Littérature scientifique sur le sujet « Barley Genetics »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Barley Genetics ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Barley Genetics"
Ren, Xifeng, Yonggang Wang, Songxian Yan, Dongfa Sun et Genlou Sun. « Population genetics and phylogenetic analysis of the vrs1 nucleotide sequence in wild and cultivated barley ». Genome 57, no 4 (avril 2014) : 239–44. http://dx.doi.org/10.1139/gen-2014-0039.
Texte intégralJana, S., et L. N. Pietrzak. « Comparative assessment of genetic diversity in wild and primitive cultivated barley in a center of diversity. » Genetics 119, no 4 (1 août 1988) : 981–90. http://dx.doi.org/10.1093/genetics/119.4.981.
Texte intégralNeale, D. B., M. A. Saghai-Maroof, R. W. Allard, Q. Zhang et R. A. Jorgensen. « Chloroplast DNA diversity in populations of wild and cultivated barley. » Genetics 120, no 4 (1 décembre 1988) : 1105–10. http://dx.doi.org/10.1093/genetics/120.4.1105.
Texte intégralTsuchiya, T. « Barley Genetics Newsletter ». Hereditas 73, no 1 (12 février 2009) : 162. http://dx.doi.org/10.1111/j.1601-5223.1973.tb01079.x.
Texte intégralLukina, K. A., O. N. Kovaleva et I. G. Loskutov. « Naked barley : taxonomy, breeding, and prospects of utilization ». Vavilov Journal of Genetics and Breeding 26, no 6 (9 octobre 2022) : 524–36. http://dx.doi.org/10.18699/vjgb-22-64.
Texte intégralSreenivasulu, Nese, Andreas Graner et Ulrich Wobus. « Barley Genomics : An Overview ». International Journal of Plant Genomics 2008 (13 mars 2008) : 1–13. http://dx.doi.org/10.1155/2008/486258.
Texte intégralRamakrishna, Wusirika, Jorge Dubcovsky, Yong-Jin Park, Carlos Busso, John Emberton, Phillip SanMiguel et Jeffrey L. Bennetzen. « Different Types and Rates of Genome Evolution Detected by Comparative Sequence Analysis of Orthologous Segments From Four Cereal Genomes ». Genetics 162, no 3 (1 novembre 2002) : 1389–400. http://dx.doi.org/10.1093/genetics/162.3.1389.
Texte intégralKünzel, Gottfried, Larissa Korzun et Armin Meister. « Cytologically Integrated Physical Restriction Fragment Length Polymorphism Maps for the Barley Genome Based on Translocation Breakpoints ». Genetics 154, no 1 (1 janvier 2000) : 397–412. http://dx.doi.org/10.1093/genetics/154.1.397.
Texte intégralCho, Seungho, David F. Garvin et Gary J. Muehlbauer. « Transcriptome Analysis and Physical Mapping of Barley Genes in Wheat–Barley Chromosome Addition Lines ». Genetics 172, no 2 (1 décembre 2005) : 1277–85. http://dx.doi.org/10.1534/genetics.105.049908.
Texte intégralKonishi, T., et S. Matsuura. « Geographic differentiation in isozyme genotypes of Himalayan barley (Hordeum vulgare) ». Genome 34, no 5 (1 octobre 1991) : 704–9. http://dx.doi.org/10.1139/g91-108.
Texte intégralThèses sur le sujet "Barley Genetics"
Collins, Nicholas C. « The genetics of barley yellow dwarf virus resistance in barley and rice ». Title page, table of contents and summary only, 1996. http://hdl.handle.net/2440/46063.
Texte intégralThesis (Ph.D.) -- University of Adelaide, Dept. of Plant Science, 1996
Jenkin, Mandy Jane. « Genetics of boron tolerance in barley / ». Adelaide : Thesis (Ph.D.) -- University of Adelaide, Department of Plant Science, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phj514.pdf.
Texte intégralHarvey, Andrew John. « Isolation, characterization and differential expression of Barley B-Glucan Exohydrolase genes ». Title page, abstract and table of contents only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09phh399.pdf.
