Articles de revues sur le sujet « Basal ganglia model »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Basal ganglia model ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Barker, Roger. "Model for basal ganglia disorders." Trends in Neurosciences 13, no. 3 (1990): 93. http://dx.doi.org/10.1016/0166-2236(90)90181-9.
Texte intégralHallett, Mark. "Physiology of Basal Ganglia Disorders: An Overview." Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 20, no. 3 (1993): 177–83. http://dx.doi.org/10.1017/s0317167100047909.
Texte intégralGonzalo, N. "The parafascicular thalamic complex and basal ganglia circuitry: further complexity to the basal ganglia model." Thalamus & Related Systems 1, no. 4 (2002): 341–48. http://dx.doi.org/10.1016/s1472-9288(02)00007-9.
Texte intégralGonzalo, N., J. L. Lanciego, M. Castle, A. Vázquez, E. Erro, and J. A. Obeso. "The parafascicular thalamic complex and basal ganglia circuitry: further complexity to the basal ganglia model." Thalamus and Related Systems 1, no. 04 (2002): 341. http://dx.doi.org/10.1017/s1472928802000079.
Texte intégralLepora, Nathan F., and Kevin N. Gurney. "The Basal Ganglia Optimize Decision Making over General Perceptual Hypotheses." Neural Computation 24, no. 11 (2012): 2924–45. http://dx.doi.org/10.1162/neco_a_00360.
Texte intégralPlotkin, Joshua L., and Joshua A. Goldberg. "Thinking Outside the Box (and Arrow): Current Themes in Striatal Dysfunction in Movement Disorders." Neuroscientist 25, no. 4 (2018): 359–79. http://dx.doi.org/10.1177/1073858418807887.
Texte intégralYin, Henry H. "How Basal Ganglia Outputs Generate Behavior." Advances in Neuroscience 2014 (November 18, 2014): 1–28. http://dx.doi.org/10.1155/2014/768313.
Texte intégralPrescott, Tony J., Fernando M. Montes González, Kevin Gurney, Mark D. Humphries, and Peter Redgrave. "Simulated Dopamine Modulation of a Neurorobotic Model of the Basal Ganglia." Biomimetics 9, no. 3 (2024): 139. http://dx.doi.org/10.3390/biomimetics9030139.
Texte intégralTan, Xiaolong, Hudong Zhang, Yan Xie, and Yuan Chai. "Electromagnetic radiation and electrical stimulation controls of absence seizures in a coupled reduced corticothalamic model." Electronic Research Archive 31, no. 1 (2022): 58–74. http://dx.doi.org/10.3934/era.2023004.
Texte intégralCaiola, Michael, and Mark H. Holmes. "Model and Analysis for the Onset of Parkinsonian Firing Patterns in a Simplified Basal Ganglia." International Journal of Neural Systems 29, no. 01 (2019): 1850021. http://dx.doi.org/10.1142/s0129065718500211.
Texte intégralYin, Henry H. "The Basal Ganglia in Action." Neuroscientist 23, no. 3 (2016): 299–313. http://dx.doi.org/10.1177/1073858416654115.
Texte intégralFéger, J. "Updating the functional model of the basal ganglia." Trends in Neurosciences 20, no. 4 (1997): 152–53. http://dx.doi.org/10.1016/s0166-2236(96)01016-8.
Texte intégralSuri, R. E., C. Albani, and A. H. Glattfelder. "A dynamic model of motor basal ganglia functions." Biological Cybernetics 76, no. 6 (1997): 451–58. http://dx.doi.org/10.1007/s004220050358.
Texte intégralKahan, Joshua, Laura Mancini, Guillaume Flandin, et al. "Deep brain stimulation has state-dependent effects on motor connectivity in Parkinson’s disease." Brain 142, no. 8 (2019): 2417–31. http://dx.doi.org/10.1093/brain/awz164.
