Articles de revues sur le sujet « Bed roughness »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Bed roughness ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Lang, Shinan, Ben Xu, Xiangbin Cui, et al. "A self-adaptive two-parameter method for characterizing roughness of multi-scale subglacial topography." Journal of Glaciology 67, no. 263 (2021): 560–68. http://dx.doi.org/10.1017/jog.2021.12.
Texte intégralFaruque, Md Abdullah Al, and Ram Balachandar. "Roughness effects on turbulence characteristics in an open channel flow." Canadian Journal of Civil Engineering 37, no. 12 (2010): 1600–1612. http://dx.doi.org/10.1139/l10-098.
Texte intégralA.Merry, Marwa. "EXPERIMENTAL STUDY FOR DETERMINE MANNING'S COEFFICIENT WITH DIFFERENT SLOPES AND CHANNEL BED MATERIALS." Kufa Journal of Engineering 8, no. 3 (2017): 76–88. http://dx.doi.org/10.30572/2018/kje/8031160.
Texte intégralIrzooki, Raad Hoobi, and Ayad Saoud Najem. "Experimental Investigation for Free Overfall of Flow in Semi-circular Channels." IOP Conference Series: Earth and Environmental Science 1120, no. 1 (2022): 012010. http://dx.doi.org/10.1088/1755-1315/1120/1/012010.
Texte intégralMajeed, Hayder Q., Ali M. Ghazal, and Basheer Al-Hadeethi. "Experimental and Numerical Study of Open Channel Flow with T-Section Artificial Bed Roughness." Mathematical Modelling of Engineering Problems 9, no. 6 (2022): 1589–95. http://dx.doi.org/10.18280/mmep.090619.
Texte intégralNikora, Vladimir I., Derek G. Goring, and Barry J. F. Biggs. "On gravel-bed roughness characterization." Water Resources Research 34, no. 3 (1998): 517–27. http://dx.doi.org/10.1029/97wr02886.
Texte intégralFALCINI, FRANCESCA A. M., DAVID M. RIPPIN, MAARTEN KRABBENDAM, and KATHERINE A. SELBY. "Quantifying bed roughness beneath contemporary and palaeo-ice streams." Journal of Glaciology 64, no. 247 (2018): 822–34. http://dx.doi.org/10.1017/jog.2018.71.
Texte intégralFredsøe, J., B. M. Sumer, T. S. Laursen, and C. Pedersen. "Experimental investigation of wave boundary layers with a sudden change in roughness." Journal of Fluid Mechanics 252 (July 1993): 117–45. http://dx.doi.org/10.1017/s0022112093003696.
Texte intégralDevi, Kalpana, Prashanth Reddy Hanmaiahgari, Ram Balachandar, and Jaan H. Pu. "A Comparative Study between Sand- and Gravel-Bed Open Channel Flows in the Wake Region of a Bed-Mounted Horizontal Cylinder." Fluids 6, no. 7 (2021): 239. http://dx.doi.org/10.3390/fluids6070239.
Texte intégralKashefipour, Seyed Mahmood, Mehdi Daryaee, and Mehdi Ghomeshi. "Effect of bed roughness on velocity profile and water entrainment in a sedimentary density current." Canadian Journal of Civil Engineering 45, no. 1 (2018): 9–17. http://dx.doi.org/10.1139/cjce-2016-0490.
Texte intégralKhechiba, Haroun, Ali Ghomri, Djamel Besser, Ibtissam Herri, and Salim Khechana. "Experimental study of the sequent depths ratio of the hydraulic jump in a rectangular compound channel with rough main and minor beds and zero slope." STUDIES IN ENGINEERING AND EXACT SCIENCES 6, no. 1 (2025): e13139. https://doi.org/10.54021/seesv6n1-003.
Texte intégralDing, Lei, and Qing-He Zhang. "LATTICE BOLTZMANN SIMULATION TO CHARACTERIZE ROUGHNESS EFFECTS OF OSCILLATORY BOUNDARY LAYER FLOW OVER A ROUGH BED." Coastal Engineering Proceedings 1, no. 32 (2011): 3. http://dx.doi.org/10.9753/icce.v32.sediment.3.
