Thèses sur le sujet « Autonomous Driving »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Autonomous Driving ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Tirumaladasu, Sai Subhakar, et Shirdi Manjunath Adigarla. « Autonomous Driving : Traffic Sign Classification ». Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-17783.
Texte intégralÁvila, Emanuel da Silva. « Servo-pilot for autonomous driving ». Master's thesis, Universidade de Aveiro, 2010. http://hdl.handle.net/10773/2537.
Texte intégralForam simulados numericamente jogos de recursos públicos em redes usando algoritmo de Monte Carlo. Foram usadas redes regulares unidimensionais em anel, redes regulares bidimensionais (rede quadrada) e redes scale-free. São apresentados os métodos seguidos, a teoria e os algoritmos usados. Estes jogos apresentam uma transição de fase entre uma fase dominada por oportunistas de uma fase dominada por cooperadores em função de um parâmetro de rendimento das contribuições. Foi encontrado um intervalo, dependente do número médio de vizinhos, para o qual a fracção de configurações sobreviventes tende para 1 quando o tamanho da rede aumenta. Foi também encontrada uma dependência no valor de parâmetro crítico de transição no número médio de vizinhos para as configurações sobreviventes. Esses efeitos foram observados em todos os tipos de rede estudados neste trabalho. ABSTRACT: Public goods games were numerically simulated in networks using Monte Carlo Algorithm. Regular one-dimensional ring networks, regular two-dimensional lattice networks and scale-free networks had been used. The methods followed, the theory and the algorithms used are presented. This games have a phase transition between one phase dominated by defectors from one dominated by cooperators in function of the value of efficiency from the contributions. It was found an interval, dependent on the average number of neighbors, where the fraction of surviving configurations tens to 1 when the size of the network increases. It was found dependence in the critical value of transition value with the average number of neighbors. Both effects were observed in all types of networks studied in this work.
Hernández, Juárez Daniel. « Embedded 3D Reconstruction for Autonomous Driving ». Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/671166.
Texte intégralEl objetivo de esta tesis es estudiar algoritmos de reconstrucción 3D aptos para la conducción autónoma. Para ello, necesitamos implementaciones y representaciones rápidas del entorno 3D que tengan en cuenta la información geométrica y semántica. El uso de la paralelización de CUDA y GPU permite aprovechar el hardware de alto rendimiento flexible y programable para cumplir con los estrictos requisitos de tiempo. La tesis presenta tres contribuciones principales. Primero, describimos la paralelización del conocido algoritmo de estéreo basado en Semi-Global Matching (SGM), que estima la profundidad de dos imágenes estéreo. Implementamos un diseño de paralelización eficiente que se ejecuta sobre GPU de bajo consumo de energía y logra un rendimiento en tiempo real. Como segunda contribución, presentamos una mejora del modelo de representación 3D llamado Stixel World que da cuenta de las superficies inclinadas. La extensión del modelo ayuda a representar escenas reales que fallan bajo los supuestos anteriores y, mediante una regularización eficiente del modelo, mantiene la misma precisión del modelo anterior. También proponemos una estrategia algorítmica para acelerar el proceso, lo que reduce la cantidad de combinaciones de Stixel probadas. Finalmente, explicamos nuestras estrategias de paralelización para el algoritmo de segmentación de Stixel. Proponemos una estrategia de paralelización que se adapta a la arquitectura masivamente paralela de las GPU. También estudiamos las diferentes técnicas de aceleración disponibles para Stixels y cómo se pueden implementar de manera eficiente para esta arquitectura. Además, nuestro enfoque reduce la complejidad computacional del algoritmo al reformular el modelo.
The objective of this thesis is to study 3D reconstruction algorithms suitable for autonomous driving. In order to do so, we need fast implementations and representations of the 3D environment that take into account geometric and semantic information. The use of CUDA and GPU parallelization allows to leverage flexible and programmable high performance hardware to fulfill the strong time requirements. The thesis presents three main contributions. First, we describe the parallelization of the well-known stereo matching algorithm based on Semi-Global Matching (SGM), which estimates depth from two stereo images. We deploy an efficient parallelization design that runs on top of low-energy consumption GPUs and achieves real-time performance. As our second contribution, we present an improvement of the 3D representation model called the Stixel World that accounts for slanted surfaces. The extension of the model helps representing real scenes that fail under the previous assumptions, and, by an efficient model regularization, keeps the same accuracy of the previous model. We also propose an algorithmic strategy to speed up the process, which reduces the amount of Stixel combinations tested by the dynamic programming approach. Finally, we explain our parallelization strategies for the Stixel segmentation algorithm. We propose a parallelization strategy that fits the massively parallel architecture of GPUs. We also study the different speed up techniques available for Stixels and how they can be implemented efficiently for this architecture. Additionally, our approach reduces the computational complexity of the algorithm by reformulating the measurement depth model, relying on the confidence of the depth estimation and the identification of invalid values to handle outliers.
Zivkovic, A. (Aleksandar). « Development of autonomous driving using ROS ». Master's thesis, University of Oulu, 2018. http://urn.fi/URN:NBN:fi:oulu-201806062488.
Texte intégralLiebenwein, Lucas. « Contract-based safety verification for autonomous driving ». Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120366.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 77-83).
The safe, successful deployment of autonomous systems under real-world conditions, in part, hinges upon providing rigorous performance and safety guarantees. This thesis considers the problem of establishing and verifying the safety of autonomous systems. To this end, we present a novel framework for the synthesis of safety constraints for autonomous systems, so-called safety contracts, that can be applied to and used by a wide set of real-world systems by acting as a design requirement for the controller implementation of the system. The contracts consider a large variety of road models, guarantee that the controlled system will remain safe with respect to probabilistic models of traffic behavior, and ensure that it will follow the rules of the road. We generate contracts using reachability analysis in a reach-avoid problem under consideration of dynamic obstacles, i.e., other traffic participants. Contracts are then derived directly from the reachable sets. By decomposing large road networks into local road geometries and defining assume-guarantee contracts between local geometries, we enable computational tractability over large spatial domains. To efficiently account for the behavior of other traffic participants, we iteratively alternate between falsification to generate new traffic scenarios that violate the safety contract and reachable set computation to update the safety contract. These counterexamples to collision-free behavior are found by solving a gradient-based trajectory optimization problem. We demonstrate the practical effectiveness of the proposed methods in a set of experiments involving the Manhattan road network as well as interacting multi-car traffic scenarios.
by Lucas Liebenwein.
S.M.
Yin, Ji. « Trajectory Planning for Off-road Autonomous Driving ». Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233397.
Texte intégralDetta examensarbete utvecklar en trajektoriegenerering som baseras på ett Formula racing scenario. Den föreslagna trajektoriegenerering ger en tidsoptimal off-road-lösning och medför sekventiella kontrollsignaler till fordonen att följa trajektorien. Utsignaler från trajektoriegenerering är den tidsoptimal trajektorien, styrvinkel och motsvarande kraft for broms och gaspådrag. Trajektoriegenerering är designad med två funktioner, utforskningsläget baserat på Rapidly-exploring Random Tree (RRT) och optimeringsläget som baseras på det optimala Rapidly-exploring Random Tree (RRT). Utforskningsläget genererar en tillåten och säker trajektorie i realtid, men den är inte optimal; Optimeringsläget ger den optimala trajektorien men kan inte bli genererad i realtid. Systemstrukturen gör det möjligt att ha utforskningsläget körandes, medans optimeringsläget körs i bakgrunden; när optimeringsprocessen är färdig kan fordonet följa den optimala trajektorien. En lokal trajektoriegenererings-metod tar med dynamiska off-road krav för fordonet när planeringen görs. Prestandan av systemet är avgjort på en simulerat racerbana.Många aspekter såsom tidoptima och fordonsstabilitet har tagits med i beräkningen. En ny styrmetod har föreslagits; där metoden snabbt genererar en trajektorie baserad på slumpmässiga insignaler. Med mer effektiv framtida implementering av planeringen, exempelvis parallellberäkning, blir optimeringsläget en lovande trajektoriegenerering i realtid.
