Littérature scientifique sur le sujet « Basal stacking faults »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Basal stacking faults ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Basal stacking faults"
Byrapa, Sha Yan, Fang Zhen Wu, Huan Huan Wang, Balaji Raghothamachar, Gloria Choi, Shun Sun, Michael Dudley et al. « Deflection of Threading Dislocations with Burgers Vector c/c+a Observed in 4H-SiC PVT–Grown Substrates with Associated Stacking Faults ». Materials Science Forum 717-720 (mai 2012) : 347–50. http://dx.doi.org/10.4028/www.scientific.net/msf.717-720.347.
Texte intégralTaniguchi, Chisato, Aiko Ichimura, Noboru Ohtani, Masakazu Katsuno, Tatsuo Fujimoto, Shinya Sato, Hiroshi Tsuge et Takayuki Yano. « Temperature Dependent Stability of Stacking Fault in Highly Nitrogen-Doped 4H-SiC Crystals ». Materials Science Forum 858 (mai 2016) : 109–12. http://dx.doi.org/10.4028/www.scientific.net/msf.858.109.
Texte intégralJezierska, Elżbieta, et Jolanta Borysiuk. « HRTEM and LACBED of Zigzag Boundaries in GaN Epilayers ». Solid State Phenomena 203-204 (juin 2013) : 24–27. http://dx.doi.org/10.4028/www.scientific.net/ssp.203-204.24.
Texte intégralChen, S. J. « Imaging dislocation shear band in sapphire ». Proceedings, annual meeting, Electron Microscopy Society of America 50, no 1 (août 1992) : 340–41. http://dx.doi.org/10.1017/s0424820100122101.
Texte intégralKatsuno, Masakazu, Masashi Nakabayashi, Tatsuo Fujimoto, Noboru Ohtani, Hirokatsu Yashiro, Hiroshi Tsuge, Takashi Aigo, Taizo Hoshino et Kohei Tatsumi. « Stacking Fault Formation in Highly Nitrogen-Doped 4H-SiC Substrates with Different Surface Preparation Conditions ». Materials Science Forum 600-603 (septembre 2008) : 341–44. http://dx.doi.org/10.4028/www.scientific.net/msf.600-603.341.
Texte intégralBauer, Sondes, Sergey Lazarev, Martin Bauer, Tobias Meisch, Marian Caliebe, Václav Holý, Ferdinand Scholz et Tilo Baumbach. « Three-dimensional reciprocal space mapping with a two-dimensional detector as a low-latency tool for investigating the influence of growth parameters on defects in semipolar GaN ». Journal of Applied Crystallography 48, no 4 (16 juin 2015) : 1000–1010. http://dx.doi.org/10.1107/s1600576715009085.
Texte intégralLazarev, Sergey, Sondes Bauer, Tobias Meisch, Martin Bauer, Ingo Tischer, Mykhailo Barchuk, Klaus Thonke, Vaclav Holy, Ferdinand Scholz et Tilo Baumbach. « Three-dimensional reciprocal space mapping of diffuse scattering for the study of stacking faults in semipolar (\bf 11{\overline 2}2) GaN layers grown from the sidewall of anr-patterned sapphire substrate ». Journal of Applied Crystallography 46, no 5 (11 septembre 2013) : 1425–33. http://dx.doi.org/10.1107/s0021889813020438.
Texte intégralHu, Shanshan, Zeyu Chen, Qianyu Cheng, Balaji Raghothamachar et Michael Dudley. « Stacking Fault Analysis for the Early-Stages of PVT Growth of 4H-SiC Crystals ». ECS Meeting Abstracts MA2024-02, no 36 (22 novembre 2024) : 2518. https://doi.org/10.1149/ma2024-02362518mtgabs.
Texte intégralAgarwal, Anant K., Sumi Krishnaswami, Jim Richmond, Craig Capell, Sei Hyung Ryu, John W. Palmour, Bruce Geil, Dimos Katsis, Charles Scozzie et Robert E. Stahlbush. « Influence of Basal Plane Dislocation Induced Stacking Faults on the Current Gain in SiC BJTs ». Materials Science Forum 527-529 (octobre 2006) : 1409–12. http://dx.doi.org/10.4028/www.scientific.net/msf.527-529.1409.
Texte intégralAnzalone, Ruggero, Nicolò Piluso, Andrea Severino, Simona Lorenti, Giuseppe Arena et Salvo Coffa. « Dislocations Propagation Study Trough High-Resolution 4H-SiC Substrate Mapping ». Materials Science Forum 963 (juillet 2019) : 276–79. http://dx.doi.org/10.4028/www.scientific.net/msf.963.276.
Texte intégralThèses sur le sujet "Basal stacking faults"
Melhem, Hassan. « Epitaxial Growth of Hexagonal Ge Planar Layers on Non-Polar Wurtzite Substrates ». Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPAST011.