Texte intégralBertin, Stephane, Jane Groom, and Heide Friedrich. "Grain and bedform roughness properties isolated from gravel-patch DEMs." E3S Web of Conferences 40 (2018): 04005. http://dx.doi.org/10.1051/e3sconf/20184004005.
Texte intégralHumbyrd, Chelsea Joy, and Ole Secher Madsen. "PREDICTING MOVABLE BED ROUGHNESS IN COASTAL WATERS." Coastal Engineering Proceedings 1, no. 32 (2011): 6. http://dx.doi.org/10.9753/icce.v32.sediment.6.
Texte intégralChen, Yifan, Feifeng Cao, Weiping Cheng, and Bin Liu. "Enhancing the Accuracy of Water-Level Forecasting with a New Parameter-Inversion Model for Estimating Bed Roughness in Hydrodynamic Models." Applied Sciences 13, no. 7 (2023): 4551. http://dx.doi.org/10.3390/app13074551.
Texte intégralRippin, D. M., D. G. Vaughan, and H. F. J. Corr. "The basal roughness of Pine Island Glacier, West Antarctica." Journal of Glaciology 57, no. 201 (2011): 67–76. http://dx.doi.org/10.3189/002214311795306574.
Texte intégralBalachandar, Ram, and V. C. Patel. "Flow over a fixed rough dune." Canadian Journal of Civil Engineering 35, no. 5 (2008): 511–20. http://dx.doi.org/10.1139/l08-004.
Texte intégralShiba, Shamiran Jargess, Naeema Thaher Aaref, and Shaker A. Jalil. "Properties of Hydraulic Jump on Horizontal Rough Beds." Zanin Journal of Science and Engineering 1, no. 2 (2025): 01–09. https://doi.org/10.64362/zjse.22.
Texte intégralKatopodis, C., and H. K. Ghamry. "Hydrodynamic and physical assessment of ice-covered conditions for three reaches of the Athabasca River, Alberta, Canada." Canadian Journal of Civil Engineering 34, no. 6 (2007): 717–30. http://dx.doi.org/10.1139/l07-026.
Texte intégralWarmink, J. J. "Dune dynamics and roughness under gradually varying flood waves, comparing flume and field observations." Advances in Geosciences 39 (August 7, 2014): 115–21. http://dx.doi.org/10.5194/adgeo-39-115-2014.
Texte intégralDomhof, Boyan C. A., Koen D. Berends, Aukje Spruyt, Jord J. Warmink, and Suzanne J. M. H. Hulscher. "Discharge and location dependency of calibrated main channel roughness: Case study on the River Waal." E3S Web of Conferences 40 (2018): 06038. http://dx.doi.org/10.1051/e3sconf/20184006038.
Texte intégralLau, Kok-Tee, Mastura Mohammad Taha, Syahibudil Ikhwan Abdul Kudus, and See Ern Chung. "EFFECT OF PRINT BED’S HEAT FLOW ON CURLING AND SURFACE ROUGHNESS OF FDM-PRINTED ABS SAMPLE." Jurnal Teknologi 85, no. 2 (2023): 211–22. http://dx.doi.org/10.11113/jurnalteknologi.v85.18610.
Texte intégralMIGNOT, EMMANUEL, D. HURTHER, and E. BARTHELEMY. "On the structure of shear stress and turbulent kinetic energy flux across the roughness layer of a gravel-bed channel flow." Journal of Fluid Mechanics 638 (October 7, 2009): 423–52. http://dx.doi.org/10.1017/s0022112009990772.
Texte intégralLópez, Raúl, and Javier Barragán. "Equivalent Roughness of Gravel-Bed Rivers." Journal of Hydraulic Engineering 134, no. 6 (2008): 847–51. http://dx.doi.org/10.1061/(asce)0733-9429(2008)134:6(847).
