemet lösningen till ett problem implicit från träningsdata och  man kan inte direkt utvärdera lösningens korrekthet. Detta innebär problem när systemet i  fråga är del av en säkerhetskritisk funktion, vilket är fallet för självkörande fordon. Detta  examensarbete behandlar säkerhetsaspekter relaterade till maskininlärningssystem i autonoma  fordon och applicerar en safety monitoring‐metodik på en kollisionsundvikningsfunktion.  Simuleringar utförs, med ett deep learning‐system som del av systemet för perception, som ger  underlag för styrningen av fordonet, samt en safety monitor för kollisionsundvikning. De  relaterade operationella situationerna och säkerhetsvillkoren studeras för en autonom  körnings‐funktion, där potentiella fel i det lärande systemet introduceras och utvärderas.  Vidare introduceras ett förslag på ett mått på trovärdighet hos det lärande systemet under  drift.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Agha, Jafari Wolde Bahareh. "A systematic Mapping study of ADAS and Autonomous Driving." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-42754.

Texte intégral
Résumé :
Nowadays, autonomous driving revolution is getting closer to reality. To achieve the Autonomous driving the first step is to develop the Advanced Driver Assistance System (ADAS). Driver-assistance systems are one of the fastest-growing segments in automotive electronics since already there are many forms of ADAS available. To investigate state of art of development of ADAS towards Autonomous Driving, we develop Systematic Mapping Study (SMS). SMS methodology is used to collect, classify, and analyze the relevant publications. A classification is introduced based on the developments carried out in ADAS towards Autonomous driving. According to SMS methodology, we identified 894 relevant publications about ADAS and its developmental journey toward Autonomous Driving completed from 2012 to 2016. We classify the area of our research under three classifications: technical classifications, research types and research contributions. The related publications are classified under thirty-three technical classifications. This thesis sheds light on a better understanding of the achievements and shortcomings in this area. By evaluating collected results, we answer our seven research questions. The result specifies that most of the publications belong to the Models and Solution Proposal from the research type and contribution. The least number of the publications belong to the Automated…Autonomous driving from the technical classification which indicated the lack of publications in this area.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Villalonga, Pineda Gabriel. "Leveraging Synthetic Data to Create Autonomous Driving Perception Systems." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671739.