Jaritz, Maximilian. « 2D-3D scene understanding for autonomous driving ». Thesis, Université Paris sciences et lettres, 2020. https://pastel.archives-ouvertes.fr/tel-02921424.
Texte intégralIn this thesis, we address the challenges of label scarcity and fusion of heterogeneous 3D point clouds and 2D images. We adopt the strategy of end-to-end race driving where a neural network is trained to directly map sensor input (camera image) to control output, which makes this strategy independent from annotations in the visual domain. We employ deep reinforcement learning where the algorithm learns from reward by interaction with a realistic simulator. We propose new training strategies and reward functions for better driving and faster convergence. However, training time is still very long which is why we focus on perception to study point cloud and image fusion in the remainder of this thesis. We propose two different methods for 2D-3D fusion. First, we project 3D LiDAR point clouds into 2D image space, resulting in sparse depth maps. We propose a novel encoder-decoder architecture to fuse dense RGB and sparse depth for the task of depth completion that enhances point cloud resolution to image level. Second, we fuse directly in 3D space to prevent information loss through projection. Therefore, we compute image features with a 2D CNN of multiple views and then lift them all to a global 3D point cloud for fusion, followed by a point-based network to predict 3D semantic labels. Building on this work, we introduce the more difficult novel task of cross-modal unsupervised domain adaptation, where one is provided with multi-modal data in a labeled source and an unlabeled target dataset. We propose to perform 2D-3D cross-modal learning via mutual mimicking between image and point cloud networks to address the source-target domain shift. We further showcase that our method is complementary to the existing uni-modal technique of pseudo-labeling
Oliveira, José Ricardo Marques de. « World representation for an autonomous driving robot ». Master's thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/2121.
Texte intégralCondução autónoma constitui a deslocação de um agente, robô ou veículo, de um qualquer ponto no espaço para um outro, sem qualquer intervenção humana, por forma a atingir objectivos pré-estabelecidos. Para conduzir de forma autónoma, usando planeamento de trajectória, é crucial que o agente consiga representar abstractamente tanto o conhecimento a priori acerca do mundo, como a informação que este vai adquirindo à medida que avança. Para alcançar este propósito, desenvolveu-se um sistema para ser usado na pista da Competição de Condução Autónoma do Festival Nacional de Robótica. Este sistema caracteriza-se por ser flexível e modular. Tais características permitem não são a adição componentes na pista acima referida, mas também a fácil expansão do suporte a outros tipos de pistas ou circuitos. Concluiu-se, pois, que o modelo de representação mais adequado para o sistema que se pretendia desenvolver seria um modelo híbrido, na medida em que, ao nível global tal representação seria topológica e ao nível local métrica. Ou seja, dividindo a pista em secções, estas são a base para a representação topológica, sendo depois cada secção mapeada internamente de forma métrica. Ao integrar o trabalho desta dissertação com o sistema global lograva-se alcançar um sistema de Condução Autónoma susceptível de planear a curto e médio prazo, com vista a melhorar o desempenho dos robôs usados no projecto, relativamente à solução anteriormente usada, que era baseada num sistema reactivo com alguma memória e noção de estado, mas sem planeamento de trajectória. ABSTRACT: Autonomous driving is the movement of an agent, robot or vehicle, from some point in space to another one, without any human intervention, in order to achieve predetermined goals. To drive autonomously using trajectory planning, it is vital to have an abstraction of the knowledge about the world, be it a priori or information that the agent acquires during the driving. For this, we developed a system capable of abstractly represent, not only the track for the Autonomous Driving Competition of the Portuguese Robotics Open, but also, tracks with similar characteristics. The system was developed in a exible and modular manner, in order to allow the addition of new elements to the stated track and the easy expansion to support other types of tracks and circuits. The conclusion was that the most appropriate representation model for the system we were trying to develop was an hybrid model, in that, at a global level the representation would be topological and at a local level it would be metrical. In other words, dividing the track into sections, these are the basis for the topological representation, being each of the sections then mapped internally using a metrical representation. Integrating the work of this dissertation in the global system, one hoped to achieve a Autonomous Driving system capable of short and medium term planning, with the goal of improve the performance of the ROTA project robots, comparatively with the previous solution, which was based in a reactive system with some memory and to some degree stateful.
Sequeira, Miguel da Rosa Carvalhal. « Perception and intelligent localization for autonomous driving ». Master's thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/2172.
Texte intégralVisão por computador e fusão sensorial são temas relativamente recentes, no entanto largamente adoptados no desenvolvimento de robôs autónomos que exigem adaptabilidade ao seu ambiente envolvente. Esta dissertação foca-se numa abordagem a estes dois temas para alcançar percepção no contexto de condução autónoma. O uso de câmaras para atingir este fim é um processo bastante complexo. Ao contrário dos meios sensoriais clássicos que fornecem sempre o mesmo tipo de informação precisa e atingida de forma determinística, as sucessivas imagens adquiridas por uma câmara estão repletas da mais variada informação e toda esta ambígua e extremamente difícil de extrair. A utilização de câmaras como meio sensorial em robótica é o mais próximo que chegamos na semelhança com aquele que é o de maior importância no processo de percepção humana, o sistema de visão. Visão por computador é uma disciplina científica que engloba àreas como: processamento de sinal, inteligência artificial, matemática, teoria de controlo, neurobiologia e física. A plataforma de suporte ao estudo desenvolvido no âmbito desta dissertação é o ROTA (RObô Triciclo Autónomo) e todos os elementos que consistem o seu ambiente. No contexto deste, são descritas abordagens que foram introduzidas com fim de desenvolver soluções para todos os desafios que o robô enfrenta no seu ambiente: detecção de linhas de estrada e consequente percepção desta, detecção de obstáculos, semáforos, zona da passadeira e zona de obras. É também descrito um sistema de calibração e aplicação da remoção da perspectiva da imagem, desenvolvido de modo a mapear os elementos percepcionados em distâncias reais. Em consequência do sistema de percepção, é ainda abordado o desenvolvimento de auto-localização integrado numa arquitectura distribuída incluindo navegação com planeamento inteligente. Todo o trabalho desenvolvido no decurso da dissertação é essencialmente centrado no desenvolvimento de percepção robótica no contexto de condução autónoma.
Computer vision and sensor fusion are subjects that are quite recent, however widely adopted in the development of autonomous robots that require adaptability to their surrounding environment. This thesis gives an approach on both in order to achieve perception in the scope of autonomous driving. The use of cameras to achieve this goal is a rather complex subject. Unlike the classic sensorial devices that provide the same type of information with precision and achieve this in a deterministic way, the successive images acquired by a camera are replete with the most varied information, that this ambiguous and extremely dificult to extract. The use of cameras for robotic sensing is the closest we got within the similarities with what is of most importance in the process of human perception, the vision system. Computer vision is a scientific discipline that encompasses areas such as signal processing, artificial intelligence, mathematics, control theory, neurobiology and physics. The support platform in which the study within this thesis was developed, includes ROTA (RObô Triciclo Autónomo) and all elements comprising its environment. In its context, are described approaches that introduced in the platform in order to develop solutions for all the challenges facing the robot in its environment: detection of lane markings and its consequent perception, obstacle detection, trafic lights, crosswalk and road maintenance area. It is also described a calibration system and implementation for the removal of the image perspective, developed in order to map the elements perceived in actual real world distances. As a result of the perception system development, it is also addressed self-localization integrated in a distributed architecture that allows navigation with long term planning. All the work developed in the course of this work is essentially focused on robotic perception in the context of autonomous driving.