Texte intégralWu, Weiming, and Sam S. Y. Wang. "Movable Bed Roughness in Alluvial Rivers." Journal of Hydraulic Engineering 125, no. 12 (1999): 1309–12. http://dx.doi.org/10.1061/(asce)0733-9429(1999)125:12(1309).
Texte intégralHager, Willi H., Giuseppe Del Giudice, Weiming Wu, and Sam S. Y. Wang. "Movable Bed Roughness in Alluvial Rivers." Journal of Hydraulic Engineering 127, no. 7 (2001): 627–29. http://dx.doi.org/10.1061/(asce)0733-9429(2001)127:7(627).
Texte intégralWiberg, Patricia L., and David M. Rubin. "Bed roughness produced by saltating sediment." Journal of Geophysical Research 94, no. C4 (1989): 5011. http://dx.doi.org/10.1029/jc094ic04p05011.
Texte intégralGallagher, Edith L., E. B. Thornton, and T. P. Stanton. "Sand bed roughness in the nearshore." Journal of Geophysical Research: Oceans 108, no. C2 (2003): n/a. http://dx.doi.org/10.1029/2001jc001081.
Texte intégralRippin, David M. "Bed roughness beneath the Greenland ice sheet." Journal of Glaciology 59, no. 216 (2013): 724–32. http://dx.doi.org/10.3189/2013jog12j212.
Texte intégralNikora, V. I., T. Stoesser, S. M. Cameron, et al. "Friction factor decomposition for rough-wall flows: theoretical background and application to open-channel flows." Journal of Fluid Mechanics 872 (June 13, 2019): 626–64. http://dx.doi.org/10.1017/jfm.2019.344.
Texte intégralAkutina, Yulia, Frédéric Moulin, Maxime Rouzes, and Olivier Eiff. "Flow structures in a shallow channel with lateral bed-roughness variation." E3S Web of Conferences 40 (2018): 02051. http://dx.doi.org/10.1051/e3sconf/20184002051.
Texte intégralPenna, Nadia, Francesco Coscarella, Antonino D’Ippolito, and Roberto Gaudio. "Bed Roughness Effects on the Turbulence Characteristics of Flows through Emergent Rigid Vegetation." Water 12, no. 9 (2020): 2401. http://dx.doi.org/10.3390/w12092401.
Texte intégralRatul, Das, and Nizar Sinan. "Influence of bed roughness on near-bed turbulent flow characteristics." International Journal of Water Resources and Environmental Engineering 12, no. 3 (2020): 47–56. http://dx.doi.org/10.5897/ijwree2015.0624.
Texte intégralHoobi, Raad, and Ayad Saoud Najem. "Study the Affecting Factors on Free overfall Flow and Bed Roughness in Semi-Circular Channels by Artificial Neural Network." Tikrit Journal of Engineering Sciences 29, no. 4 (2022): 69–78. http://dx.doi.org/10.25130/tjes.29.4.8.
Texte intégralCooper, Michael A., Thomas M. Jordan, Dustin M. Schroeder, Martin J. Siegert, Christopher N. Williams, and Jonathan L. Bamber. "Subglacial roughness of the Greenland Ice Sheet: relationship with contemporary ice velocity and geology." Cryosphere 13, no. 11 (2019): 3093–115. http://dx.doi.org/10.5194/tc-13-3093-2019.
Texte intégralNielsen, Peter, and Paul A. Guard. "VERTICAL SCALES AND SHEAR STRESSES IN WAVE BOUNDARY LAYERS OVER MOVABLE BEDS." Coastal Engineering Proceedings 1, no. 32 (2011): 1. http://dx.doi.org/10.9753/icce.v32.sediment.1.
Texte intégralKee, Choong Pei, Deepak T. J, and Raman Bai. "Determining Coefficient of Discharge and Coefficient of Roughness for Short Grass Bed and Concrete Bed." International Journal of Trend in Scientific Research and Development Special Issue, Special Issue-ICAEIT2017 (2018): 23–33. http://dx.doi.org/10.31142/ijtsrd19119.