Texte intégral
Résumé :
L’anotació manual d’imatges per desenvolupar sistemes basats en visió per computador ha estat un dels punts més problemàtics des que s’utilitza aprenentatge automàtic per a això. Aquesta tesi es centra en aprofitar les dades sintètiques per alleujar el cost de les anotacions manuals en tres tasques de percepció relacionades amb l’assistència a la conducció i la conducció autònoma. En tot moment assumim l’ús de xarxes neuronals convolucionals per al desenvolupament dels nostres models profunds de percepció. La primera tasca planteja el reconeixement de senyals de trànsit, un problema de classificació d’imatges. Assumim que el nombre de classes de senyals de trànsit a reconèixer s’ha d’incrementar sense haver pogut anotar noves imatges amb què realitzar el corresponent reentrenament. Demostrem que aprofitant les dades sintètiques de les noves classes i transformant-les amb una xarxa adversària-generativa (GAN, de les seves sigles en anglès) entrenada amb les classes conegudes (sense usar mostres de les noves classes), és possible reentrenar la xarxa neuronal per classificar tots els senyals en una proporció ~1/4 entre classes noves i conegudes. La segona tasca consisteix en la detecció de vehicles i vianants (objectes) en imatges. En aquest cas, assumim la recepció d’un conjunt d’imatges sense anotar. L’objectiu és anotar automàticament aquestes imatges perquè així es puguin utilitzar posteriorment en l’entrenament del detector d’objectes que desitgem. Per assolir aquest objectiu, vam partir de dades sintètiques anotades i proposem un mètode d’aprenentatge semi-supervisat basat en la idea del co-aprenentatge. A més, utilitzem una GAN per reduir la distància entre els dominis sintètic i real abans d’aplicar el co-aprenentatge. Els nostres resultats quantitatius mostren que el procediment desenvolupat permet anotar el conjunt d’imatges d’entrada amb la precisió suficient per entrenar detectors d’objectes de forma efectiva; és a dir, tan precisos com si les imatges s’haguessin anotat manualment. A la tercera tasca deixem enrere l’espai 2D de les imatges, i ens centrem en processar núvols de punts 3D provinents de sensors LiDAR. El nostre objectiu inicial era desenvolupar un detector d’objectes 3D (vehicles, vianants, ciclistes) entrenat en núvols de punts sintètics estil LiDAR. En el cas de les imatges es podia esperar el problema de canvi de domini degut a les diferències visuals entre les imatges sintètiques i reals. Però, a priori, no esperàvem el mateix en treballar amb núvols de punts LiDAR, ja que es tracta d’informació geomètrica provinent del mostreig actiu del món, sense que l’aparença visual influeixi. No obstant això, a la pràctica, hem vist que també apareixen els problemes d’adaptació de domini. Factors com els paràmetres de mostreig del LiDAR, la configuració dels sensors a bord del vehicle autònom, i l’anotació manual dels objectes 3D, indueixen diferències de domini. A la tesi demostrem aquesta observació mitjançant un exhaustiu conjunt d’experiments amb diferents bases de dades públiques i detectors 3D disponibles. Per tant, en relació amb la tercera tasca, el treball s’ha centrat finalment en el disseny d’una GAN capaç de transformar núvols de punts 3D per portar-los d’un domini a un altre, un tema relativament inexplorat.Finalment, cal esmentar que tots els conjunts de dades sintètiques usats en aquestes tres tasques han estat dissenyats i generats en el context d’aquesta tesi doctoral i es faran públics. En general, considerem que aquesta tesi presenta un avanç en el foment de la utilització de dades sintètiques per al desenvolupament de models profunds de percepció, essencials en el camp de la conducció autònoma.<br>La anotación manual de imágenes para desarrollar sistemas basados en visión por computador ha sido uno de los puntos más problemáticos desde que se utiliza aprendizaje automático para ello. Esta tesis se centra en aprovechar los datos sintéticos para aliviar el coste de las anotaciones manuales en tres tareas de percepción relacionadas con la asistencia a la conducción y la conducción autónoma. En todo momento asumimos el uso de redes neuronales convolucionales para el desarrollo de nuestros modelos profundos de percepción. La primera tarea plantea el reconocimiento de señales de tráfico, un problema de clasificación de imágenes. Asumimos que el número de clases de señales de tráfico a reconocer se debe incrementar sin haber podido anotar nuevas imágenes con las que realizar el correspondiente reentrenamiento. Demostramos que aprovechando los datos sintéticos de las nuevas clases y transformándolas con una red adversaria-generativa (GAN, de sus siglas en inglés) entrenada con las clases conocidas (sin usar muestras de las nuevas clases), es posible reentrenar la red neuronal para clasificar todas las señales en una proporción de ~1/4 entre clases nuevas y conocidas. La segunda tarea consiste en la detección de vehículos y peatones (objetos) en imágenes. En este caso, asumimos la recepción de un conjunto de imágenes sin anotar. El objetivo es anotar automáticamente esas imágenes para que así se puedan utilizar posteriormente en el entrenamiento del detector de objetos que deseemos. Para alcanzar este objetivo, partimos de datos sintéticos anotados y proponemos un método de aprendizaje semi-supervisado basado en la idea del co-aprendizaje. Además, utilizamos una GAN para reducir la distancia entre los dominios sintético y real antes de aplicar el co-aprendizaje. Nuestros resultados cuantitativos muestran que el procedimiento desarrollado permite anotar el conjunto de imágenes de entrada con la precisión suficiente para entrenar detectores de objetos de forma efectiva; es decir, tan precisos como si las imágenes se hubiesen anotado manualmente. En la tercera tarea dejamos atrás el espacio 2D de las imágenes, y nos centramos en procesar nubes de puntos 3D provenientes de sensores LiDAR. Nuestro objetivo inicial era desarrollar un detector de objetos 3D (vehículos, peatones, ciclistas) entrenado en nubes de puntos sintéticos estilo LiDAR. En el caso de las imágenes cabía esperar el problema de cambio de dominio debido a las diferencias visuales entre las imágenes sintéticas y reales. Pero, a priori, no esperábamos lo mismo al trabajar con nubes de puntos LiDAR, ya que se trata de información geométrica proveniente del muestreo activo del mundo, sin que la apariencia visual influya. Sin embargo, en la práctica, hemos visto que también aparecen los problemas de adaptación de dominio. Factores como los parámetros de muestreo del LiDAR, la configuración de los sensores a bordo del vehículo autónomo, y la anotación manual de los objetos 3D, inducen diferencias de dominio. En la tesis demostramos esta observación mediante un exhaustivo conjunto de experimentos con diferentes bases de datos públicas y detectores 3D disponibles. Por tanto, en relación a la tercera tarea, el trabajo se ha centrado finalmente en el diseño de una GAN capaz de transformar nubes de puntos 3D para llevarlas de un dominio a otro, un tema relativamente inexplorado. Finalmente, cabe mencionar que todos los conjuntos de datos sintéticos usados en estas tres tareas han sido diseñados y generados en el contexto de esta tesis doctoral y se harán públicos. En general, consideramos que esta tesis presenta un avance en el fomento de la utilización de datos sintéticos para el desarrollo de modelos profundos de percepción, esenciales en el campo de la conducción autónoma.<br>Manually annotating images to develop vision models has been a major bottleneck since computer vision and machine learning started to walk together. This thesis focuses on leveraging synthetic data to alleviate manual annotation for three perception tasks related to driving assistance and autonomous driving. In all cases, we assume the use of deep convolutional neural networks (CNNs) to develop our perception models. The first task addresses traffic sign recognition (TSR), a kind of multi-class classification problem. We assume that the number of sign classes to be recognized must be suddenly increased without having annotated samples to perform the corresponding TSR CNN re-training. We show that leveraging synthetic samples of such new classes and transforming them by a generative adversarial network (GAN) trained on the known classes (i.e., without using samples from the new classes), it is possible to re-train the TSR CNN to properly classify all the signs for a ~1/4 ratio of new/known sign classes. The second task addresses on-board 2D object detection, focusing on vehicles and pedestrians. In this case, we assume that we receive a set of images without the annotations required to train an object detector, i.e., without object bounding boxes. Therefore, our goal is to self-annotate these images so that they can later be used to train the desired object detector. In order to reach this goal, we leverage from synthetic data and propose a semi-supervised learning approach based on the co-training idea. In fact, we use a GAN to reduce the synth-to-real domain shift before applying co-training. Our quantitative results show that co-training and GAN-based image-to-image translation complement each other up to allow the training of object detectors without manual annotation, and still almost reaching the upper-bound performances of the detectors trained from human annotations. While in previous tasks we focus on vision-based perception, the third task we address focuses on LiDAR pointclouds. Our initial goal was to develop a 3D object detector trained on synthetic LiDAR-style pointclouds. While for images we may expect synth/real-to-real domain shift due to differences in their appearance (e.g. when source and target images come from different camera sensors), we did not expect so for LiDAR pointclouds since these active sensors factor out appearance and provide sampled shapes. However, in practice, we have seen that it can be domain shift even among real-world LiDAR pointclouds. Factors such as the sampling parameters of the LiDARs, the sensor suite configuration on-board the ego-vehicle, and the human annotation of 3D bounding boxes, do induce a domain shift. We show it through comprehensive experiments with different publicly available datasets and 3D detectors. This redirected our goal towards the design of a GAN for pointcloud-to-pointcloud translation, a relatively unexplored topic. Finally, it is worth to mention that all the synthetic datasets used for these three tasks, have been designed and generated in the context of this PhD work and will be publicly released. Overall, we think this PhD presents several steps forward to encourage leveraging synthetic data for developing deep perception models in the field of driving assistance and autonomous driving.<br>Universitat Autònoma de Barcelona. Programa de Doctorat en Informàtica
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sharma, Devendra. "Evaluation and Analysis of Perception Systems for Autonomous Driving." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291423.