Wei, Junqing. « Autonomous Vehicle Social Behavior for Highway Driving ». Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/919.
Texte intégralThilén, Emma. « Robust Model Predictive Control for Autonomous Driving ». Thesis, KTH, Reglerteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-211846.
Texte intégralSjälvkörande bilar blir alltmer populärt. För att självkörande bilar ska bliallmänt accepterade, har höga krav ställts på säkerheten. En viktig sak ursäkerhetssynpunkt är huruvida sytemet kan hantera störningar. I det här arbetetdesignas en robust modelprediktiv regulator för ett självkörande fordon.Mer specifikt används ”Robust Output Feedback Model Predictive Control”(ROFMPC) och robusthet, gentemot både externa störningar och mätbrus,garanteras genom användingen av robust invarianta mängder. Fordonet modellerasmed hjälp av en diskretiserad och linjäriserad enkel cykelliknande modell,uttryckt i naturliga koordinater. Två olika fall studeras genom simulering; delsdå fordonet ska följa en rak bana och dels då det ska följa en krökt bana. Ettstationärt Kalman filter används till att uppskatta fordonets tillstånd. Resultatenfrån simuleringarna visar på att robusthet kan garanteras om störningarnaär tillräckligt små. Slutligen är den robusta MPC-regulatorn implementerad påen F1/10 RC bil.
Langner, Tobias [Verfasser]. « Visual Perception for Autonomous Driving / Tobias Langner ». Berlin : Freie Universität Berlin, 2020. http://d-nb.info/1205735518/34.
Texte intégralCalem, Laura. « Action and trajectory prediction for Autonomous Driving ». Electronic Thesis or Diss., Paris, HESAM, 2024. http://www.theses.fr/2024HESAC011.
Texte intégralThis PhD thesis, in the applicative context of autonomous driving, focuses on the exploration of diversity promoting mechanisms in generative models, which generate a probabilistic distribution of future trajectories given past trajectories. As trajectory forecasting datasets only provide one ground truth trajectory for a given past trajectory and scene spatial layout, many existing methods focus on the accuracy of the best predicted trajectory with respect to the ground truth trajectory. We aim to expand these methods by improving the intrinsic diversity of the predicted distribution, through the creation of a diversity-aware sampling mechanism that replaces traditional sequential sampling from generative models such as variational autoencoders (VAEs). We provide a way to generate samples according to the diversity exhibited in the training dataset, not only centered around the majority mode. The improvement of diversity, validated on nuScenes through a comprehensive set of metrics, is interesting with regard to the safety and smoothness of the planning operation, subsequent to trajectory forecasting. Furthering the diversity aspect in rare but safety-critical scenarios, we ask ourselves the question of expressing the diversity of events that are possible but yet unrepresented in the training dataset. This line of questioning raises the exploration of a much more challenging aspect: discovery. In order to generate a distribution that contains modes not present in the training dataset, we must carefully grow the training distribution according to an external admissibility function. The delicate balance between allowing the decoder of a generative model to generate from unknown latent codes and the necessity of generating admissible samples is explored in the second part of this thesis, with interesting results on a toy dataset
Olsson, Magnus. « Behavior Trees for decision-making in Autonomous Driving ». Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-183060.
Texte intégralSelvaggi, Kevin. « Synthetic-to-Real Domain Adaptation for Autonomous Driving ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Trouver le texte intégralSuresh, Kumar Swarun. « CarSpeak : a content-centric network for autonomous driving ». Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/75718.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (p. 75-79).
We introduce CarSpeak, a communication system for autonomous driving. CarSpeak enables a car to query and access sensory information captured by other cars in a manner similar to how it accesses information from its local sensors. CarSpeak adopts a content-centric approach where information objects - i.e., regions along the road - are first class citizens. It names and accesses road regions using a multi-resolution system, which allows it to scale the amount of transmitted data with the available bandwidth. CarSpeak also changes the MAC protocol so that, instead of having nodes contend for the medium, contention is between road regions, and the medium share assigned to any region depends on the number of cars interested in that region. CarSpeak is implemented in a state-of-the-art autonomous driving system and tested on indoor and outdoor hardware testbeds including an autonomous golf car and 10 iRobot Create robots. In comparison with a baseline that directly uses 802.11, CarSpeak reduces the time for navigating around obstacles by 2.4x, and reduces the probability of a collision due to limited visibility by 14 x.
by Swarun Suresh Kumar.
S.M.
Elhassan, Amro. « Autonomous driving system for reversing an articulated vehicle ». Thesis, KTH, Reglerteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175373.
Texte intégralNordell, Benjamin. « Trajectory Planning for Autonomous Vehicles and Cooperative Driving ». Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-194496.
Texte intégralAutonoma fordon har länge varit ett intensivt forskningsområde vilket resulterat i att många av de senaste bilana är åtminstone delvis självkörande. Cooperative driving utvidgar detta till en grupp fordon som kommunicerar med varandra för att öka säkerheten och få trafiken att flyta bättre. Den här uppsatsen baseras på Grand Cooperative Divers Challange (GCDC) 2016 där KTH deltog med en Scania lastbil och en elbil kallad Research Concept Vehicle (RCV). Rörelseplannering har undersökts för longitudinell kontrol av lastbilen och RCV. Den här planeraren ska se till att fordonet når en given position inom en viss tid och med en önskad hastighet. För detta ändamål används vad som kallas "Pontryagin's minimum principle" och interpolation. En mer avancerad planerare baserad på Model Predictive Control (MPC) används för att undvika kollisioner i två olika situationer. Den ena simulerar en omkörning och den andra ett filbyte med flera andra fordon i den intilliggande filen. Simuleringar av den longitudinella kontrollen av lastbilen visade att den kunde nå en position och hastighet med ett fel mindre än 2m respektive 0,2m/s då sträckor mellan 120-200m, ett tidsintervall på 40s och önskad hastighet på 7m/s används. Samma simuleringar med RCV hade ett positionsfel mindre än 0,3m och hastighetsfel under 0,2m/s. Simuleringar med RCV då MPC används visade att omkörningar och filbyten kunde genomföras. Filbyten kunde genomföras med ett longitudinellt avstånd på minst 1m, även då övriga fordon saktar ner eller ökar farten. Omkörningar kunde också genomföras om än med små marginaler. Det laterala avståndet var 0,5m till det omkörda fordonet.
Dsouza, Rodney Gracian. « Deep Learning Based Motion Forecasting for Autonomous Driving ». The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1619139403696822.
Texte intégralDonà, Riccardo. « Agent for Autonomous Driving based on Simulation Theories ». Doctoral thesis, Università ; degli studi di Trento, 2004. http://hdl.handle.net/11572/300743.
Texte intégralVanValkenburg, MaryAnn E. « Alloy-Guided Verification of Cooperative Autonomous Driving Behavior ». Digital WPI, 2020. https://digitalcommons.wpi.edu/etd-theses/1354.
Texte intégralShao, Yunming. « Image-based Perceptual Learning Algorithm for Autonomous Driving ». The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1503302777088283.
