Littérature scientifique sur le sujet « Bacteria in cancer therapy »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Bacteria in cancer therapy ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Bacteria in cancer therapy"
Duong, Mai Thi-Quynh, Yeshan Qin, Sung-Hwan You et Jung-Joon Min. « Bacteria-cancer interactions : bacteria-based cancer therapy ». Experimental & ; Molecular Medicine 51, no 12 (décembre 2019) : 1–15. http://dx.doi.org/10.1038/s12276-019-0297-0.
Texte intégralYaghoubi, Atieh, Majid Khazaei, Seyed Mahdi Hasanian, Amir Avan, William C. Cho et Saman Soleimanpour. « Bacteriotherapy in Breast Cancer ». International Journal of Molecular Sciences 20, no 23 (23 novembre 2019) : 5880. http://dx.doi.org/10.3390/ijms20235880.
Texte intégralHarimoto, Tetsuhiro, et Tal Danino. « Engineering bacteria for cancer therapy ». Emerging Topics in Life Sciences 3, no 5 (11 octobre 2019) : 623–29. http://dx.doi.org/10.1042/etls20190096.
Texte intégralMathuriya, Abhilasha S. « Magnetotactic bacteria for cancer therapy ». Biotechnology Letters 37, no 3 (12 novembre 2014) : 491–98. http://dx.doi.org/10.1007/s10529-014-1728-6.
Texte intégralDougan, Michael, et Stephanie K. Dougan. « Programmable bacteria as cancer therapy ». Nature Medicine 25, no 7 (juillet 2019) : 1030–31. http://dx.doi.org/10.1038/s41591-019-0513-4.
Texte intégralFdez-Gubieda, M. L., J. Alonso, A. García-Prieto, A. García-Arribas, L. Fernández Barquín et A. Muela. « Magnetotactic bacteria for cancer therapy ». Journal of Applied Physics 128, no 7 (21 août 2020) : 070902. http://dx.doi.org/10.1063/5.0018036.
Texte intégralDarmov, I. V., Ya A. Kibirev, I. V. Marakulin et S. N. Yanov. « USE OF BACTERIA IN CANCER THERAPY (REVIEW) ». Russian Journal of Biotherapy 18, no 4 (2 décembre 2019) : 34–42. http://dx.doi.org/10.17650/1726-9784-2019-18-4-34-42.
Texte intégralYoon, Wonsuck, Yongsung Park, Seunghyun Kim, Yongkeun Park et Chul Yong Kim. « Combined Therapy with microRNA-Expressing Salmonella and Irradiation in Melanoma ». Microorganisms 9, no 11 (22 novembre 2021) : 2408. http://dx.doi.org/10.3390/microorganisms9112408.
Texte intégralGupta, Kajal H., Christina Nowicki, Eileena F. Giurini, Amanda L. Marzo et Andrew Zloza. « Bacterial-Based Cancer Therapy (BBCT) : Recent Advances, Current Challenges, and Future Prospects for Cancer Immunotherapy ». Vaccines 9, no 12 (18 décembre 2021) : 1497. http://dx.doi.org/10.3390/vaccines9121497.
Texte intégralYoo, Su Woong, Dinh-huy Nguyen, Suhyeon Park, Hyeri Lee, Chang-Moon Lee, Changho Lee et Jung-Joon Min. « Development of Dual-Scale Fluorescence Endoscopy for In Vivo Bacteria Imaging in an Orthotopic Mouse Colon Tumor Model ». Applied Sciences 10, no 3 (24 janvier 2020) : 844. http://dx.doi.org/10.3390/app10030844.
Texte intégralThèses sur le sujet "Bacteria in cancer therapy"
Cao, Siyu. « Designer bacteria as anti-cancer agents ». Thesis, Griffith University, 2013. http://hdl.handle.net/10072/366498.
Texte intégralThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Medical Science
Griffith Health
Full Text
Traore, Mahama Aziz. « Bacteria-Enabled Autonomous Drug Delivery Systems : Design, Modeling, and Characterization of Transport and Sensing ». Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/64326.
Texte intégralPh. D.