Texte intégral
Résumé :
For safe mobility, an autonomous vehicle must perceive the surroundings accurately. There are many perception tasks associated with understanding the local environment such as object detection, localization, and lane analysis. Object detection, in particular, plays a vital role in determining an object’s location and classifying it correctly and is one of the challenging tasks in the self-driving research area. Before employing an object detection module in autonomous vehicle testing, an organization needs to have a precise analysis of the module. Hence, it becomes crucial for a company to have an evaluation framework to evaluate an object detection algorithm’s performance. This thesis develops a comprehensive framework for evaluating and analyzing object detection algorithms, both 2D (camera images based) and 3D (LiDAR point cloud-based). The pipeline developed in this thesis provides the ability to evaluate multiple models with ease, signified by the key performance metrics, Average Precision, F-score, and Mean Average Precision. 40-point interpolation method is used to calculate the Average Precision.<br>För säker rörlighet måste ett autonomt fordon uppfatta omgivningen exakt. Det finns många uppfattningsuppgifter associerade med att förstå den lokala miljön, såsom objektdetektering, lokalisering och filanalys. I synnerhet objektdetektering spelar en viktig roll för att bestämma ett objekts plats och klassificera det korrekt och är en av de utmanande uppgifterna inom det självdrivande forskningsområdet. Innan en anställd detekteringsmodul används i autonoma fordonsprovningar måste en organisation ha en exakt analys av modulen. Därför blir det avgörande för ett företag att ha en utvärderingsram för att utvärdera en objektdetekteringsalgoritms prestanda. Denna avhandling utvecklar ett omfattande ramverk för utvärdering och analys av objektdetekteringsalgoritmer, både 2 D (kamerabilder baserade) och 3 D (LiDAR-punktmolnbaserade). Rörledningen som utvecklats i denna avhandling ger möjlighet att enkelt utvärdera flera modeller, betecknad med nyckelprestandamätvärdena, Genomsnittlig precision, F-poäng och genomsnittlig genomsnittlig precision. 40-punkts interpoleringsmetod används för att beräkna medelprecisionen.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Behere, Sagar. "Architecting Autonomous Automotive Systems : With an emphasis on Cooperative Driving." Licentiate thesis, KTH, Inbyggda styrsystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-120595.

Texte intégral
Résumé :
The increasing usage of electronics and software in a modern automobile enables realization of many advanced features. One such feature is autonomous driving. Autonomous driving means that a human driver’s intervention is not required to drive the automobile; rather, theautomobile is capable of driving itself. Achieving automobile autonomyrequires research in several areas, one of which is the area of automotive electrical/electronics (E/E) architectures. These architectures deal with the design of the computer hardware and software present inside various subsystems of the vehicle, with particular attention to their interaction and modularization. The aim of this thesis is to investigate how automotive E/E architectures should be designed so that 1) it ispossible to realize autonomous features and 2) a smooth transition canbe made from existing E/E architectures, which have no explicit support for autonomy, to future E/E architectures that are explicitly designed for autonomy.The thesis begins its investigation by considering the specific problem of creating autonomous behavior under cooperative driving condi-tions. Cooperative driving conditions are those where continuous wireless communication exists between a vehicle and its surroundings, which consist of the local road infrastructure as well as the other vehicles in the vicinity. In this work, we define an original reference architecture for cooperative driving. The reference architecture demonstrates how a subsystem with specific autonomy features can be plugged into an existing E/E architecture, in order to realize autonomous driving capabilities. Two salient features of the reference architecture are that it isminimally invasive and that it does not dictate specific implementation technologies. The reference architecture has been instantiated on two separate occasions and is the main contribution of this thesis. Another contribution of this thesis is a novel approach to the design of general, autonomous, embedded systems architectures. The approach introduces an artificial consciousness within the architecture, that understands the overall purpose of the system and also how the different existing subsystems should work together in order to meet that purpose.This approach can enable progressive autonomy in existing embedded systems architectures, over successive design iterations.<br><p>QC 20130412</p>
Styles APA, Harvard, Vancouver, ISO, etc.
6

Behere, Sagar. "Reference Architectures for Highly Automated Driving." Doctoral thesis, KTH, Inbyggda styrsystem, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-179306.

Texte intégral
Résumé :
Highly automated driving systems promise increased road traffic safety, as well as positive impacts on sustainable transportation by means of increased traffic efficiency and environmental friendliness. The design and development of such systems require scientific advances in a number of areas. One area is the vehicle's electrical/electronic (E/E) architecture. The E/E architecture can be presented using a number of views, of which an important one is the functional view. The functional view describes the decomposition of the system into its main logical components, along with the hierarchical structure, the component inter-connections, and requirements. When this view captures the principal ideas and patterns that constitute the foundation of a variety of specific architectures, it may be termed as a reference architecture. Two reference architectures for highly automated driving form the principal contribution of this thesis. The first reference architecture is for cooperative driving. In a cooperative driving situation, vehicles and road infrastructure in the vicinity of a vehicle continuously exchange wireless information and this information is then used to control the motion of the vehicle. The second reference architecture is for autonomous driving, wherein the vehicle is capable of driver-less operation even without direct communication with external entities. The description of both reference architectures includes their main components and the rationale for how these components should be distributed across the architecture and its layers. These architectures have been validated via multiple real-world instantiations, and the guidelines for instantiation also form part of the architecture description. A comparison with similar architectures is also provided, in order to highlight the similarities and differences. The comparisons show that in the context of automated driving, the explicit recognition of components for semantic understanding, world modeling, and vehicle platform abstraction are unique to the proposed architecture. These components are not unusual in architectures within the Artificial Intelligence/robotics domains; the proposed architecture shows how they can be applied within the automotive domain. A secondary contribution of this thesis is a description of a lightweight, four step approach for model based systems engineering of highly automated driving systems, along with supporting model classes. The model classes cover the concept of operations, logical architecture, application software components, and the implementation platforms. The thesis also provides an overview of current implementation technologies for cognitive driving intelligence and vehicle platform control, and recommends a specific setup for development and accelerated testing of highly automated driving systems, that includes model- and hardware-in-the-loop techniques in conjunction with a publish/subscribe bus. Beyond the more "traditional" engineering concepts, the thesis also investigates the domain of machine consciousness and computational self-awareness. The exploration indicates that current engineering methods are likely to hit a complexity ceiling, breaking through which may require advances in how safety-critical systems can self-organize, construct, and evaluate internal models to reflect their perception of the world. Finally, the thesis also presents a functional architecture for the brake system of an autonomous truck. This architecture proposes a reconfiguration of the existing brake systems of the truck in a way that provides dynamic, diversified redundancy, and an increase in the system reliability and availability, while meeting safety requirements.<br><p>QC 20151216</p>
Styles APA, Harvard, Vancouver, ISO, etc.
7

Argui, Imane. "A vision-based mixed-reality framework for testing autonomous driving systems." Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR37.