Texte intégralPradhan, Neil. « Deep Reinforcement Learning for Autonomous Highway Driving Scenario ». Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289444.
Texte intégralVi presenterar ett autonomt körföretag på ett simulerat motorvägsscenario med fordon som bilar och lastbilar som rör sig med stokastiskt variabla hastighetsprofiler. Fokus för den simulerade miljön är att testa taktiskt beslutsfattande i motorvägsscenarier. När en agent (fordon) upprätthåller ett optimalt hastighetsområde är det fördelaktigt både när det gäller energieffektivitet och grönare miljö. För att upprätthålla ett optimalt hastighetsområde föreslog jag i detta avhandlingsarbete två nya belöningsstrukturer: (a) gaussisk belöningsstruktur och (b) exponentiell uppgång och nedgång belöningsstruktur. Jag utbildade respektive två djupförstärkande inlärningsagenter för att studera deras skillnader och utvärdera deras prestanda baserat på en uppsättning parametrar som är mest relevanta i motorvägsscenarier. Algoritmen som implementeras i detta avhandlingsarbete är dubbel-duell djupt Q- nätverk med prioriterad återuppspelningsbuffert. Experiment utfördes genom att lägga till brus i ingångarna, simulera delvis observerbar Markov-beslutsprocess för att erhålla tillförlitlighetsjämförelse mellan olika belöningsstrukturer. Hastighetsbeläggningsgaller visade sig vara bättre än binärt beläggningsgaller som inmatning för algoritmen. Dessutom har metodik för att generera bränsleeffektiv politik diskuterats och demonstrerats med ett exempel.
Yi, Siqi. « Multi-sensor Geo-localisation for Urban Autonomous Driving ». Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/28003.
Texte intégralYuan, Zhenxun. « Transformer-based 3D Object Detection for Autonomous Driving ». Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/27302.
Texte intégralBoroujeni, Zahra [Verfasser]. « Local Trajectory Planning for Autonomous Driving / Zahra Boroujeni ». Berlin : Freie Universität Berlin, 2020. http://d-nb.info/1219904805/34.
Texte intégralAl-Khoury, Fadi. « Safety of Machine Learning Systems in Autonomous Driving ». Thesis, KTH, Skolan för industriell teknik och management (ITM), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-218020.
Texte intégralMaskininlärning, och i synnerhet deep learning, är extremt kapabla verktyg för att lösa problem som är svåra, eller omöjliga att hantera analytiskt. Applikationsområden inkluderar mönsterigenkänning, datorseende, tal‐ och språkförståelse. När utvecklingen inom bilindustrin går mot en ökad grad av automatisering, blir problemen som måste lösas alltmer komplexa, vilket har lett till ett ökat användande av metoder från maskininlärning och deep learning. Med detta tillvägagångssätt lär sig systemet lösningen till ett problem implicit från träningsdata och man kan inte direkt utvärdera lösningens korrekthet. Detta innebär problem när systemet i fråga är del av en säkerhetskritisk funktion, vilket är fallet för självkörande fordon. Detta examensarbete behandlar säkerhetsaspekter relaterade till maskininlärningssystem i autonoma fordon och applicerar en safety monitoring‐metodik på en kollisionsundvikningsfunktion. Simuleringar utförs, med ett deep learning‐system som del av systemet för perception, som ger underlag för styrningen av fordonet, samt en safety monitor för kollisionsundvikning. De relaterade operationella situationerna och säkerhetsvillkoren studeras för en autonom körnings‐funktion, där potentiella fel i det lärande systemet introduceras och utvärderas. Vidare introduceras ett förslag på ett mått på trovärdighet hos det lärande systemet under drift.
Donà, Riccardo. « Agent for Autonomous Driving based on Simulation Theories ». Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/300743.
Texte intégralDonà, Riccardo. « Agent for Autonomous Driving based on Simulation Theories ». Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/300743.
Texte intégralRoldão, Jimenez Luis Guillermo. « 3D Scene Reconstruction and Completion for Autonomous Driving ». Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS415.
Texte intégralIn this thesis, we address the challenges of 3D scene reconstruction and completion from sparse and heterogeneous density point clouds. Therefore proposing different techniques to create a 3D model of the surroundings.In the first part, we study the use of 3-dimensional occupancy grids for multi-frame reconstruction, useful for localization and HD-Maps applications. This is done by exploiting ray-path information to resolve ambiguities in partially occupied cells. Our sensor model reduces discretization inaccuracies and enables occupancy updates in dynamic scenarios.We also focus on single-frame environment perception by the introduction of a 3D implicit surface reconstruction algorithm capable to deal with heterogeneous density data by employing an adaptive neighborhood strategy. Our method completes small regions of missing data and outputs a continuous representation useful for physical modeling or terrain traversability assessment.We dive into deep learning applications for the novel task of semantic scene completion, which completes and semantically annotates entire 3D input scans. Given the little consensus found in the literature, we present an in-depth survey of existing methods and introduce our lightweight multiscale semantic completion network for outdoor scenarios. Our method employs a new hybrid pipeline based on a 2D CNN backbone branch to reduce computation overhead and 3D segmentation heads to predict the complete semantic scene at different scales, being significantly lighter and faster than existing approaches
Agha, Jafari Wolde Bahareh. « A systematic Mapping study of ADAS and Autonomous Driving ». Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-42754.
Texte intégralBurgei, David. « Autonomous Edge Cities:Revitalizing Suburban Commercial Centers with Autonomous Vehicle Technology and New (sub)Urbanist Principles ». University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1504798936197976.
Texte intégralFranke, Cameron. « Autonomous Driving with a Simulation Trained Convolutional Neural Network ». Scholarly Commons, 2017. https://scholarlycommons.pacific.edu/uop_etds/2971.
Texte intégralAzmat, Muhammad. « Impact of autonomous vehicles on urban mobility ». Institut für Transportwirtschaft und Logistik, WU Wien, 2015. http://epub.wu.ac.at/4633/1/WU_MSc_SCM_Master_Thesis.pdf.
Texte intégralSeries: Schriftenreihe des Instituts für Transportwirtschaft und Logistik - Verkehr
Isaksson, Palmqvist Mia. « Model Predictive Control for Autonomous Driving of a Truck ». Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-187668.
Texte intégralKolonnkörning och kooperativkörning kan minska utsläppen av växthusgaser och öka trafikkapaciteten på vägarna. The Grand Cooperative Driving Challenge, GCDC, är en tävling med fokus på kooper-ativkörning som kommer att hållas i maj 2016. En hörnsten i kooperativkörning är autonomkörning. Det huvudsakliga målet med det här examensarbetet ¨ar att designa en MPC för en lastbil så att den autonomt kan genomföra följande: följa en rak väg, göra ett filbyte samt göra en sväng. Begränsningar är lagda på fordonets tillstånd och kontrollsignalerna. Utöver det begränsas avståndetet till framförvarande fordon. En linjär tidsvariant (LTV) MPC för referensföljning tas fram. För att använda MPC:n för referensföljning härleds referenser för fordonets tillstånd och kontrollsignaler. För filbytet och svängen används Bezier kurvor för att få fram positionsreferenserna. Regulatorn implementeras i MATLAB och valideras genom simuleringar. För simuleringarna används både en cykelmodell av fordonet och en mer komplicerad fyrhjuls-modell. Den senare implementeras i Simulink. Cykelmodellen linjäriseras online kring referenserna i syfte att användas som prediktionsmodell för LTV-MPC. Simuleringarna visar att regulatorn kan få fordonet att genomföra de ovan nämnda uppgifterna. Med en horisont på 18 ¨ar tiden det tar att genomföra en iteration av regulator-loopen i genomsnitt 0.02 sekunder. Den maximala avvikelsen i den laterala riktningen ¨ar 0.10 meter och uppstår när simuleringar görs för en sväng med fyrhjuls-modellen som fordonsmodell. Simuleringar görs även med ett framförvarande fordon. Regulatorn kan få fordonet att hallå ett säkerhetsavstånd till fordonet framför. Regulatorn kan vidare få fordonet att sänka hastigheten om det framförvarande fordonet kör långsammare. Utöver de ovan nämnda simuleringarna görs simuleringar där störningar och brus, var för sig, introduceras. Som störning används ett fel i startpositionen. Fordonet kan starta 1.3 meter från den korrekta startpositionen, i den laterala riktningen, och hitta tillbaks till referensbanan. Bruset adderas som vitt brus på positionsuppdateringarna. Regulatorn kan hantera vitt brus med en stan-dardavvikelse på upp till 0.3 meter.