Texte intégralCaldwell, Katherine Selby. « An evaluation of the patterns of nucleotide diversity and linkage disequilibrium at the regional level in Hordeum vulgare / ». Title page, table of contents and abstract only, 2004. http://web4.library.adelaide.edu.au/theses/09PH/09phc1471.pdf.
Texte intégralJefferies, Stephen P. « Marker assisted backcrossing for gene introgression in barley (Hordeum vulgare L.) ». Title page, contents and chapter 1 only, 2000. http://web4.library.adelaide.edu.au/theses/09APSP/09apspj45.pdf.
Texte intégralEglinton, Jason Konrad. « Novel alleles from wild barley for breeding malting barley (Hordeum vulgare L.) / ». Title page, abstact and table of contents only, 2003. http://web4.library.adelaide.edu.au/theses/09PH/09phe313.pdf.
Texte intégralPatil, Vrushali. « Molecular developmental genetics of the barley internode ». Thesis, University of Dundee, 2016. https://discovery.dundee.ac.uk/en/studentTheses/a7e7046a-3615-40c4-b678-200299cd0d12.
Texte intégralJenkin, Mandy Jane. « Genetics of boron tolerance in barley / by Mandy Jane Jenkin ». Thesis, Adelaide Thesis (Ph.D.) -- University of Adelaide, Department of Plant Science, 1993. http://hdl.handle.net/2440/21652.
Texte intégralLiu, Shaolin 1968. « Oligonucleotides applied in genomics, bioinformatics and development of molecular markers for rice and barley ». Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=85569.
Texte intégralSmith, Ryan Anthony. « Germination and growth responses of Hordeum Vulgare SV13 cultivated as a green fodder crop for African conditions ». Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2790.
Texte intégralThis study evaluated the effects of 5 different soaking treatments in conjunction with 5 varying irrigation intervals on the germination, growth and nutritional values of seed of Hordeum vulgare Sv13. The 5 different soaking times consisted of 1, 3, 8, 16 and 24 hours. The barley seed was first cleaned and then placed in a vessel containing 500 ml of distilled water with a 20 % solution of sodium hypochlorite (bleach) at room temperature. Thereafter the pre-soaked seeds were transferred to a perforated container, containing no medium and placed into a growing chamber equipped with drip irrigation. The seed was then irrigated with 1245 ml of water at 5 different intervals namely every 2, 4, 8 10 and 12 hours. The temperature of the hydroponic growing room was kept at a constant 23 °C using a hotoperiod of 16-hour day/ 8-hour darkness. The seed was allowed to germinate and grow for a period of 8 days before being harvested. The objectives of this study were to determine the most beneficial combination of soaking treatment in conjunction with the most beneficial irrigation interval on the germination rate of the seed allowing for radicle emergence and coleoptile production. It was also used to determine which combination of treatments was most beneficial to the growth and nutritional values of the seed post-harvest. Another objective was to ascertain the shortest soaking time for application in a small-scale, hydroponic growing unit as well as the frequency of irrigation required to grow seedlings, thereby determining the amount of water required to produce a seedling mat for a small-scale, subsistence farmer, with the emphasis being on water reduction. Each treatment was replicated 10 times and consisted of 500 grams of seed, which when placed into its container measured 2 centimetres in depth, totalling 25 treatments in all. Germination was measured by observing radicle emergence in the first 2 days of the growing period first after a 24-hour cycle and again after 48 hours. The numbers of leaves present at harvest after an 8-day growing period were also counted to determine germination rate of the seeds. Growth was determined by average leaf height as well as the tallest leaf on day 8 of the growing cycle. Root mat expansion was also measured, post-harvest, which was compared to the initial 2 cm planting depth of seed. Wet and dry weights of the plant material were measured post-harvest. Samples of the harvested material were also sent for nitrogen and protein analysis. It was discovered that most of the results favoured a shorter soaking time and an increase in irrigation frequency, bar a few exceptions. Most favoured a pre-soaking time of only 1 hour together with an irrigation frequency of between 2 and 4 hours. This shows that small-scale farmers would be able to reduce the time spent on soaking of their seed. Although the frequency of the irrigation interval remained high further testing would be required to determine if the amount of water applied at each irrigation interval could be reduced and still produce favourable results. It would also remain to be seen if no irrigation during the 8-hour dark photoperiod would have any negative impact on germination, growth and nutritional values of the seedlings.