Texte intégral
Résumé :
Cette thèse explore le développement et la validation des systèmes de navigation autonome dans un environnement de réalité mixte (RM), avec pour objectif de combler l’écart entre la simulation virtuelle et les tests en conditions réelles. Les travaux mettent l’accent sur le potentiel des environnements en réalité mixte pour tester les systèmes autonomes de manière sûre, efficace et économique. La thèse est structurée en plusieurs parties, et commence par une revue des technologies de pointe dans la navigation autonome et les applications en réalité mixte. En utilisant des modèles à base de règles et des modèles d’apprentissage, des expérimentations visent à évaluer les performances des robots autonomes dans des environnements simulés, réels et de RM. Un des objectifs principaux est de réduire le « reality gap »—c’est-à-dire la différence entre les comportements observés en simulation et ceux observés dans des applications réelles—en intégrant des éléments réels avec des composants virtuels dans des environnements de RM. Cette approche permet des tests et une validation plus proche des contraintes réelles sans les risques associés aux essais physiques. Une partie importante du travail est consacrée à la mise en œuvre et au test d’une stratégie d’augmentation hors ligne visant à améliorer les capacités de perception des systèmes autonomes à l’aide des informations de profondeur. De plus, l’apprentissage par renforcement est appliqué pour évaluer son potentiel dans les environnements de RM. La thèse démontre que ces modèles peuvent apprendre efficacement à naviguer et à éviter les obstacles dans des simulations virtuelles et obtenir des résultats similaires lorsqu’ils sont transférés dans des environnements de RM, soulignant la flexibilité du cadre pour différents modèles de systèmes autonomes. À travers ces expériences, la thèse montre le potentiel des environnements de réalité mixte comme une plateforme polyvalente et robuste pour faciliter le développement des technologies de navigation autonome, offrant une approche plus sûre et plus évolutive pour la validation des modèles avant leur déploiement dans le monde réel<br>This thesis explores the development and validation of autonomous navigation systems within a mixed-reality (MR) framework, aiming to bridge the gap between virtual simulation and real-world testing. The research emphasizes the potential of MR environments for safely, efficiently, and cost-effectively testing autonomous systems. The thesis is structured around several chapters, beginning with a review of state-of-the-art technologies in autonomous navigation and mixed-reality applications. Through both rule-based and learning-based models, the research investigates the performance of autonomous robots within simulated, real, and MR environments. One of the core objectives is to reduce the "reality gap"—the discrepancy between behaviors observed in simulations versus real-world applications—by integrating real- world elements with virtual components in MR environments. This approach allows for more accurate testing and validation of algorithms without the risks associated with physical trials. A significant part of the work is dedicated to implementing and testing an offline augmentation strategy aimed at enhancing the perception capabilities of autonomous systems using depth information. Furthermore, reinforcement learning (RL) is applied to evaluate its potential within MR environments. The thesis demonstrates that RL models can effectively learn to navigate and avoid obstacles in virtual simulations and perform similarly well when transferred to MR environments, highlighting the framework’s flexibility for different autonomous system models. Through these experiments, the thesis establishes MR environments as a versatile and robust platform for advancing autonomous navigation technologies, offering a safer, more scalable approach to model validation before real-world deployment
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chi, Lijun. "Security and Robustness of Autonomous Driving Systems Against Physical Adversarial Attack." Electronic Thesis or Diss., Institut polytechnique de Paris, 2025. http://www.theses.fr/2025IPPAT009.

Texte intégral
Résumé :
Grâce à des mises à jour matérielles itératives et aux avancées dans les réseaux neuronaux profonds (DNN), les systèmes de conduite autonome (ADS) sont de plus en plus intégrés à la vie quotidienne. Cependant, avant que cette technologie ne se généralise, un problème de sécurité qui doit être résolu est celui des attaques adversariales physiques. Ces attaques peuvent manipuler des objets réels pour perturber la perception des ADS et provoquer des accidents de la route. De plus, la diversité des attaques physiques complique la tâche des défenseurs passifs.Cette étude aborde ces défis en analysant, évaluant et développant des stratégies pratiques pour améliorer la robustesse des ADS. Elle commence par une revue des récentes attaques adversariales physiques, identifiant les menaces spécifiques pour les ADS. Elle présente ensuite une nouvelle attaque black-box basée sur l'attention publique, qui démontre comment un attaquant peut exploiter la perception des ADS sans avoir une connaissance complète du système, soulignant ainsi la nécessité de renforcer les défenses.Ensuite, un cadre de détection léger est proposé pour la détection en temps réel des attaques laser. De plus, un mécanisme de défense nommé Laser shield est développé, utilisant des polariseurs pour bloquer les signaux laser nuisibles et renforcer la sécurité des ADS<br>With iterative hardware upgrades and advancements in deep neural networks (DNNs), autonomous driving systems (ADS) are increasingly integrated in life. However, before this technology becomes widespread, a security issue that needs to be addressed is physical adversarial attacks. Such attacks can manipulate real-world objects to disrupt the perception of ADSs and cause traffic accidents. In addition, the diversity of physical attacks makes it difficult for passive defenders.This study addresses these challenges by analyzing, evaluating, and developing practical strategies to improve the robustness of ADS.It begins with a review of recent physical adversarial attacks that identifies specific threats to ADSs.It then introduces a novel public attention-based black-box attack that demonstrates how an attacker can exploit ADS awareness without full knowledge of the system, highlighting the need for enhanced defenses.Next, a lightweight detection framework is proposed for real-time laser-based attack detection. Additionally, a defense mechanism called Laser Shield is developed, using polarizers to block harmful laser signals and enhance ADS security
Styles APA, Harvard, Vancouver, ISO, etc.
9

Veeramani, Lekamani Sarangi. "Model Based Systems Engineering Approach to Autonomous Driving : Application of SysML for trajectory planning of autonomous vehicle." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254891.