Villalonga, Pineda Gabriel. « Leveraging Synthetic Data to Create Autonomous Driving Perception Systems ». Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671739.
Texte intégralLa anotación manual de imágenes para desarrollar sistemas basados en visión por computador ha sido uno de los puntos más problemáticos desde que se utiliza aprendizaje automático para ello. Esta tesis se centra en aprovechar los datos sintéticos para aliviar el coste de las anotaciones manuales en tres tareas de percepción relacionadas con la asistencia a la conducción y la conducción autónoma. En todo momento asumimos el uso de redes neuronales convolucionales para el desarrollo de nuestros modelos profundos de percepción. La primera tarea plantea el reconocimiento de señales de tráfico, un problema de clasificación de imágenes. Asumimos que el número de clases de señales de tráfico a reconocer se debe incrementar sin haber podido anotar nuevas imágenes con las que realizar el correspondiente reentrenamiento. Demostramos que aprovechando los datos sintéticos de las nuevas clases y transformándolas con una red adversaria-generativa (GAN, de sus siglas en inglés) entrenada con las clases conocidas (sin usar muestras de las nuevas clases), es posible reentrenar la red neuronal para clasificar todas las señales en una proporción de ~1/4 entre clases nuevas y conocidas. La segunda tarea consiste en la detección de vehículos y peatones (objetos) en imágenes. En este caso, asumimos la recepción de un conjunto de imágenes sin anotar. El objetivo es anotar automáticamente esas imágenes para que así se puedan utilizar posteriormente en el entrenamiento del detector de objetos que deseemos. Para alcanzar este objetivo, partimos de datos sintéticos anotados y proponemos un método de aprendizaje semi-supervisado basado en la idea del co-aprendizaje. Además, utilizamos una GAN para reducir la distancia entre los dominios sintético y real antes de aplicar el co-aprendizaje. Nuestros resultados cuantitativos muestran que el procedimiento desarrollado permite anotar el conjunto de imágenes de entrada con la precisión suficiente para entrenar detectores de objetos de forma efectiva; es decir, tan precisos como si las imágenes se hubiesen anotado manualmente. En la tercera tarea dejamos atrás el espacio 2D de las imágenes, y nos centramos en procesar nubes de puntos 3D provenientes de sensores LiDAR. Nuestro objetivo inicial era desarrollar un detector de objetos 3D (vehículos, peatones, ciclistas) entrenado en nubes de puntos sintéticos estilo LiDAR. En el caso de las imágenes cabía esperar el problema de cambio de dominio debido a las diferencias visuales entre las imágenes sintéticas y reales. Pero, a priori, no esperábamos lo mismo al trabajar con nubes de puntos LiDAR, ya que se trata de información geométrica proveniente del muestreo activo del mundo, sin que la apariencia visual influya. Sin embargo, en la práctica, hemos visto que también aparecen los problemas de adaptación de dominio. Factores como los parámetros de muestreo del LiDAR, la configuración de los sensores a bordo del vehículo autónomo, y la anotación manual de los objetos 3D, inducen diferencias de dominio. En la tesis demostramos esta observación mediante un exhaustivo conjunto de experimentos con diferentes bases de datos públicas y detectores 3D disponibles. Por tanto, en relación a la tercera tarea, el trabajo se ha centrado finalmente en el diseño de una GAN capaz de transformar nubes de puntos 3D para llevarlas de un dominio a otro, un tema relativamente inexplorado. Finalmente, cabe mencionar que todos los conjuntos de datos sintéticos usados en estas tres tareas han sido diseñados y generados en el contexto de esta tesis doctoral y se harán públicos. En general, consideramos que esta tesis presenta un avance en el fomento de la utilización de datos sintéticos para el desarrollo de modelos profundos de percepción, esenciales en el campo de la conducción autónoma.
Manually annotating images to develop vision models has been a major bottleneck since computer vision and machine learning started to walk together. This thesis focuses on leveraging synthetic data to alleviate manual annotation for three perception tasks related to driving assistance and autonomous driving. In all cases, we assume the use of deep convolutional neural networks (CNNs) to develop our perception models. The first task addresses traffic sign recognition (TSR), a kind of multi-class classification problem. We assume that the number of sign classes to be recognized must be suddenly increased without having annotated samples to perform the corresponding TSR CNN re-training. We show that leveraging synthetic samples of such new classes and transforming them by a generative adversarial network (GAN) trained on the known classes (i.e., without using samples from the new classes), it is possible to re-train the TSR CNN to properly classify all the signs for a ~1/4 ratio of new/known sign classes. The second task addresses on-board 2D object detection, focusing on vehicles and pedestrians. In this case, we assume that we receive a set of images without the annotations required to train an object detector, i.e., without object bounding boxes. Therefore, our goal is to self-annotate these images so that they can later be used to train the desired object detector. In order to reach this goal, we leverage from synthetic data and propose a semi-supervised learning approach based on the co-training idea. In fact, we use a GAN to reduce the synth-to-real domain shift before applying co-training. Our quantitative results show that co-training and GAN-based image-to-image translation complement each other up to allow the training of object detectors without manual annotation, and still almost reaching the upper-bound performances of the detectors trained from human annotations. While in previous tasks we focus on vision-based perception, the third task we address focuses on LiDAR pointclouds. Our initial goal was to develop a 3D object detector trained on synthetic LiDAR-style pointclouds. While for images we may expect synth/real-to-real domain shift due to differences in their appearance (e.g. when source and target images come from different camera sensors), we did not expect so for LiDAR pointclouds since these active sensors factor out appearance and provide sampled shapes. However, in practice, we have seen that it can be domain shift even among real-world LiDAR pointclouds. Factors such as the sampling parameters of the LiDARs, the sensor suite configuration on-board the ego-vehicle, and the human annotation of 3D bounding boxes, do induce a domain shift. We show it through comprehensive experiments with different publicly available datasets and 3D detectors. This redirected our goal towards the design of a GAN for pointcloud-to-pointcloud translation, a relatively unexplored topic. Finally, it is worth to mention that all the synthetic datasets used for these three tasks, have been designed and generated in the context of this PhD work and will be publicly released. Overall, we think this PhD presents several steps forward to encourage leveraging synthetic data for developing deep perception models in the field of driving assistance and autonomous driving.
Universitat Autònoma de Barcelona. Programa de Doctorat en Informàtica
Sharma, Devendra. « Evaluation and Analysis of Perception Systems for Autonomous Driving ». Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291423.