Texte intégralBaladron, Javier, Julien Vitay, Torsten Fietzek, and Fred H. Hamker. "The contribution of the basal ganglia and cerebellum to motor learning: A neuro-computational approach." PLOS Computational Biology 19, no. 4 (2023): e1011024. http://dx.doi.org/10.1371/journal.pcbi.1011024.
Texte intégralWang, Guotao, Ningning Huang, and Bashir Ahmad. "A novel fractional operator-based model for Parkinson’s disease: Analyzing abnormal beta-oscillation and the influence of synaptic parameters." Nonlinear Analysis: Modelling and Control 30 (March 12, 2025): 1–18. https://doi.org/10.15388/namc.2025.30.39446.
Texte intégralAkanksha Kaushik. "A Computational Neural Network Model Depicting Bradykinesia in Parkinson’s Disease." Journal of Information Systems Engineering and Management 10, no. 42s (2025): 1203–30. https://doi.org/10.52783/jisem.v10i42s.8656.
Texte intégralDarbin, Olivier, Daniel Dees, Anthony Martino, Elizabeth Adams, and Dean Naritoku. "An Entropy-Based Model for Basal Ganglia Dysfunctions in Movement Disorders." BioMed Research International 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/742671.
Texte intégralBogacz, Rafal, and Kevin Gurney. "The Basal Ganglia and Cortex Implement Optimal Decision Making Between Alternative Actions." Neural Computation 19, no. 2 (2007): 442–77. http://dx.doi.org/10.1162/neco.2007.19.2.442.
Texte intégralWang, Yuhao, Armin Lak, Sanjay G. Manohar, and Rafal Bogacz. "Dopamine encoding of novelty facilitates efficient uncertainty-driven exploration." PLOS Computational Biology 20, no. 4 (2024): e1011516. http://dx.doi.org/10.1371/journal.pcbi.1011516.
Texte intégralBogacz, Rafal, and Tobias Larsen. "Integration of Reinforcement Learning and Optimal Decision-Making Theories of the Basal Ganglia." Neural Computation 23, no. 4 (2011): 817–51. http://dx.doi.org/10.1162/neco_a_00103.
Texte intégralDorval, Alan D., Alexis M. Kuncel, Merrill J. Birdno, Dennis A. Turner, and Warren M. Grill. "Deep Brain Stimulation Alleviates Parkinsonian Bradykinesia by Regularizing Pallidal Activity." Journal of Neurophysiology 104, no. 2 (2010): 911–21. http://dx.doi.org/10.1152/jn.00103.2010.
Texte intégralLieberman, Philip. "Why we can talk, debate, and change our minds: Neural circuits, basal ganglia operations, and transcriptional factors." Behavioral and Brain Sciences 37, no. 6 (2014): 561–62. http://dx.doi.org/10.1017/s0140525x13004093.
Texte intégralMoustafa, Ahmed A., and Mark A. Gluck. "A Neurocomputational Model of Dopamine and Prefrontal–Striatal Interactions during Multicue Category Learning by Parkinson Patients." Journal of Cognitive Neuroscience 23, no. 1 (2011): 151–67. http://dx.doi.org/10.1162/jocn.2010.21420.
Texte intégralYamamoto, Kazumi, Toshiki Yoshimine, and Takehiko Yanagihara. "Cerebral Ischemia in Rabbit: A New Experimental Model with Immunohistochemical Investigation." Journal of Cerebral Blood Flow & Metabolism 5, no. 4 (1985): 529–36. http://dx.doi.org/10.1038/jcbfm.1985.80.
Texte intégralLipski, Witold J., Thomas A. Wozny, Ahmad Alhourani, et al. "Dynamics of human subthalamic neuron phase-locking to motor and sensory cortical oscillations during movement." Journal of Neurophysiology 118, no. 3 (2017): 1472–87. http://dx.doi.org/10.1152/jn.00964.2016.