Texte intégral
Résumé :
Model Based Systems Engineering (MBSE) approach aims at implementing various processes of Systems Engineering (SE) through diagrams that provide different perspectives of the same underlying system. This approach provides a basis that helps develop a complex system in a systematic manner. Thus, this thesis aims at deriving a system model through this approach for the purpose of autonomous driving, specifically focusing on developing the subsystem responsible for generating a feasible trajectory for a miniature vehicle, called AutoCar, to enable it to move towards a goal. The report provides a background on MBSE and System Modeling Language (SysML) which is used for modelling the system. With this background, an MBSE framework for AutoCar is derived and the overall system design is explained. This report further explains the concepts involved in autonomous trajectory planning followed by an introduction to Robot Operating System (ROS) and its application for trajectory planning of the system. The report concludes with a detailed analysis on the benefits of using this approach for developing a system. It also identifies the shortcomings of applying MBSE to system development. The report closes with a mention on how the given project can be further carried forward to be able to realize it on a physical system.<br>Modellbaserade systemteknikens (MBSE) inriktning syftar till att implementera de olika processerna i systemteknik (SE) genom diagram som ger olika perspektiv på samma underliggande system. Detta tillvägagångssätt ger en grund som hjälper till att utveckla ett komplext system på ett systematiskt sätt. Sålunda syftar denna avhandling att härleda en systemmodell genom detta tillvägagångssätt för autonom körning, med särskild inriktning på att utveckla delsystemet som är ansvarigt för att generera en genomförbar ban för en miniatyrbil, som kallas AutoCar, för att göra det möjligt att nå målet. Rapporten ger en bakgrund till MBSE and Systemmodelleringsspråk (SysML) som används för modellering av systemet. Med denna bakgrund, MBSE ramverket för AutoCar är härledt och den övergripande systemdesignen förklaras. I denna rapport förklaras vidare begreppen autonom banplanering följd av en introduktion till Robot Operating System (ROS) och dess tillämpning för systemplanering av systemet. Rapporten avslutas med en detaljerad analys av fördelarna med att använda detta tillvägagångssätt för att utveckla ett system. Det identifierar också bristerna för att tillämpa MBSE på systemutveckling. Rapporten stänger med en omtale om hur det givna projektet kan vidarebefordras för att kunna realisera det på ett fysiskt system.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Perez, Cervantes Marcus Sebastian. "Issues of Control with Older Drivers and Future Automated Driving Systems." Research Showcase @ CMU, 2011. http://repository.cmu.edu/theses/21.

Texte intégral
Résumé :
It is inevitable that as a person ages they will encounter different physical and cognitive impairments as well as dynamic social issues. We started this project under the assumption that autonomous driving would greatly benefit the fastest growing population in developed countries, the elderly. However, the larger question at hand was how are older drivers going to interact with future automated driving systems? It was through the qualitative research we conducted that we were able to uncover the answer to this question; older drivers are not willing to give up “control” to autonomous cars. As interaction designers, we need to define what type of interactions need to occur in these future automated driving systems, so older drivers still feel independent and in control when driving. Lawrence D. Burns, former Vice president of Research and Development at General Motors and author of Reinventing the Automobile Personal Urban Mobility for the 21st Century talks about two driving factors that will shape the future of the automobile. These factors are energy and connectivity (Burns et al., 2010). We would add a third one, which is control. If we address these three factors we might be able to bridge the gap between how we drive today and how we will drive in the future and thus create more cohesive future automated driving systems.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Livres sur le sujet "Autonomous Driving Systems"

1

Shi, Weisong, and Liangkai Liu. Computing Systems for Autonomous Driving. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81564-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Joseph, Lentin, and Amit Kumar Mondal. Autonomous Driving and Advanced Driver-Assistance Systems (ADAS). CRC Press, 2021. http://dx.doi.org/10.1201/9781003048381.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Waschl, Harald, Ilya Kolmanovsky, and Frank Willems, eds. Control Strategies for Advanced Driver Assistance Systems and Autonomous Driving Functions. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-91569-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Trimble, Tammy E., Stephanie Baker, Jason Wagner, et al. Implications of Connected and Automated Driving Systems, Vol. 4: Autonomous Vehicle Action Plan. Transportation Research Board, 2018. http://dx.doi.org/10.17226/25292.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zuev, Sergey, Ruslan Maleev, and Aleksandr Chernov. Energy efficiency of electrical equipment systems of autonomous objects. INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1740252.

Texte intégral
Résumé :
When considering the main trends in the development of modern autonomous objects (aircraft, combat vehicles, motor vehicles, floating vehicles, agricultural machines, etc.) in recent decades, two key areas can be identified. The first direction is associated with the improvement of traditional designs of autonomous objects (AO) with an internal combustion engine (ICE) or a gas turbine engine (GTD). The second direction is connected with the creation of new types of joint-stock companies, namely electric joint-stock companies( EAO), joint-stock companies with combined power plants (AOKEU).&#x0D; The energy efficiency is largely determined by the power of the generator set and the battery, which is given to the electrical network in various driving modes.&#x0D; Most of the existing methods for calculating power supply systems use the average values of disturbing factors (generator speed, current of electric energy consumers, voltage in the on-board network) when choosing the characteristics of the generator set and the battery. At the same time, it is obvious that when operating a motor vehicle, these parameters change depending on the driving mode. Modern methods of selecting the main parameters and characteristics of the power supply system do not provide for modeling its interaction with the power unit start-up system of a motor vehicle in operation due to the lack of a systematic approach.&#x0D; The choice of a generator set and a battery, as well as the concept of the synthesis of the power supply system is a problem studied in the monograph.&#x0D; For all those interested in electrical engineering and electronics.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Trimble, Tammy E., Stephanie Baker, Jason Wagner, et al. Implications of Connected and Automated Driving Systems, Vol. 5: Developing the Autonomous Vehicle Action Plan. Transportation Research Board, 2018. http://dx.doi.org/10.17226/25291.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kyoko, Okino, Sunamura Michinari, Ishibashi Jun-ichiro, Okino Kyoko, and Sunamura Michinari, eds. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Springer Nature, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Shi, Weisong, and Liangkai Liu. Computing Systems for Autonomous Driving. Springer International Publishing AG, 2022.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Shi, Weisong, and Liangkai Liu. Computing Systems for Autonomous Driving. Springer International Publishing AG, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Nitsch, Tobias. Sensor Systems and Communication Technologies in Autonomous Driving. GRIN Verlag GmbH, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Autonomous Driving Systems"