Texte intégralFör säker rörlighet måste ett autonomt fordon uppfatta omgivningen exakt. Det finns många uppfattningsuppgifter associerade med att förstå den lokala miljön, såsom objektdetektering, lokalisering och filanalys. I synnerhet objektdetektering spelar en viktig roll för att bestämma ett objekts plats och klassificera det korrekt och är en av de utmanande uppgifterna inom det självdrivande forskningsområdet. Innan en anställd detekteringsmodul används i autonoma fordonsprovningar måste en organisation ha en exakt analys av modulen. Därför blir det avgörande för ett företag att ha en utvärderingsram för att utvärdera en objektdetekteringsalgoritms prestanda. Denna avhandling utvecklar ett omfattande ramverk för utvärdering och analys av objektdetekteringsalgoritmer, både 2 D (kamerabilder baserade) och 3 D (LiDAR-punktmolnbaserade). Rörledningen som utvecklats i denna avhandling ger möjlighet att enkelt utvärdera flera modeller, betecknad med nyckelprestandamätvärdena, Genomsnittlig precision, F-poäng och genomsnittlig genomsnittlig precision. 40-punkts interpoleringsmetod används för att beräkna medelprecisionen.
Hagström, Jesper. « Conditional Imitation Learning for Autonomous Driving : Comparing two approaches ». Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292200.
Texte intégralThis study aimed to build, train, and test two different autonomous vehicle (AV) agents by using machine learning techniques, specifically neural network architectures. To be able to train the agents a technique called Imitation Learning was used. Imitation Learning is an approach for learning sequential decision-making from demonstrations provided by an expert. Two slightly different neural network architectures were compared. The difference was that the intentional command module (which denotes what direction to take in an intersection for example) was located either in the beginning or the end of the respective networks. The testing of the trained models was looking at their driving capabilities such as intentions completed and speed. The early model was significantly faster than the late model and seemed to be “better” at driving in general but with no significant difference from the late network. This could be an effect of the sample size being too small, which could have been rectified with different tools used in the training and testing. Additionally, it was found that the early model’s gas values, acquired at testing time, were closer to the expert gas distribution.
Xia, Wanru. « High-definition map creation and update for autonomous driving ». Thesis, KTH, Geoinformatik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298491.
Texte intégralMarques, Patrick Ferreira. « Concurrent architecture for control of an autonomous driving vehicle ». Master's thesis, Universidade de Aveiro, 2010. http://hdl.handle.net/10773/3706.
Texte intégralOs robôs autónomos e os veículos não tripulados são vertentes da robótica de forte investigação durante os últimos anos, especialmente para o desenvolvimento de veículos autónomos destinados à exploração de lugares inóspitos. Um robô autónomo é uma máquina que consegue ser independente e regida pelas suas próprias leis, um sistema que consegue sobreviver num ambiente natural sem intervenção humana. Hoje em dia são muitos os sistemas disponíveis (como por exemplo GPS e visão computorizada) que ajudam os robôs a sobreviver, sendo o grande desafio integrá-los de forma a produzir um ser mais inteligente, sólido e confiável. O Departamento de Electrónica, Telecomunicações e Informática da Universidade de Aveiro tem realizado, nos últimos anos, trabalho na área da condução autónoma. Um dos objectivos desse trabalho tem sido o desenvolvimento de veículos autónomos para participação na prova de condução autónoma do Festival Nacional de Robótica, na qual participa desde 2001. O software de controlo de alto nível do veículo actual assentava numa estrutura sequencial o que torna complexa a tarefa de manutenção e integração de novas funcionalidades. Actualmente existem módulos para a descrição do mundo bem como para o planeamento de trajectórias sobre esses modelos e um módulo para percepção a partir de imagem. O objectivo deste trabalho foi o de reestruturar todo o software de alto nível, tornando-o modular e concorrente permitindo dessa forma uma melhor manutenção, actualização e evolução. Fica assim mais fácil a substituição de módulos, a incorporação de novas funcionalidades e o trabalho de equipa. A nova estrutura assenta na existência de uma memória central e partilhada, tipo blackboard, onde os vários módulos recolhem os dados de que necessitam e depositam os dados produzidos. Este novo modelo arquitectural foi implementado no veículo e testado durante a edição de 2010 do Festival Nacional de Robótica, tendo alcançado o terceiro lugar. A arquitectura apresentada incorporou vários sistemas já existentes, tendo como principais vantagens a modularidade e extensibilidade dentro de um ambiente concorrente e com informação distribuída.
The autonomous robots and unmanned vehicles have been an intensive fi eld of research in the last years for driverless cars and harsh environments exploration. An autonomous robot is a machine that can work in an independent way and subject to its own laws only, a system that can survive in the real-world environment without human intervention. Today many systems are available (e.g. GPS, Computer Vision) that aid the robots to survive, being the biggest challenge put all together and create an agent more intelligent, robust and reliable. The Department of Electronics, Telecommunications and Informatics of University of Aveiro in the last years has worked in the autonomous driving area. One point of this work has been the developing of autonomous vehicles for participation in the autonomous driving inside competition of the Portuguese Robotics Open, where it has participated since 2001. The high level software that controls the actual vehicle is based on a sequential structure that turns maintenance and integration of new modules in a complex task. Currently, there are modules to carry out several basic tasks, namely, image perception and integration, \world" representation, and creation of trajectory plans The aim of this work is the reorganization of the existent high-level software, following a modular and concurrent paradigm. The new software organization makes it easier to replace software modules and to add new functionalities, enhancing team work development and maintenance. The new structure is based on the existence of a central shared memory, like a blackboard, where the modules collect data that they need as well as publish produced data. This new architectural approach has been implemented in the ROTA robot and it was tested in the 2010 Portuguese Robotics Open (where it ranked 3rd). The proposed architecture links several existing systems and has as strongest points modularity and extensibility in concurrent environment with distributed information.
Tazir, Mohamed Lamine. « Precise localization in 3D prior map for autonomous driving ». Thesis, Université Clermont Auvergne (2017-2020), 2018. http://www.theses.fr/2018CLFAC047/document.
Texte intégralThe concept of self-driving vehicles is becoming a happening reality and will soon share our roads with other vehicles –autonomous or not-. For a self-driving car to move around in its environment in a securely, it needs to sense to its immediate environment and most importantly localize itself to be able to plan a safe trajectory to follow. Therefore, to perform tasks suchas trajectory planning and navigation, a precise localization is of upmost importance. This would further allow the vehicle toconstantly plan and predict an optimal path in order to weave through cluttered spaces by avoiding collisions with other agentssharing the same space as the latter. For years, the Global Positioning System (GPS) has been a widespread complementary solution for navigation. The latter allows only a limited precision (range of several meters). Although the Differential GPSand the Real Time Kinematic (RTK) systems have reached considerable accuracy, these systems remain sensitive to signal masking and multiple reflections, offering poor reliability in dense urban areas. All these deficiencies make these systems simply unsuitable to handle hard real time constraints such as collision avoidance. A prevailing alternative that has attracted interest recently, is to use upload a prior map in the system so that the agent can have a reliable support to lean on. Indeed,maps facilitate the navigation process and add an extra layer of security and other dimensions of semantic understanding. The vehicle uses its onboard sensors to compare what it perceives at a given instant to what is stored in the backend memory ofthe system. In this way, the autonomous vehicle can actually anticipate and predict its actions accordingly.The purpose of this thesis is to develop tools allowing an accurate localization task in order to deal with some complex navigation tasks outlined above. Localization is mainly performed by matching a 3D prior map with incoming point cloudstructures as the vehicle moves. Three main objectives are set out leading with two distinct phases deployed (the map building and the localization). The first allows the construction of the map, with centimeter accuracy using static or dynamic laser surveying technique. Explicit details about the experimental setup and data acquisition campaigns thoroughly carried outduring the course of this work are given. The idea is to construct efficient maps liable to be updated in the long run so thatthe environment representation contained in the 3D models are compact and robust. Moreover, map-building invariant on any dedicated infrastructure is of the paramount importance of this work in order to rhyme with the concept of flexible mapping and localization. In order to build maps incrementally, we rely on a self-implementation of state of the art iterative closest point (ICP) algorithm, which is then upgraded with new variants and compared to other implemented versions available inthe literature. However, obtaining accurate maps requires very dense point clouds, which make them inefficient for real-time use. Inthis context, the second objective deals with points cloud reduction. The proposed approach is based on the use of both colorinformation and the geometry of the scene. It aims to find sets of 3D points with the same color in a very small region and replacing each set with one point. As a result, the volume of the map will be significantly reduced, while the proprieties of this map such as the shape and color of scanned objects remain preserved.The third objective resort to efficient, precise and reliable localization once the maps are built and treated. For this purpose, the online data should be accurate, fast with low computational effort whilst maintaining a coherent model of the explored space. To this end, the Velodyne HDL-32 comes into play. (...)