Texte intégralPena-Casanova, Jordi, and Jorge Sigg-Alonso. "Functional Systems and Brain Functional Units Beyond Luria, With Luria: Anatomical Aspects." Lurian Journal 1, no. 1 (2020): 48–76. http://dx.doi.org/10.15826/lurian.2020.1.1.6.
Texte intégralCrossley, Matthew J., Jon C. Horvitz, Peter D. Balsam, and F. Gregory Ashby. "Expanding the role of striatal cholinergic interneurons and the midbrain dopamine system in appetitive instrumental conditioning." Journal of Neurophysiology 115, no. 1 (2016): 240–54. http://dx.doi.org/10.1152/jn.00473.2015.
Texte intégralParent, André, and Francesca Cicchetti. "The current model of basal ganglia organization under scrutiny." Movement Disorders 13, no. 2 (1998): 199–202. http://dx.doi.org/10.1002/mds.870130202.
Texte intégralHanssen, Henrike, Jannik Prasuhn, Marcus Heldmann, et al. "Imaging gradual neurodegeneration in a basal ganglia model disease." Annals of Neurology 86, no. 4 (2019): 517–26. http://dx.doi.org/10.1002/ana.25566.
Texte intégralNAHVI, ALIREZA, FARIBA BAHRAMI, and SAMIRA HEMMATI. "INVESTIGATING DIFFERENT TARGETS IN DEEP BRAIN STIMULATION ON PARKINSON'S DISEASE USING A MEAN-FIELD MODEL OF THE BASAL GANGLIA-THALAMOCORTICAL SYSTEM." Journal of Mechanics in Medicine and Biology 12, no. 02 (2012): 1240004. http://dx.doi.org/10.1142/s0219519412400040.
Texte intégralParent, André. "The brain in evolution and involution." Biochemistry and Cell Biology 75, no. 6 (1997): 651–67. http://dx.doi.org/10.1139/o97-094.
Texte intégralDorval, Alan D., and Warren M. Grill. "Deep brain stimulation of the subthalamic nucleus reestablishes neuronal information transmission in the 6-OHDA rat model of parkinsonism." Journal of Neurophysiology 111, no. 10 (2014): 1949–59. http://dx.doi.org/10.1152/jn.00713.2013.
Texte intégralScholl, Carolin, Javier Baladron, Julien Vitay, and Fred H. Hamker. "Enhanced habit formation in Tourette patients explained by shortcut modulation in a hierarchical cortico-basal ganglia model." Brain Structure and Function 227, no. 3 (2022): 1031–50. http://dx.doi.org/10.1007/s00429-021-02446-x.
Texte intégralMagdoom, K. N., D. Subramanian, V. S. Chakravarthy, B. Ravindran, Shun-ichi Amari, and N. Meenakshisundaram. "Modeling Basal Ganglia for Understanding Parkinsonian Reaching Movements." Neural Computation 23, no. 2 (2011): 477–516. http://dx.doi.org/10.1162/neco_a_00073.
Texte intégralHouk, J. C., C. Bastianen, D. Fansler, et al. "Action selection and refinement in subcortical loops through basal ganglia and cerebellum." Philosophical Transactions of the Royal Society B: Biological Sciences 362, no. 1485 (2007): 1573–83. http://dx.doi.org/10.1098/rstb.2007.2063.
Texte intégralBerns, Gregory S., and Terrence J. Sejnowski. "A Computational Model of How the Basal Ganglia Produce Sequences." Journal of Cognitive Neuroscience 10, no. 1 (1998): 108–21. http://dx.doi.org/10.1162/089892998563815.
Texte intégralFukuoka, Hideki, Yukiko Nishita, Chikako Tange, Rei Otsuka, Fujiko Ando, and Hiroshi Shimokata. "Basal ganglia lesions may be a risk factor for characteristic features of a glaucomatous optic disc: population-based cohort study in Japan." BMJ Open Ophthalmology 8, no. 1 (2023): e001077. http://dx.doi.org/10.1136/bmjophth-2022-001077.