Livres sur le sujet "Barley Genetics"
ll, Torbjo rn Sa. Genetic variation for recombination in barley. Svalo v : Swedish University of Agricultural Sciences, Dept. of Crop Genetics and Breeding, 1989.
Trouver le texte intégralUllrich, Steven E. Barley, production, improvement, and uses. Chichester, West Sussex, UK : Wiley-Blackwell, 2011.
Trouver le texte intégralZhang, Guoping. Genetics and Improvement of Barley Malt Quality. Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg, 2010.
Trouver le texte intégralZhang, Guoping, et Chengdao Li, dir. Genetics and Improvement of Barley Malt Quality. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01279-2.
Texte intégralInternational, Barley Genetics Resources Workshop (1991 Helsingborg Sweden). Barley genetic resources : Report of an international barley genetic resources workshop held at Helsingborg Kongresscenter Helsingborg, Sweden, 20-21 July 1991. Rome : International Board for Plant Genetic Resources, 1992.
Trouver le texte intégralKhodʹkov, L. E. Golozernye i bezostye i͡a︡chmeni. Leningrad : Izd-vo Leningradskogo universiteta, 1985.
Trouver le texte intégralGrant, Bailey L., Thompson B. K et Canada Agriculture Canada, dir. Barley register = : Registre des variétés d'orge. Ottawa : Agriculture Canada, 1985.
Trouver le texte intégralSaskatchewan), International Oats Conference (5th 1996 University of. V International Oat Conference & VII International Barley Genetics Symposium : Proceedings. Saskatoon : University Extension Press, 1996.
Trouver le texte intégralThörn, Eva C. Selective chromosome elimination in barley : The "bulbosum-system" : possibilities and limitations in plant breeding. Svalöf : Swedish University of Agricultural Sciences, Dept. of Plant Breeding Research, 1992.
Trouver le texte intégralSveriges lantbruksuniversitet. Institutionen för växtförädling., dir. Mutation research in barley. Svalöf : Swedish University of Agricultural Sciences, Dept. of Plant Breeding Research, 1992.
Trouver le texte intégralChapitres de livres sur le sujet "Barley Genetics"
von Wettstein-Knowles, Penny. « Barley Raincoats : Biosynthesis and Genetics ». Dans Plant Molecular Biology, 305–14. Boston, MA : Springer US, 1987. http://dx.doi.org/10.1007/978-1-4615-7598-6_28.
Texte intégralEversole, Kellye, Andreas Graner et Nils Stein. « Wheat and Barley Genome Sequencing ». Dans Genetics and Genomics of the Triticeae, 713–42. New York, NY : Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-77489-3_24.
Texte intégralLangridge, Peter, Yang Qingwen, Dong Chongmei et Ken Chalmers. « From Genome Structure to Pragmatic Breeding of Wheat and Barley ». Dans Stadler Genetics Symposia Series, 197–209. Boston, MA : Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4235-3_15.
Texte intégralLundqvist, U. « Barley Mutants - Diversity, Genetics and Plant Breeding Value ». Dans Current Options for Cereal Improvement, 115–28. Dordrecht : Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0893-2_11.
Texte intégralBrown, James K. M. « Molecular and Population Genetics of Barley Powdery Mildew ». Dans Advances in Molecular Genetics of Plant-Microbe Interactions, 191–98. Dordrecht : Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0177-6_29.
Texte intégralKrattinger, Simon, Thomas Wicker et Beat Keller. « Map-Based Cloning of Genes in Triticeae (Wheat and Barley) ». Dans Genetics and Genomics of the Triticeae, 337–57. New York, NY : Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-77489-3_12.