1

Matthaei, Richard, Andreas Reschka, Jens Rieken, et al. "Autonomous Driving." In Handbook of Driver Assistance Systems. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12352-3_61.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Matthaei, Richard, Andreas Reschka, Jens Rieken, et al. "Autonomous Driving." In Handbook of Driver Assistance Systems. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09840-1_61-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Pavone, Marco. "Autonomous Mobility-on-Demand Systems for Future Urban Mobility." In Autonomous Driving. Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48847-8_19.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Iclodean, Călin, Bogdan Ovidiu Varga, and Nicolae Cordoș. "Autonomous Driving Systems." In Autonomous Vehicles for Public Transportation. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14678-7_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Shi, Weisong, and Liangkai Liu. "Autonomous Driving Landscape." In Computing Systems for Autonomous Driving. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81564-6_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Shi, Weisong, and Liangkai Liu. "Autonomous Driving Simulators." In Computing Systems for Autonomous Driving. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81564-6_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Behere, Sagar, and Martin Törngren. "Systems Engineering and Architecting for Intelligent Autonomous Systems." In Automated Driving. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31895-0_13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ren, Jianfeng, and Dong Xia. "Autonomous Driving Operating Systems." In Autonomous driving algorithms and Its IC Design. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2897-2_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Hammoud, Ahmad, Azzam Mourad, Hadi Otrok, and Zbigniew Dziong. "Data-Driven Federated Autonomous Driving." In Mobile Web and Intelligent Information Systems. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14391-5_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Liu, Shaoshan, Liyun Li, Jie Tang, Shuang Wu, and Jean-Luc Gaudiot. "Perception in Autonomous Driving." In Creating Autonomous Vehicle Systems. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-031-01802-2_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Autonomous Driving Systems"

1

S, Vignesh, K. Karunya, Vijaya Sankar K. P, S. L. Jany Shabu, and D. Poornima. "Obstacle Detection on Autonomous Driving Systems." In 2025 International Conference on Advanced Computing Technologies (ICoACT). IEEE, 2025. https://doi.org/10.1109/icoact63339.2025.11005028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tang, Wenbing, Mingfei Cheng, Yuan Zhou, and Yang Liu. "Moral Testing of Autonomous Driving Systems." In 2025 IEEE/ACM 1st International Workshop on Software Engineering for Autonomous Driving Systems (SE4ADS). IEEE, 2025. https://doi.org/10.1109/se4ads66461.2025.00011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Zhang, Qi, Siyuan Gou, and Wenbin Li. "Visual Perception System for Autonomous Driving." In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10802028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Borgnino, Leandro E., Claudio A. Delrieux, Nicolás Salomón, and Damián A. Morero. "Computer Graphics-Driven 3D LiDAR Model for Autonomous Driving Systems." In 2025 Argentine Conference on Electronics (CAE). IEEE, 2025. https://doi.org/10.1109/cae64243.2025.10962084.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Murali, Varun, Rosman Guy, Karaman Sertac, and Daniela Rus. "Learning autonomous driving from aerial imagery." In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10801752.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Abeideh, Ahmad, Abdul Rahman Zamrik, and Wisam Elmasry. "Autonomous Driving Robot for Indoor 2D Mapping." In 2024 Innovations in Intelligent Systems and Applications Conference (ASYU). IEEE, 2024. https://doi.org/10.1109/asyu62119.2024.10757050.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Seo, Seongdeok, Judy Lee, and Mijung Kim. "Testing Diverse Geographical Features of Autonomous Driving Systems." In 2024 IEEE 35th International Symposium on Software Reliability Engineering (ISSRE). IEEE, 2024. https://doi.org/10.1109/issre62328.2024.00049.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ben-Aoun, Sameh, Meriem Belguidoum, and Ahmed Hadj-Kacem. "Improving Autonomous Driving via Recommendation Systems: A Review." In 2024 IEEE/ACS 21st International Conference on Computer Systems and Applications (AICCSA). IEEE, 2024. https://doi.org/10.1109/aiccsa63423.2024.10912546.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Song, Zhicao, Jinhui Fang, Ziyi Yang, Shuai Wang, and Gaofeng Pan. "Autonomous Driving Simulation Platform for Hybrid Traffic." In 2024 13th International Conference on Communications, Circuits and Systems (ICCCAS). IEEE, 2024. http://dx.doi.org/10.1109/icccas62034.2024.10652809.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Zhang, Zhihe, Hongtao Nie, Yichi Zhang, et al. "MSDAD:A Multi-Sensor Dataset for Autonomous Driving." In 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2024. https://doi.org/10.1109/itsc58415.2024.10919939.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Autonomous Driving Systems"

1

Chen, Guang. Multi-agent Collaborative Perception for Autonomous Driving: Unsettled Aspects. SAE International, 2023. http://dx.doi.org/10.4271/epr2023017.

Texte intégral
Résumé :
&lt;div class="section abstract"&gt;&lt;div class="htmlview paragraph"&gt;This report delves into the field of multi-agent collaborative perception (MCP) for autonomous driving: an area that remains unresolved. Current single-agent perception systems suffer from limitations, such as occlusion and sparse sensor observation at a far distance.&lt;/div&gt;&lt;div class="htmlview paragraph"&gt;&lt;b&gt;Multi-agent Collaborative Perception for Autonomous Driving: Unsettled Aspects&lt;/b&gt; addresses three unsettled topics that demand immediate attention: &lt;ul class="list disc"&gt;&lt;li class="list-item"&gt;&lt;div class="htmlview paragraph"&gt;Establishing normative communication protocols to facilitate seamless information sharing among vehicles&lt;/div&gt;&lt;/li&gt;&lt;li class="list-item"&gt;&lt;div class="htmlview paragraph"&gt;Definiting collaboration strategies, including identifying specific collaboration projects, partners, and content, as well as establishing the integration mechanism&lt;/div&gt;&lt;/li&gt;&lt;li class="list-item"&gt;&lt;div class="htmlview paragraph"&gt;Collecting sufficient data for MCP model training, including capturing diverse modal data and labeling various downstream tasks as accurately as possible&lt;/div&gt;&lt;/li&gt;&lt;/ul&gt;&lt;/div&gt;&lt;div class="htmlview paragraph"&gt;&lt;a href="https://www.sae.org/publications/edge-research-reports" target="_blank"&gt;Click here to access the full SAE EDGE&lt;/a&gt;&lt;sup&gt;TM&lt;/sup&gt;&lt;a href="https://www.sae.org/publications/edge-research-reports" target="_blank"&gt; Research Report portfolio.&lt;/a&gt;&lt;/div&gt;&lt;/div&gt;
Styles APA, Harvard, Vancouver, ISO, etc.
2