Texte intégralVitek, Jerrold L., and Luke A. Johnson. "Understanding Parkinson’s disease and deep brain stimulation: Role of monkey models." Proceedings of the National Academy of Sciences 116, no. 52 (2019): 26259–65. http://dx.doi.org/10.1073/pnas.1902300116.
Texte intégralJing, Chen, and Li Zongshuai. "Basal Ganglia Behaviour Cognitive Model Based on Operant Conditioning Reflex." Open Automation and Control Systems Journal 6, no. 1 (2014): 1570–77. http://dx.doi.org/10.2174/1874444301406011570.
Texte intégralTortolero, Ivan Carmona, Deepak Kumbhare, Jayasimha Atulasimha, Mark Baron, and Ravi Hadimani. "A computational basal ganglia-thalamocortical circuitry model for Parkinson’s disease." Brain Stimulation 14, no. 6 (2021): 1617. http://dx.doi.org/10.1016/j.brs.2021.10.095.
Texte intégralVásquez-Celaya, L., G. Marín, M. E. Hernández, et al. "Functional correlation between cerebellum and basal ganglia: A parkinsonism model." Neurología (English Edition) 39, no. 7 (2024): 555–63. http://dx.doi.org/10.1016/j.nrleng.2024.07.002.
Texte intégralYu, Ying, and Qingyun Wang. "Oscillation dynamics in an extended model of thalamic-basal ganglia." Nonlinear Dynamics 98, no. 2 (2019): 1065–80. http://dx.doi.org/10.1007/s11071-019-05249-2.
Texte intégralPorenta, Gerold. "A computer model of neuronal pathways in the basal ganglia." Computer Methods and Programs in Biomedicine 22, no. 3 (1986): 325–31. http://dx.doi.org/10.1016/0169-2607(86)90008-8.
Texte intégralGangadhar, Garipelli, Denny Joseph, and V. Srinivasa Chakravarthy. "Understanding Parkinsonian Handwriting Through a Computational Model of Basal Ganglia." Neural Computation 20, no. 10 (2008): 2491–525. http://dx.doi.org/10.1162/neco.2008.03-07-498.
Texte intégralAvecillas-Chasin, Josué M., Fernando Rascón-Ramírez, and Juan A. Barcia. "Tractographical model of the cortico-basal ganglia and corticothalamic connections." Clinical Anatomy 29, no. 4 (2016): 481–92. http://dx.doi.org/10.1002/ca.22689.
Texte intégralLörincz, A. "Static and Dynamic State Feedback Control Model of Basal Ganglia-Thalamocortical Loops." International Journal of Neural Systems 08, no. 03 (1997): 339–57. http://dx.doi.org/10.1142/s0129065797000343.
Texte intégralFederti, Enrica, Alessandro Matte, Veronica Riccardi, et al. "Adaptative Up-Regulation of PRX2 and PRX5 Expression Characterizes Brain from a Mouse Model of Chorea-Acanthocytosis." Antioxidants 11, no. 1 (2021): 76. http://dx.doi.org/10.3390/antiox11010076.
Texte intégralLigot, Noémie, Pierre Krystkowiak, Clémence Simonin, et al. "External Globus Pallidus Stimulation Modulates Brain Connectivity in Huntington's Disease." Journal of Cerebral Blood Flow & Metabolism 31, no. 1 (2010): 41–46. http://dx.doi.org/10.1038/jcbfm.2010.186.
Texte intégralS, I. Aruna, Sujatha S, and S. Neenu E. "Mathematical Modelling of Basal Ganglia for Parkinson's Disease: A System Biology Approach." Indian Journal of Science and Technology 15, no. 36 (2022): 1836–41. https://doi.org/10.17485/IJST/v15i36.1397.
Texte intégral