Texte intégralGenc, Y., G. K. McDonald, Z. Rengel et R. D. Graham. « Genotypic Variation in the Response of Barley to Zinc Deficiency ». Dans Plant Nutrition — Molecular Biology and Genetics, 205–21. Dordrecht : Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2685-6_24.
Texte intégralForster, B. P., R. P. Ellis, A. C. Newton, R. Tuberosa, D. This, A. S. El-Gamal, M. H. Bahri et M. Ben Salem. « Molecular Breeding of Barley for Droughted Low Input Agricultural Conditions ». Dans Plant Nutrition — Molecular Biology and Genetics, 359–63. Dordrecht : Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2685-6_40.
Texte intégralWray, J. L., S. M. Ip, E. Duncanson, A. F. Gilkes et D. W. Kirk. « Biochemistry, Regulation and Genetics of Nitrite Reduction in Barley ». Dans Inorganic Nitrogen in Plants and Microorganisms, 203–9. Berlin, Heidelberg : Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75812-6_31.
Texte intégralSmith, Frank W., Daisy H. Cybinski et Anne L. Rae. « Regulation of Expression of Genes Encoding Phosphate Transporters in Barley Roots ». Dans Plant Nutrition — Molecular Biology and Genetics, 145–50. Dordrecht : Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2685-6_19.
Texte intégralActes de conférences sur le sujet "Barley Genetics"
« The variability of organelle genomes in barley ». Dans Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-190.
Texte intégral« Targeted knockout of the NUD gene in Siberian barley ». Dans Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-107.
Texte intégral« Barley alloplasmic lines – the spectra of peculiar plasmon types ». Dans Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-175.
Texte intégral« Molecular genetic methods for assessing drought resistance of spring barley ». Dans Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-142.
Texte intégral« Transcriptomic changes underlying partial albinism in barley nearly isogenic line ». Dans Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-169.
Texte intégral« Genetics of resistance of spring barley to the agent Ustilago nuda ». Dans Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-017.
Texte intégral« Generation of haploidy inducers for Cas endonuclease-mediated mutagenesis in barley ». Dans Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-178.
Texte intégral« Comparative characteristics of barley hybrids by the anthocyanins content in grain ». Dans Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-114.
Texte intégral« Targeted modification of regulatory genes associated with barley grain color formation ». Dans Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-047.
Texte intégral« Identification and characterization of a barley gene controlling cuticle wax formation ». Dans Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-061.
Texte intégralRapports d'organisations sur le sujet "Barley Genetics"
Delmer, Deborah, Nicholas Carpita et Abraham Marcus. Induced Plant Cell Wall Modifications : Use of Plant Cells with Altered Walls to Study Wall Structure, Growth and Potential for Genetic Modification. United States Department of Agriculture, mai 1995. http://dx.doi.org/10.32747/1995.7613021.bard.
Texte intégralMawassi, Munir, Baozhong Meng et Lorne Stobbs. Development of Virus Induced Gene Silencing Tools for Functional Genomics in Grapevine. United States Department of Agriculture, juillet 2013. http://dx.doi.org/10.32747/2013.7613887.bard.
Texte intégralAbbo, Shahal, Hongbin Zhang, Clarice Coyne, Amir Sherman, Dan Shtienberg et George J. Vandemark. Winter chickpea ; towards a new winter pulse for the semiarid Pacific Northwest and wider adaptation in the Mediterranean basin. United States Department of Agriculture, janvier 2011. http://dx.doi.org/10.32747/2011.7597909.bard.
Texte intégralHorwitz, Benjamin, et Nicole M. Donofrio. Identifying unique and overlapping roles of reactive oxygen species in rice blast and Southern corn leaf blight. United States Department of Agriculture, janvier 2017. http://dx.doi.org/10.32747/2017.7604290.bard.
Texte intégralTel-Zur, Neomi, et Jeffrey J. Doyle. Role of Polyploidy in Vine Cacti Speciation and Crop Domestication. United States Department of Agriculture, janvier 2012. http://dx.doi.org/10.32747/2012.7697110.bard.
Texte intégral