LEPORI, IRENE. « Optimization of attenuated Listeria monocytogenes cell wall chemical engineering to increase its anticancer vaccine activity and to use it as metastasis tracer ». Doctoral thesis, Università di Siena, 2019. http://hdl.handle.net/11365/1072153.
Texte intégralKandoth, Noufal. « Design, Synthesis and Characterization of Photoactivable Cyclodextrin-Based Nanoparticles for Multimodal Anticancer Therapy ». Doctoral thesis, Università di Catania, 2013. http://hdl.handle.net/10761/1280.
Texte intégralBabatunde, Oluwaseun Oyeniyi. « Exploring the potential of Rhodobacter sphaeroides in photodynamic therapy of tumors ». Bowling Green State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1624793446693196.
Texte intégralBabatunde, Oluwaseun Oyeniyi. « Exploring the potential of Rhodobacter sphaeroides in photodynamic therapy of tumors ». Bowling Green State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1624793446693196.
Texte intégralPahle, Jessica. « Oncoleaking gene therapy : a new suicide approach for treatment of pancreatic cancer ». Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19298.
Texte intégralBacterial toxins have evolved to an effective therapeutic option for cancer therapy and numerous studies demonstrated their antitumoral potential. The Clostridium perfringens enterotoxin (CPE), produced by the anaerobic Clostridium perfringes bacteria, is a pore-forming (oncoleaking) toxin, which binds to its receptors claudin-3 and -4 (Cldn3 / 4) and exerts a selective, receptor-dependent cytotoxicity. The transmembrane tight junction proteins Cldn3 and Cldn4 are known CPE receptors and are highly upregulated in several human epithelial cancers such as breast, colon, ovarian and pancreatic cancer. This study aimed at the evaluation of the potential of oncoleaking gene therapy using a non-viral translation optimized CPE vector (optCPE) as a new suicide approach for the treatment of Cldn3 / 4 overexpressing pancreatic cancer (PC) in vitro and in vivo. We demonstrated the successful in vitro use of optCPE gene transfer in a panel of human PC cells and more importantly patient derived PC xenograft (PDX) derived cells. We showed significant reduction of cell viability in all Cldn3 / 4 overexpressing PC cells after optCPE transfection. Furthermore a positive correlation between CPE cytotoxicity and level of claudin expression was shown. We revealed accessibility of CPE receptors for toxin binding as determining for optCPE mediated cytotoxicity. Since investigation of optCPE induced cell death mechanism was of particular interest, detailed analyses of apoptotic and necrotic key players were performed. By this, caspase dependent- and independent apoptosis and necrosis activation after gene transfer was demonstrated, which was dependent on amount of expressed optCPE and accessibility of Cldn. More importantly, this study demonstrated the applicability and antitumoral efficacy of optCPE gene therapy by the non-viral intratumoral jet-injection gene transfer in vivo in different luciferase-expressing CDX and PDX pancreatic cancer models. The animal experiments demonstrated the selective CPE mediated tumor growth inhibition, associated with reduced tumor viability and effective induction of tumor necrosis. This further corroborated the advantages of this novel oncoleaking strategy. With this gain of knowledge about our new oncoleaking concept of suicidal gene therapy and its mechanism of action, novel combinations with conventional therapies are possible to further improve therapeutic efficacy and to overcome resistance in pancreas carcinoma.
Broadway, Katherine Marie. « Novel Perspectives on the Utilization of Chemotactic Salmonella Typhimurium VNP20009 as an Anticancer Agent ». Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/84898.
Texte intégralPh. D.
Liu, Ping. « Structural, Kinetic and Mutational Analysis of Two Bacterial Carboxylesterases ». Digital Archive @ GSU, 2007. http://digitalarchive.gsu.edu/biology_diss/26.
Texte intégralAlmeida, Joana Raquel Santos Leite. « Multidrug resistant bacteria inactivation by photodynamic therapy ». Master's thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/7295.