Razdan, Rahul. Unsettled Topics Concerning Human and Autonomous Vehicle Interaction. SAE International, 2020. http://dx.doi.org/10.4271/epr2020025.

Texte intégral
Résumé :
This report examines the current interaction points between humans and autonomous systems, with a particular focus on advanced driver assistance systems (ADAS), the requirements for human-machine interfaces as imposed by human perception, and finally, the progress being made to close the gap. Autonomous technology has the potential to benefit personal transportation, last-mile delivery, logistics, and many other mobility applications enormously. In many of these applications, the mobility infrastructure is a shared resource in which all the players must cooperate. In fact, the driving task has been described as a “tango” where we—as humans—cooperate naturally to enable a robust transportation system. Can autonomous systems participate in this tango? Does that even make sense? And if so, how do we make it happen?
Styles APA, Harvard, Vancouver, ISO, etc.
3

Wang, Shenlong, and David Forsyth. Safely Test Autonomous Vehicles with Augmented Reality. Illinois Center for Transportation, 2022. http://dx.doi.org/10.36501/0197-9191/22-015.

Texte intégral
Résumé :
This work exploits augmented reality to safely train and validate autonomous vehicles’ performance in the real world under safety-critical scenarios. Toward this goal, we first develop algorithms that create virtual traffic participants with risky behaviors and seamlessly insert the virtual events into real images perceived from the physical world. The resulting composed images are photorealistic and physically grounded. The manipulated images are fed into the autonomous vehicle during testing, allowing the self-driving vehicle to react to such virtual events within either a photorealistic simulator or a real-world test track and real hardware systems. Our presented technique allows us to develop safe, hardware-in-the-loop, and cost-effective tests for self-driving cars to respond to immersive safety-critical traffic scenarios.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hemphill, Jeff. Unsettled Issues in Drive-by-Wire and Automated Driving System Availability. SAE International, 2022. http://dx.doi.org/10.4271/epr2022002.

Texte intégral
Résumé :
While many observers think that autonomy is right around the corner, there many unsettled issues. One such issue is availability, or how the vehicle behaves in the event of a failure of one of its systems such as those with the latest “by-wire” technologies. Handling of failures at a technical actuation level could involve many aspects, including time of operation after first fault, function/performance after first fault, and exposure after first fault. All of these and other issues are affected by software and electronic and mechanical hardware. Drive-by-wire and Automated Driving System Availability discusses the necessary systems approach required to address these issues. Establishing an industry path forward for these topics will simplify system development and provide a framework for consistent regulation and liability, which is an enabler for the launch of autonomous vehicles.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Pasupuleti, Murali Krishna. Optimal Control and Reinforcement Learning: Theory, Algorithms, and Robotics Applications. National Education Services, 2025. https://doi.org/10.62311/nesx/rriv225.

Texte intégral
Résumé :
Abstract: Optimal control and reinforcement learning (RL) are foundational techniques for intelligent decision-making in robotics, automation, and AI-driven control systems. This research explores the theoretical principles, computational algorithms, and real-world applications of optimal control and reinforcement learning, emphasizing their convergence for scalable and adaptive robotic automation. Key topics include dynamic programming, Hamilton-Jacobi-Bellman (HJB) equations, policy optimization, model-based RL, actor-critic methods, and deep RL architectures. The study also examines trajectory optimization, model predictive control (MPC), Lyapunov stability, and hierarchical RL for ensuring safe and robust control in complex environments. Through case studies in self-driving vehicles, autonomous drones, robotic manipulation, healthcare robotics, and multi-agent systems, this research highlights the trade-offs between model-based and model-free approaches, as well as the challenges of scalability, sample efficiency, hardware acceleration, and ethical AI deployment. The findings underscore the importance of hybrid RL-control frameworks, real-world RL training, and policy optimization techniques in advancing robotic intelligence and autonomous decision-making. Keywords: Optimal control, reinforcement learning, model-based RL, model-free RL, dynamic programming, policy optimization, Hamilton-Jacobi-Bellman equations, actor-critic methods, deep reinforcement learning, trajectory optimization, model predictive control, Lyapunov stability, hierarchical RL, multi-agent RL, robotics, self-driving cars, autonomous drones, robotic manipulation, AI-driven automation, safety in RL, hardware acceleration, sample efficiency, hybrid RL-control frameworks, scalable AI.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Shen, Shiyu, Yuhui Zhai, and Yanfeng Ouyang. Planning and Dynamic Management of Autonomous Modular Mobility Services. Illinois Center for Transportation, 2024. https://doi.org/10.36501/0197-9191/24-029.

Texte intégral
Résumé :
As we enter the next era of autonomous driving, robo-vehicles (which serve as low-cost and fully compliant drivers) are replacing conventional chauffeured services in the mobility market. During just the last few years, companies like Waymo Inc. and Cruise Inc. have already offered fully driverless robo-taxi services to the general public in cities like Phoenix and San Francisco. The rapid evolution of autonomous vehicles is anticipated to reshape the shared mobility market very soon. This project aims to address the following open questions. At the operational level, how should modular units be allocated across multiple categories of customers (e.g., passenger and freight cabins), and how should they be matched in real time? How do we enhance system efficiency by dynamic relocation and swap of modular chassis? At the strategic or tactical level, how should the rolling stock resources (modular chassis, passenger and freight cabins) be planned, and where shall chassis swapping sites be located? How could any potential transaction cost for a chassis swap, such as the time required for a modular chassis to be assembled with a customized cabin, affect the optimal strategy and system performance? How can customer priorities (e.g., passenger vs. freight) affect system performance, and how can service providers manage demand by specific pricing scheme or discriminative customer service strategies? We conducted the following research tasks: (i) analytically derived systems of implicit nonlinear equations in the closed form, including a set of differential equations, to analyze the modular autonomous mobility system and to estimate the expected system performance in the steady state; (ii) conducted a series of agent-based simulation experiments to verify the accuracy of the proposed analytical formulas and to demonstrate the effectiveness of the proposed modular chassis services; and (iii) designed policy instruments to enhance transportation system performance.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Pasupuleti, Murali Krishna. Neuromorphic Nanotech: 2D Materials for Energy-Efficient Edge Computing. National Education Services, 2025. https://doi.org/10.62311/nesx/rr325.