Yevdokymenkova, Kateryna, et Катерина Андріївна Євдокименкова. « Autonomous transport of the future ». Thesis, National Aviation University, 2021. https://er.nau.edu.ua/handle/NAU/50582.
Texte intégralThe idea of autonomous car control has existed for almost a century. However, only now advances in sensors, efficient drives, new materials, and increased computing power led to the realization of this idea
Ідея автономного управління автомобілем існує майже століття. Однак лише зараз досягнення в сенсорах, ефективних приводах, нових матеріалах та збільшеній обчислювальній потужності призвели до її реалізації.
Behere, Sagar. « Reference Architectures for Highly Automated Driving ». Doctoral thesis, KTH, Inbyggda styrsystem, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-179306.
Texte intégralQC 20151216
AL, Matouq Salman M. « Investigating the Impact of Buffer Time on Driving Behavior in Autonomous Intersections ». Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1588786374908375.
Texte intégralVaquero, Gómez Víctor. « Lidar-based scene understanding for autonomous driving using deep learning ». Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2020. http://hdl.handle.net/10803/671062.
Texte intégralCon más de 1,35 millones de muertes por accidentes de tráfico en el mundo, a principios de siglo se predijo que la conducción autónoma sería una solución viable para mejorar la seguridad en nuestras carreteras. Además la conducción autónoma está destinada a cambiar nuestros paradigmas de transporte, permitiendo reducir la congestión del tráfico, la contaminación y el coste, a la vez que aumentando la accesibilidad, la eficiencia y confiabilidad del transporte tanto de personas como de mercancías. Aunque algunos avances, como el control de crucero adaptativo, la detección de puntos ciegos o el estacionamiento automático, se han transferido gradualmente a vehículos comerciales en la forma de los Sistemas Avanzados de Asistencia a la Conducción (ADAS), la tecnología aún no ha alcanzado el suficiente grado de madurez. Se necesita una comprensión completa de la escena para que los vehículos puedan entender el entorno, detectando los elementos presentes, así como su movimiento, intenciones e interacciones. En la presente tesis doctoral, exploramos nuevos enfoques para comprender escenarios de conducción utilizando nubes de puntos en 3D capturadas con sensores LiDAR, para lo cual empleamos métodos de aprendizaje profundo. Con este fin, en la Parte I analizamos la escena desde una perspectiva estática para detectar vehículos. A continuación, en la Parte II, desarrollamos nuevas formas de entender las dinámicas del entorno. Finalmente, en la Parte III aplicamos los métodos previamente desarrollados para lograr desafíos de nivel superior, como segmentar obstáculos dinámicos a la vez que estimamos su vector de movimiento sobre el suelo. Específicamente, en el Capítulo 2 detectamos vehículos en 3D creando una arquitectura de aprendizaje profundo de dos ramas y proponemos una vista frontal (FR-V) y una vista de pájaro (BE-V) como representaciones 2D de la nube de puntos 3D que sirven como entrada para entrenar nuestros modelos. Más adelante, en el Capítulo 3 aplicamos y probamos aún más este método en dos casos de uso reales, tanto para filtrar obstáculos en movimiento previamente a la creación de mapas sobre los que poder localizarnos mejor en los días posteriores, como para el seguimiento de vehículos. Desde la perspectiva dinámica, en el Capítulo 4 aprendemos de la nube de puntos en 3D una característica dinámica novedosa que se asemeja al flujo óptico sobre imágenes RGB. Para ello, desarrollamos un nuevo enfoque que aprovecha el flujo óptico RGB como pseudo muestras reales para entrenamiento, usando solo information 3D durante la inferencia. Además, en el Capítulo 5 exploramos los beneficios de combinar los aprendizajes de problemas de clasificación y regresión para la tarea de estimación de flujo óptico de manera conjunta. Por último, en el Capítulo 6 reunimos los métodos anteriores y demostramos que con estas tareas independientes podemos guiar el aprendizaje de problemas de más alto nivel, como la segmentación y estimación del movimiento de vehículos desde nuestra propia perspectiva
Amb més d’1,35 milions de morts per accidents de trànsit al món, a principis de segle es va predir que la conducció autònoma es convertiria en una solució viable per millorar la seguretat a les nostres carreteres. D’altra banda, la conducció autònoma està destinada a canviar els paradigmes del transport, fent possible així reduir la densitat del trànsit, la contaminació i el cost, alhora que augmentant l’accessibilitat, l’eficiència i la confiança del transport tant de persones com de mercaderies. Encara que alguns avenços, com el control de creuer adaptatiu, la detecció de punts cecs o l’estacionament automàtic, s’han transferit gradualment a vehicles comercials en forma de Sistemes Avançats d’Assistència a la Conducció (ADAS), la tecnologia encara no ha arribat a aconseguir el grau suficient de maduresa. És necessària, doncs, una total comprensió de l’escena de manera que els vehicles puguin entendre l’entorn, detectant els elements presents, així com el seu moviment, intencions i interaccions. A la present tesi doctoral, explorem nous enfocaments per tal de comprendre les diferents escenes de conducció utilitzant núvols de punts en 3D capturats amb sensors LiDAR, mitjançant l’ús de mètodes d’aprenentatge profund. Amb aquest objectiu, a la Part I analitzem l’escena des d’una perspectiva estàtica per a detectar vehicles. A continuació, a la Part II, desenvolupem noves formes d’entendre les dinàmiques de l’entorn. Finalment, a la Part III apliquem els mètodes prèviament desenvolupats per a aconseguir desafiaments d’un nivell superior, com, per exemple, segmentar obstacles dinàmics al mateix temps que estimem el seu vector de moviment respecte al terra. Concretament, al Capítol 2 detectem vehicles en 3D creant una arquitectura d’aprenentatge profund amb dues branques, i proposem una vista frontal (FR-V) i una vista d’ocell (BE-V) com a representacions 2D del núvol de punts 3D que serveixen com a punt de partida per entrenar els nostres models. Més endavant, al Capítol 3 apliquem i provem de nou aquest mètode en dos casos d’ús reals, tant per filtrar obstacles en moviment prèviament a la creació de mapes en els quals poder localitzar-nos millor en dies posteriors, com per dur a terme el seguiment de vehicles. Des de la perspectiva dinàmica, al Capítol 4 aprenem una nova característica dinàmica del núvol de punts en 3D que s’assembla al flux òptic sobre imatges RGB. Per a fer-ho, desenvolupem un nou enfocament que aprofita el flux òptic RGB com pseudo mostres reals per a entrenament, utilitzant només informació 3D durant la inferència. Després, al Capítol 5 explorem els beneficis que s’obtenen de combinar els aprenentatges de problemes de classificació i regressió per la tasca d’estimació de flux òptic de manera conjunta. Finalment, al Capítol 6 posem en comú els mètodes anteriors i demostrem que mitjançant aquests processos independents podem abordar l’aprenentatge de problemes més complexos, com la segmentació i estimació del moviment de vehicles des de la nostra pròpia perspectiva.