Texte intégralThe development of antimicrobials promoted the idea that diseases provoked by microorganisms would diminish and would be reduced to the insignificancy to human health. However, the great amount of antibiotics used in human medicine and veterinary lead to a selection of pathogenic bacteria resistant to multiple antibiotics, being hospital wastewaters one of the most important sources of antibiotic-resistant organisms and antibiotic-resistance genes that are released into the environment. The significant increase in the development of multiple resistance mechanisms to antibiotics caused an increase in the research of alternative treatments that may be cost effective and human friendly. Antimicrobial photodynamic therapy (aPDT) is a quickly expanding technology for the treatment of diseases since it inactivates efficiently microorganisms, is cost effective and human safe. The general objective of this work was to assess the inactivation of 4 clinical multidrug-resistant bacteria by aPDT, using a tetracationic porphyrin (PS). The efficacy of aPDT was assessed in phosphate buffered saline (PBS) and in hospital residual water for each isolated bacterium and for the bacteria mixtured all together. The synergistic effect of aPDT and antibiotics (ampicillin and chloramphenicol) was also evaluated as well as the effect of sodium dodecylsulphate (SDS) on aPDT efficiency. The results show an efficient inactivation of multidrug-resistant bacteria in PBS using 5 μM of PS during 270 minutes in the presence of a light fluence rate of 40 W.m-2 (reduction of 6 to 8 log). In the residual water, the inactivation of the 4 bacteria was also efficient and the decrease in bacterial number starts even sooner. It was observed a faster decrease in bacterial number when aPDT was combined with the addition of ampicillin and chloramphenicol at concentrations of 16 and 32 μg mL-1 (MIC dose 32 μg mL-1 for both antibiotics). The efficiency of aPDT with a lower porphyrin concentration (2.5 μM) in the presence of antibiotics at MIC dose was not significantly different of that obtained when just the PS was used. The addition of SDS did not affect the efficiency of aPDT. The results of this study showed that aPDT inactivate efficiently multidrug-resistant bacteria, in hospital residual water the bacterial inactivation is faster than in PBS, the combination of antibiotics and aPDT acts more efficiently than the aPDT alone, but aPDT in the presence of SDS does not affect the efficiency of bacterial inactivation. In conclusion, aPDT is effective to combating microbial diseases transmitted by multidrug-resistant bacteria and can be used to increase the efficacy of classical antibiotics.
O desenvolvimento de agentes antimicrobianos levou a pensar que as doenças provocadas por microrganismos diminuiriam, tornando-se insignificantes para a saúde humana. No entanto, a grande quantidade de antibióticos utilizados na medicina humana e veterinária levaram a uma selecção de bactérias patogénicas resistentes a muitos antibióticos, sendo os efluentes hospitalares uma das fontes mais importantes de organismos resistentes a antibióticos e de genes de resistência a antibióticos que são lançados no meio ambiente. O aumento significativo no desenvolvimento de diversos mecanismos de resistência a antibióticos provocou um aumento na pesquisa de tratamentos alternativos que apresentem baixo custo e que não apresentem efeitos adversos para o homem. A terapia fotodinâmica antimicrobiana (aPDT) alternativa aos antibióticos para o tratamento de doenças, visto que inactiva eficientemente microrganismos, é barata e segura. O objectivo geral deste trabalho foi avaliar a inactivação de quatro isolados clínicos de bactérias multirresistentes pela aPDT, utilizando uma porfirina tetracatiónica (PS). A eficácia da aPDT foi avaliada em solução tampão (PBS) e em águas residuais hospitalares para cada bactéria isolada e para a mistura das 4 bactérias juntas. O efeito sinergético da aPDT e antibióticos (ampicilina e cloranfenicol) também foi avaliado, assim como o efeito do dodecilsulfato de sódio (SDS) sobre a eficiência da aPDT. Os resultados mostram uma inactivação eficiente de bactérias multirresistentes em PBS utilizando 5 μM de PS, durante 270 minutos na presença de 40 W.m-2 de luz (redução de 6-8 log). Na água residual hospitalar, a inactivação das 4 bactérias foi igualmente eficiente, começado mesmo a diminuição do número de bactérias mais cedo que em PBS. Foi observado uma redução mais acentuada no número de bactérias quando a aPDT foi combinada com a adição de ampicilina e cloranfenicol nas concentrações de 16 e 32 μg mL-1 (dose MIC de 32 μg mL-1 para ambos os antibióticos). A eficiência da aPDT com uma concentração inferior de PS (2.5 μM) na presença de antibióticos na dose MIC não foi significativamente diferente da obtida quando foi utilizado apenas a porfirina. A adição do SDS também não afectou a eficiência da aPDT. Os resultados deste estudo mostraram que a aPDT inactiva bactérias multirresistentes de forma eficiente; em água de esgoto hospitalar a inactivação bacteriana é mais rápida do que em PBS, a combinação de antibióticos e aPDT actua de forma mais eficiente do que a APDT sozinha, mas eficiência da aPDT na presença de SDS não é afectada. Em conclusão, aPDT é eficaz para combater doenças microbianas transmitidas por bactérias multi-resistentes e podem ser usados para aumentar a eficácia dos antibióticos clássicos.