Texte intégralSilicon and Germanium crystallizing in the cubic diamond (denoted 3C) structure, have been the cornerstone of the electronic industry due to their inherent properties. However, metastable crystal phase engineering has emerged as a powerful method for tuning electronic band structures and conduction properties, enabling new functionalities while maintaining chemical compatibility. Notably, Germanium within the hexagonal 2H phase exhibits a direct bandgap of 0.38 eV. The alloy SixGe(1-x)-2H demonstrates strong light emission with a tunable wavelength ranging from 1.8 µm to 3.5 µm, depending on silicon concentration (40% to 0%). These properties position SixGe(1-x)-2H as a "holy grail material" among group IV semiconductors, with promising applications in mid-infrared light emission (e.g., LEDs and lasers) and detection on silicon platform.Despite recent progress, synthesizing large volumes of high-quality Ge-2H remains a challenge. Until now, Ge-2H has been limited to nanostructures, including nanodomains formed by shear-induced phase transformation, core/shell nanowires, and nanobranches. These approaches restrict active volumes, hindering basic property investigation and scalable device manufacturing. Achieving high-quality planar crystals with controlled doping is essential for advancing SixGe(1-x)-2H integration.This thesis aims to pioneer the synthesis of planar layers of hexagonal Ge using Ultra High Vacuum - Vapor Phase Epitaxy (UHV-VPE) on hexagonal m-plane II-VI substrates such as CdS-2H and ZnS-4H. The work includes developing surface preparation techniques for II-VI compounds and conducting detailed studies on hexagonal structure formation in materials such as GaAs-4H, ZnS-2H (grown via Metal-Organic Chemical Vapor Deposition, MOCVD), and Ge in both 2H and 4H hexagonal phases.A crucial preliminary step involved preparing substrate surfaces, as their quality directly impacts the crystalline quality of the epitaxial layers. Surface preparation included chemical-mechanical polishing with a Br2-MeOH solution to remove surface contaminants, confirmed through XPS analysis. Challenges related to the thermal properties of CdS-2H and ZnS-4H substrates were addressed, including desorption of II-VI compounds and the formation of negative whiskers above 500°C.Epitaxial growth by UHV-VPE posed selectivity constraints on II-VI substrates, prompting the exploration of alternative growth configurations, such as using buffer template layers. This thesis presents the first synthesis of a GaAs layer in the 4H hexagonal structure grown by epitaxy on ZnS-4H m-plane substrate, along with a first characterization of basal stacking faults (BSFs) in this layer. The feasibility of synthesizing Ge on GaAs-4H was also investigated. A significant part of the work was dedicated to growth on the CdS-2H substrates, demonstrating the first Ge layer with nanoscale regions of Ge-2H epitaxy, providing proof of concept for structure replication of Ge-2H on II-VI m-plane surfaces. However, amorphous and highly defective regions were also observed. Process optimization led to the development of ZnS-2H template layers on CdS-2H using MOCVD, circumventing constraints of direct growth on CdS. A thorough investigation of growth regimes revealed a strong impact of growth temperature on the CdS substrate surface, significantly influencing crystalline quality. m-plane ZnS layers grown at 360°C exhibited a pure hexagonal structure with excellent epitaxial orientation relative to CdS-WZ substrates. Strain relaxation occurred through misfit dislocations at the interface due to lattice mismatches of 7.63% and 6.83% along the a- and c-axes, forming basal and prismatic stacking faults on {11-20} planes. Finally, as further proof of concept, the thesis presents evidence supporting the synthesis of a Ge layer with a partial hexagonal phase
Chapitres de livres sur le sujet "Basal stacking faults"
Agarwal, Anant, Sumi Krishnaswami, James Richmond, Craig Capell, Sei Hyung Ryu, John Palmour, Bruce Geil, Dimos Katsis, Charles J. Scozzie et Robert E. Stahlbush. « Influence of Basal Plane Dislocation Induced Stacking Faults on the Current Gain in SiC BJTs ». Dans Silicon Carbide and Related Materials 2005, 1409–12. Stafa : Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-425-1.1409.
Texte intégralJin, Z. H., J. Han, X. M. Su et Y. T. Zhu. « Basal-Plane Stacking-Fault Energies of Mg : A First-Principles Study of Li- and Al-Alloying Effects ». Dans Supplemental Proceedings, 121–28. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118062142.ch15.
Texte intégralWakabayashi, John. « Field and petrographic reconnaissance of Franciscan complex rocks of Mount Diablo, California : Imbricated ocean floor stratigraphy with a roof exhumation fault system ». Dans Regional Geology of Mount Diablo, California : Its Tectonic Evolution on the North America Plate Boundary. Geological Society of America, 2021. http://dx.doi.org/10.1130/2021.1217(09).
Texte intégralActes de conférences sur le sujet "Basal stacking faults"
Monavarian, Morteza, Shopan Hafiz, Natalia Izyumskaya, Saikat Das, Ümit Özgür, Hadis Morkoç et Vitaliy Avrutin. « Wurtzite/zinc-blende electronic-band alignment in basal-plane stacking faults in semi-polar GaN ». Dans SPIE OPTO, sous la direction de Jen-Inn Chyi, Hiroshi Fujioka, Hadis Morkoç, Yasushi Nanishi, Ulrich T. Schwarz et Jong-In Shim. SPIE, 2016. http://dx.doi.org/10.1117/12.2213859.
Texte intégralNishio, Johji, Aoi Okada, Chiharu Ota et Ryosuke Iijima. « Single Shockley Stacking Fault Expansion from Immobile Basal Plane Dislocations in 4H-SiC ». Dans 2020 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2020. http://dx.doi.org/10.7567/ssdm.2020.d-4-04.
Texte intégral