Behere, Sagar. « Architecting Autonomous Automotive Systems : With an emphasis on Cooperative Driving ». Licentiate thesis, KTH, Inbyggda styrsystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-120595.
Texte intégralQC 20130412
Wong, Joanne (Joanne Sharon). « Driving toward monopoly : regulating autonomous mobility platforms as public utilities ». Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118227.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 95-101).
Autonomous vehicles (AV) have captured the collective imagination of everyone from traditional auto manufacturers to computer software startups, from government administrators to urban planners. This thesis articulates a likely future for the deployment of AVs. Through stakeholder interviews and industry case studies, I show that there is general optimism about the progress of AV technology and its power to positively impact society. Stakeholders across sectors are expecting a future of autonomous electric fleets, but have divergent attitudes toward the regulation needed to facilitate its implementation. I demonstrate that, given the immense upfront capital investments and the nature of network effects intrinsic to data-intensive platforms, the autonomous mobility-as-a-service system is likely to tend toward a natural monopoly. This view is corroborated by key informants as well as recent industry trends. In order to better anticipate the characteristics of this emerging platform, I look back at the developmental trajectories of two classic public utilities - telecommunications and the electricity industry. I argue that the aspiring monopolists in autonomous mobility, like icons in these traditional industries, will succeed in supplanting a legacy technology with a new, transformative one, and use pricing and market consolidation tactics to gain regional dominance. The discussion on monopoly power is then adapted to the new business models of internet-enabled technology giants, and I examine two additional industry case studies in Google and Amazon. I argue that the autonomous mobility platform will first be designed to prioritize scale over everything else, including profits, and that firms are likely to pursue both horizontal and vertical integration strategies to achieve sustained market leadership. I conclude by recommending next steps for reining in platforms that may harm the public interest, and encourage planners to traverse disciplinary boundaries to better facilitate discussions between innovators and regulators.
by Joanne Wong.
M.C.P.
Deyo, Matthew Quinn. « Online risk-aware conditional planning with qualitative autonomous driving applications ». Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/115679.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 89-91).
Driving is often stressful and dangerous due to uncertainty in the actions of nearby vehicles. Having the ability to model driving maneuvers qualitatively and guarantee safety bounds in uncertain traffic scenarios are two steps towards building trust in vehicle autonomy. In this thesis, we present an approach to the problem of Qualitative Autonomous Driving (QAD) using risk-bounded conditional planning. First, we present Incremental Risk-aware AO* (iRAO*), an online conditional planning algorithm that builds off of RAO* for use in larger dynamic systems like driving. An illustrative example is included to better explain the behavior and performance of the algorithm. Second, we present a Chance-Constrained Hybrid Multi-Agent MDP as a framework for modeling our autonomous vehicle in traffic scenarios using qualitative driving maneuvers. Third, we extend our driving model by adding variable duration to maneuvers and develop two approaches to the resulting complexity. We present planning results from various driving scenarios, as well as from scaled instances of the illustrative example, that show the potential for further applications. Finally, we propose a QAD system, using the different tools developed in the context of this thesis, and show how it would fit within an autonomous driving architecture.
by Matthew Quinn Deyo.
S.M.
García, López Javier. « Geometric computer vision meets deep learning for autonomous driving applications ». Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2021. http://hdl.handle.net/10803/672708.
Texte intégralEsta disertación tiene como objetivo principal proporcionar contribuciones teóricas y prácticas sobre el desarrollo de algoritmos de aprendizaje profundo para aplicaciones de conducción autónoma. La investigación está motivada por la necesidad de redes neuronales profundas (DNN) para obtener una comprensión completa del entorno y para ejecutarse en escenarios de conducción reales con vehículos reales equipados con hardware específico, los cuales tienen memoria limitada (plataformas DSP o GPU) o utilizan múltiples sensores ópticos Esto limita el desarrollo del algoritmo obligando a las redes profundas diseñadas a ser precisas, con un número mínimo de operaciones y bajo consumo de memoria y energía. El objetivo principal de esta tesis es, por un lado, investigar las limitaciones reales de los algoritmos basados en DL que impiden que se integren en las funcionalidades ADAS (Autonomous Driving System) actuales, y por otro, el diseño e implementación de algoritmos de aprendizaje profundo capaces de superar tales limitaciones para ser aplicados en escenarios reales de conducción autónoma, permitiendo su integración en plataformas de hardware de baja memoria y evitando la redundancia de sensores. Las aplicaciones de aprendizaje profundo (DL) se han explotado ampliamente en los últimos años, pero tienen algunos puntos débiles que deben enfrentarse y superarse para integrar completamente la DL en el proceso de desarrollo de los grandes fabricantes o empresas automobilísticas, como el tiempo necesario para diseñar, entrenar y validar una red óptima para una aplicación específica o el vasto conocimiento de los expertos requeridos para tunear hiperparámetros de redes predefinidas con el fin de hacerlas ejecutables en una plataforma concreta y obtener la mayor ventaja de los recursos de hardware. Durante esta tesis, hemos abordado estos temas y nos hemos centrado en las implementaciones de avances que ayudarían en la integración industrial de aplicaciones basadas en DL en la industria del automóvil. Este trabajo se ha realizado en el marco del programa "Doctorat Industrial", en la empresa FICOSA ADAS, y es por las posibilidades que la empresa ha ofrecido que se ha podido demostrar un impacto rápido y directo de los algoritmos conseguidos en escenarios de test reales para probar su validez. Además, en este trabajo, se investiga en profundidad el diseño automático de redes neuronales profundas (DNN) basadas en frameworks de deep learning de última generación como NAS (neural architecture search). Como se afirma en esta tesis, una de las barreras identificadas de la tecnología de aprendizaje profundo en las empresas automotrices de hoy en día es la dificultad de desarrollar redes ligeras y precisas que puedan integrarse en pequeños systems on chip(SoC) o DSP. Para superar esta restricción, se propone un framework llamado E-DNAS para el diseño automático, entrenamiento y validación de redes neuronales profundas para realizar tareas de clasificación de imágenes y ejecutarse en plataformas de hardware con recursos limitados. Este apporach ha sido validado en un system on chip real de la empresa Texas Instrumets (tda2x) facilitado por FICOSA ADAS, cuyos resultados se publican dentro de esta tesis. Como extensión del mencionado E-DNAS, en el último capítulo de este trabajo se presenta un framework basado en NAS válido para la detección de objetos cuya principal contribución es una forma fácil y rápida de encontrar propuestas de objetos en imágenes que, en un segundo paso, se clasificará en una de las clases etiquetadas.
Automàtica, robòtica i visió
Qiu, Yesiliang. « Autonomous Tick Collection Robot : Platform Development and Driving System Control ». University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613752543210849.
Texte intégral