Livres sur le sujet "Bacteria in cancer therapy"
Hoffman, Robert M., dir. Bacterial Therapy of Cancer. New York, NY : Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3515-4.
Texte intégralArsenio, Fialho, et Chakrabarty Ananda M. 1938-, dir. Emerging cancer therapy : Microbial approaches and biotechnological tools. Hoboken, N.J : Wiley, 2010.
Trouver le texte intégral1915-, Crane John, dir. The cancer cure that worked : Fifty years of suppression. Toronto, Canada : Marcus Books, 1987.
Trouver le texte intégralLynes, Barry. The cancer cure that worked ! : Fifty years of suppression. Toronto, Canada : Marcus Books, 1987.
Trouver le texte intégralKhan, Abdul Arif, dir. Bacteria and Cancer. Dordrecht : Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2585-0.
Texte intégralKhan, Abdul Arif. Bacteria and Cancer. Dordrecht : Springer Netherlands, 2012.
Trouver le texte intégralClark, Hulda Regehr. The cure for all cancers : Including over 100 case histories of persons cured : Plus two revolutionary electronic circuits, one to diagnose and monitor progress, the other to zap parasites and bacteria!. San Diego : New Century Press, 1993.
Trouver le texte intégralChowdhury, Sreyan. Engineered Bacteria for Cancer Immunotherapy. [New York, N.Y.?] : [publisher not identified], 2021.
Trouver le texte intégralBeger, Hans G., Markus Büchler, Ralph A. Reisfeld et Gregor Schulz, dir. Cancer Therapy. Berlin, Heidelberg : Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73721-3.
Texte intégralD’Alessandro, Natale, Enrico Mihich, Luciano Rausa, Haim Tapiero et Thomas R. Tritton, dir. Cancer Therapy. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84613-7.
Texte intégralChapitres de livres sur le sujet "Bacteria in cancer therapy"
Patyar, Sazal, Ajay Prakash et Bikash Medhi. « Bacteria as a Therapeutic Approach in Cancer Therapy ». Dans Bacteria and Cancer, 185–208. Dordrecht : Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2585-0_8.
Texte intégralSarotra, Pooja, et Bikash Medhi. « Use of Bacteria in Cancer Therapy ». Dans Recent Results in Cancer Research, 111–21. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42934-2_8.
Texte intégralMishra, Archana, et Vibhay Nath Tripathi. « Role of Bacteria in the Development of Cancer ». Dans Colon Cancer Diagnosis and Therapy, 91–108. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64668-4_5.
Texte intégralKumar, Pawan, Chitra Latka et Bhupesh Taneja. « Current Antifungal Therapy and Drug Resistance Mechanisms in Dermatophytes ». Dans Drug Resistance in Bacteria, Fungi, Malaria, and Cancer, 371–85. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48683-3_17.
Texte intégralMego, Michal, Sona Ciernikova, Martin Razus, Lubos Drgona et Vladimir Zajac. « Probiotic Bacteria in Patients Treated with Chemotherapy and Radiation Therapy ». Dans Critical Dietary Factors in Cancer Chemoprevention, 353–73. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21461-0_18.