Texte intégral
Résumé :
Abstract The demand for energy-efficient, real-time computing is driving the evolution of neuromorphic computing and edge AI systems. Traditional silicon-based processors struggle with power inefficiencies, memory bottlenecks, and scalability limitations, making them unsuitable for next-generation low-power AI applications. This research report explores how 2D materials, such as graphene, transition metal dichalcogenides (TMDs), black phosphorus, and MXenes, are enabling the development of neuromorphic architectures that mimic biological neural networks for high-speed, ultra-low-power computation. The study examines synaptic transistors, memristors, and AI-driven optimization techniques that enhance the performance of neuromorphic chips for autonomous AI, smart IoT systems, and real-time decision-making at the edge. Additionally, it discusses manufacturing challenges, economic feasibility, and policy implications related to large-scale adoption of 2D materials in nanoelectronics and semiconductor industries. Through case studies and emerging trends, this report provides a roadmap for integrating neuromorphic nanotech into mainstream AI-powered edge computing, ensuring scalability, sustainability, and high-performance intelligence for next-generation computing applications. Keywords: Neuromorphic computing, 2D materials, energy-efficient AI, edge computing, graphene, transition metal dichalcogenides, black phosphorus, MXenes, synaptic transistors, memristors, nanotechnology, low-power AI, spiking neural networks, AI-driven material discovery, quantum simulations, AI hardware optimization, semiconductor nanotech, real-time AI inference, autonomous AI, AI-powered IoT, sustainable computing.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Abdul Hamid, Umar Zakir. Responder-to-Vehicle Technologies for Connected and Autonomous Vehicles. SAE International, 2023. http://dx.doi.org/10.4271/epr2023010.

Texte intégral
Résumé :
&lt;div class="section abstract"&gt;&lt;div class="htmlview paragraph"&gt;Recently, there has been a slight increase in interest in the use of responder-to-vehicle (R2V) technology for emergency vehicles, such as ambulances, fire trucks, and police cars. R2V technology allows for the exchange of information between different types of responder vehicles, including connected and automated vehicles (CAVs). It can be used in collision avoidance or emergency situations involving CAV responder vehicles. The benefits of R2V are not limited to fully autonomous vehicles (e.g., SAE Level 4), but can also be used in Level 2 CAV scenarios. However, despite the potential benefits of R2V, discussions on this topic are still limited.&lt;/div&gt;&lt;div class="htmlview paragraph"&gt;&lt;b&gt;Responder-to-Vehicle Technologies for Connected and Autonomous Vehicles&lt;/b&gt; aims to provide an overview of R2V technology and its applications for CAV systems, particularly in the context of collision avoidance features. The responder vehicles in question can be autonomous or non-autonomous. It is hoped that it will provide valuable information and knowledge on vehicle connectivity and automation in the current automotive and mobility ecosystem, enabling the development of safer and more reliable autonomous driving technology. The report is intended for both industrial and academic experts and is expected to stimulate further discussions on the development and standardization of R2V technology.&lt;/div&gt;&lt;div class="htmlview paragraph"&gt;&lt;a href="https://www.sae.org/publications/edge-research-reports" target="_blank"&gt;Click here to access the full SAE EDGE&lt;/a&gt;&lt;sup&gt;TM&lt;/sup&gt;&lt;a href="https://www.sae.org/publications/edge-research-reports" target="_blank"&gt; Research Report portfolio.&lt;/a&gt;&lt;/div&gt;&lt;/div&gt;
Styles APA, Harvard, Vancouver, ISO, etc.
9

Pasupuleti, Murali Krishna. Stochastic Computation for AI: Bayesian Inference, Uncertainty, and Optimization. National Education Services, 2025. https://doi.org/10.62311/nesx/rriv325.

Texte intégral
Résumé :
Abstract: Stochastic computation is a fundamental approach in artificial intelligence (AI) that enables probabilistic reasoning, uncertainty quantification, and robust decision-making in complex environments. This research explores the theoretical foundations, computational techniques, and real-world applications of stochastic methods, focusing on Bayesian inference, Monte Carlo methods, stochastic optimization, and uncertainty-aware AI models. Key topics include probabilistic graphical models, Markov Chain Monte Carlo (MCMC), variational inference, stochastic gradient descent (SGD), and Bayesian deep learning. These techniques enhance AI's ability to handle uncertain, noisy, and high-dimensional data while ensuring scalability, interpretability, and trustworthiness in applications such as robotics, financial modeling, autonomous systems, and healthcare AI. Case studies demonstrate how stochastic computation improves self-driving car navigation, financial risk assessment, personalized medicine, and reinforcement learning-based automation. The findings underscore the importance of integrating probabilistic modeling with deep learning, reinforcement learning, and optimization techniques to develop AI systems that are more adaptable, scalable, and uncertainty-aware. Keywords Stochastic computation, Bayesian inference, probabilistic AI, Monte Carlo methods, Markov Chain Monte Carlo (MCMC), variational inference, uncertainty quantification, stochastic optimization, Bayesian deep learning, reinforcement learning, probabilistic graphical models, stochastic gradient descent (SGD), uncertainty-aware AI, probabilistic reasoning, risk assessment, AI in robotics, AI in finance, AI in healthcare, decision-making under uncertainty, trustworthiness in AI, scalable AI, interpretable AI.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Qin, Tong, Zhen Chen, John Jakeman, and Dongbin Xiu. Data-driven learning of non-autonomous systems. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1763550.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!