Texte intégralNardone, Paride, and Katinka Koll. "Velocity field and drag force measurements of a cube and a hemisphere mounted on an artificial bed surface roughness." E3S Web of Conferences 40 (2018): 05022. http://dx.doi.org/10.1051/e3sconf/20184005022.
Texte intégralZwolenik, Monika, and Bogusław Michalec. "Effect of water surface slope and friction slope on the value of the estimated Manning’s roughness coefficient in gravel-bed streams." Journal of Hydrology and Hydromechanics 71, no. 1 (2023): 80–90. http://dx.doi.org/10.2478/johh-2022-0041.
Texte intégralBerends, Constantijn J., Roderik S. W. van de Wal, Tim van den Akker, and William H. Lipscomb. "Compensating errors in inversions for subglacial bed roughness: same steady state, different dynamic response." Cryosphere 17, no. 4 (2023): 1585–600. http://dx.doi.org/10.5194/tc-17-1585-2023.
Texte intégralAlwan, Iman A., and Riyadh Z. Azzubaidi. "Investigations on Large-Scale Geometric Roughness Elements in Open Channels with Different Heights." Association of Arab Universities Journal of Engineering Sciences 28, no. 1 (2021): 07–14. http://dx.doi.org/10.33261/jaaru.2021.28.1.002.
Texte intégralIrzooki, Raad, and Safa Hasan. "Characteristics of flow over the free overfall of triangular channel." MATEC Web of Conferences 162 (2018): 03006. http://dx.doi.org/10.1051/matecconf/201816203006.
Texte intégralMatoušek, Václav, and Jan Krupička. "On equivalent roughness of mobile bed at high shear stress." Journal of Hydrology and Hydromechanics 57, no. 3 (2009): 191–99. http://dx.doi.org/10.2478/v10098-009-0018-9.
Texte intégralBicudo, J. R., and M. F. Giorgetti. "The Effect of Strip Bed Roughness on the Reaeration Rate Coefficient." Water Science and Technology 23, no. 10-12 (1991): 1929–39. http://dx.doi.org/10.2166/wst.1991.0649.
Texte intégralZhou, Yin-jun, Jin-you Lu, Li Chen, and Jie Ren. "Bed roughness adjustments determined from fractal measurements of river-bed morphology." Journal of Hydrodynamics 30, no. 5 (2018): 882–89. http://dx.doi.org/10.1007/s42241-018-0101-y.
Texte intégralCai, Yiheng, Fuxing Wan, Shinan Lang, Xiangbin Cui, and Zijun Yao. "Multi-Branch Deep Neural Network for Bed Topography of Antarctica Super-Resolution: Reasonable Integration of Multiple Remote Sensing Data." Remote Sensing 15, no. 5 (2023): 1359. http://dx.doi.org/10.3390/rs15051359.
Texte intégralDaneshfaraz, Rasoul, Amir Ghaderi, Aliakbar Akhtari, and Silvia Di Francesco. "On the Effect of Block Roughness in Ogee Spillways with Flip Buckets." Fluids 5, no. 4 (2020): 182. http://dx.doi.org/10.3390/fluids5040182.
Texte intégralZhou, Jie, Beibei Han, and Haifeng Wang. "Surface Roughness Characteristics and Their Influence on Wind Erosion and Sand Movement." Atmosphere 16, no. 4 (2025): 443. https://doi.org/10.3390/atmos16040443.
Texte intégralSmart, Graeme, Jochen Aberle, Maurice Duncan, and Jeremy Walsh. "Measurement and analysis of alluvial bed roughness." Journal of Hydraulic Research 42, no. 3 (2004): 227–37. http://dx.doi.org/10.1080/00221686.2004.9728388.
Texte intégralBertin, Stephane, Jane Groom, and Heide Friedrich. "Isolating roughness scales of gravel-bed patches." Water Resources Research 53, no. 8 (2017): 6841–56. http://dx.doi.org/10.1002/2016wr020205.
Texte intégral