Texte intégralTraore, Mahama A., Ali Sahari et Bahareh Behkam. « Construction of Bacteria-Based Cargo Carriers for Targeted Cancer Therapy ». Dans Targeted Drug Delivery, 25–35. New York, NY : Springer US, 2018. http://dx.doi.org/10.1007/978-1-4939-8661-3_3.
Texte intégralKamble, Swapnil C., Farhan F. Shaikh et Joyita Sarkar. « The Evolving Role of Nanoparticles in Bacteria Mediated Cancer Therapy ». Dans Nanotechnology for Advances in Medical Microbiology, 331–47. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9916-3_14.
Texte intégralJia, Li-Jun, et Zi-Chun Hua. « Development of Bacterial Vectors for Tumor-Targeted Gene Therapy ». Dans Gene Therapy of Cancer, 131–54. Totowa, NJ : Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-561-9_7.
Texte intégralHoffman, Robert M. « Future of Bacterial Therapy of Cancer ». Dans Methods in Molecular Biology, 177–84. New York, NY : Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3515-4_15.
Texte intégralLeschner, Sara, et Siegfried Weiss. « Noninvasive In Vivo Imaging to Follow Bacteria Engaged in Cancer Therapy ». Dans Methods in Molecular Biology, 61–68. New York, NY : Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3515-4_6.
Texte intégralActes de conférences sur le sujet "Bacteria in cancer therapy"
Lee, Wonjun, Jiin Park, Dongil Kang et Seungbeum Suh. « Reconstituting Fundamentals of Bacteria Mediated Cancer Therapy On A Chip ». Dans 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2023. http://dx.doi.org/10.1109/mems49605.2023.10052432.
Texte intégralKuo, Wen-Shuo, Ching-Ming Wu et Chen-Sheng Yeh. « Bacteria-Assisted Photothermal Therapy in Cancers Cells ». Dans 2007 Digest of papers Microprocesses and Nanotechnology. IEEE, 2007. http://dx.doi.org/10.1109/imnc.2007.4456189.
Texte intégralLin, Yu-Hsin, Chih-Ho Lai, Yu-An Chen, Yi-Ru Lai, Ho Lin et Jer-Tsong Hsieh. « Novel bacterial genotoxin-loaded nanoparticles for targeting therapy of radioresistant prostate cancer ». Dans The 1st International Electronic Conference on Cancers : Exploiting Cancer Vulnerability by Targeting the DNA Damage Response. Basel, Switzerland : MDPI, 2021. http://dx.doi.org/10.3390/iecc2021-09230.
Texte intégralBogush, Ya Yu, et N. V. Ikonnikova. « OVERVIEW OF THE PROPERTIES OF BACTERIOPHAGES AND THE POSSIBILITIES OF PHAGE THERAPY IN THE MODERN WORLD ». Dans SAKHAROV READINGS 2022 : ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2022. http://dx.doi.org/10.46646/sakh-2022-2-104-107.
Texte intégralAckerley, David F., Janine N. Copp, Elsie M. Williams, Alexandra M. Mowday, Christopher P. Guise, Gareth A. Prosser, Sophie P. Syddall, Jeff B. Smaill et Adam V. Patterson. « Abstract B88 : Discovery, characterization, and engineering of bacterial nitroreductases for gene-directed enzyme prodrug therapy. » Dans Abstracts : AACR-NCI-EORTC International Conference : Molecular Targets and Cancer Therapeutics--Nov 12-16, 2011 ; San Francisco, CA. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1535-7163.targ-11-b88.
Texte intégralRodiansyah, Achmad, Marselina Irasonia Tan et Husna Nugrahapraja. « Construction, Cloning, and Overexpression of Staphylococcal Enterotoxin B Gene Synthetic (SEBsyn) in pET-28a(+) : Pre-development Bacterial-Toxin Therapy for Cancer ». Dans 7th International Conference on Biological Science (ICBS 2021). Paris, France : Atlantis Press, 2022. http://dx.doi.org/10.2991/absr.k.220406.065.
Texte intégralAbreu, Thiago Martins de, Arthur Gomes Pidde, Pedro Henrique de Ávila Perillo, Silvaleide Ataides Assunção, Ianca Leandra Santos et Débora Sara de Almeida Cardoso. « DELAY IN THE DIAGNOSIS OF INVASIVE DUCTAL CARCINOMA DUE TO AN INFECTIOUS MASTITIS : CASE REPORT ». Dans Abstracts from the Brazilian Breast Cancer Symposium - BBCS 2021. Mastology, 2021. http://dx.doi.org/10.29289/259453942021v31s2067.
Texte intégralPezo, Rossanna C., Andrea Eisen, Sonal Gandhi, Ellen Warner, Katarzyna Jerzak, Maureen Trudeau et Arun Seth. « Abstract OT-09-04 : Analysis of genomic alterations in cell free DNA and gut bacterial diversity in metastatic breast cancer (MBC) patients on endocrine therapy : A pilot study ». Dans Abstracts : 2020 San Antonio Breast Cancer Virtual Symposium ; December 8-11, 2020 ; San Antonio, Texas. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.sabcs20-ot-09-04.
Texte intégralGuerrero-Preston, Rafael E., James Robert White, Filipa Godoy-Vitorino, Herminio Gonzalez, Arnold Rodríguez-Hilario, Kelvin Navarro, Gustavo A. Miranda-Carboni et al. « Abstract 1018 : High-resolution microbiome profiling and genome wide arrays uncover bacteria driven alterations of oncogenic and immune pathways in head and neck cancer patients treated with surgery, chemo-radiation and PD-1 checkpoint blockade therapy ». Dans Proceedings : AACR Annual Meeting 2017 ; April 1-5, 2017 ; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-1018.
Texte intégralKang, Simook, et Baek-Il Kim. « The susceptibility of oral bacteria to antibacterial photodynamic therapy ». Dans Photonic Diagnosis, Monitoring, Prevention, and Treatment of Infections and Inflammatory Diseases 2019, sous la direction de Tianhong Dai, Mei X. Wu et Jürgen Popp. SPIE, 2019. http://dx.doi.org/10.1117/12.2507675.
Texte intégralRapports d'organisations sur le sujet "Bacteria in cancer therapy"
Clarke, Robert S. Endocrine Therapy of Breast Cancer. Fort Belvoir, VA : Defense Technical Information Center, juin 2005. http://dx.doi.org/10.21236/ada443230.
Texte intégralClarke, Robert. Endocrine Therapy of Breast Cancer. Fort Belvoir, VA : Defense Technical Information Center, juin 2008. http://dx.doi.org/10.21236/ada492475.
Texte intégralGallion, Holly. Advances in Breast Cancer Therapy. Fort Belvoir, VA : Defense Technical Information Center, juin 2010. http://dx.doi.org/10.21236/ada535545.
Texte intégralGallion, Holly. Advances in Breast Cancer Therapy. Fort Belvoir, VA : Defense Technical Information Center, juin 2009. http://dx.doi.org/10.21236/ada510052.
Texte intégralMa, Hong. Advances In Breast Cancer Therapy. Fort Belvoir, VA : Defense Technical Information Center, septembre 2011. http://dx.doi.org/10.21236/ada562073.
Texte intégralLis, Darrell. Advances in Breast Cancer Therapy. Fort Belvoir, VA : Defense Technical Information Center, septembre 2012. http://dx.doi.org/10.21236/ada573097.
Texte intégralTung, Ching-Hsuan. Protease Mediated Anti-Cancer Therapy. Fort Belvoir, VA : Defense Technical Information Center, août 2006. http://dx.doi.org/10.21236/ada458446.
Texte intégralClarke, Robert. Endocrine Therapy of Breast Cancer. Fort Belvoir, VA : Defense Technical Information Center, juin 2006. http://dx.doi.org/10.21236/ada463407.
Texte intégralClarke, Robert. Endocrine Therapy of Breast Cancer. Fort Belvoir, VA : Defense Technical Information Center, juin 2007. http://dx.doi.org/10.21236/ada472777.
Texte intégralPitha-Rowe, Paula Marie. Ribozyme-Mediated Breast Cancer Gene Therapy. Fort Belvoir, VA : Defense Technical Information Center, octobre 2000. http://dx.doi.org/10.21236/ada394199.
Texte intégral