Littérature scientifique sur le sujet « Bio-modelling »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Bio-modelling ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Bio-modelling"
Davia, Miguel, Antonio Jimeno-Morenilla et Faustino Salas. « Footwear bio-modelling : An industrial approach ». Computer-Aided Design 45, no 12 (décembre 2013) : 1575–90. http://dx.doi.org/10.1016/j.cad.2013.08.006.
Texte intégralCiocchetta, Federica, et Maria Luisa Guerriero. « Modelling Biological Compartments in Bio-PEPA ». Electronic Notes in Theoretical Computer Science 227 (janvier 2009) : 77–95. http://dx.doi.org/10.1016/j.entcs.2008.12.105.
Texte intégralWodołażski, Artur, et Adam Smoliński. « Bio-Hydrogen Production in Packed Bed Continuous Plug Flow Reactor—CFD-Multiphase Modelling ». Processes 10, no 10 (20 septembre 2022) : 1907. http://dx.doi.org/10.3390/pr10101907.
Texte intégralUrama, K. C., C. F. Dilks, S. M. Dunn et R. C. Ferrier. « Socio-economic and bio-physical modelling of diffuse pollution : closing the gaps ». River Systems 17, no 1-2 (28 juillet 2006) : 175–99. http://dx.doi.org/10.1127/lr/17/2006/175.
Texte intégralOgundele, O. S., B. K. Alese et O. O. Mathew. « A Bio-Inspired Concept for Information Security Modelling ». International Journal of Green Computing 1, no 1 (janvier 2010) : 53–67. http://dx.doi.org/10.4018/jgc.2010010106.
Texte intégralNasir, Arooj, Dumitru Baleanu, Ali Raza, Pervez Anwar, Nauman Ahmed, Muhammad Rafiq et Tahir Nawaz Cheema. « Bio-Inspired Modelling of Disease Through Delayed Strategies ». Computers, Materials & ; Continua 73, no 3 (2022) : 5717–34. http://dx.doi.org/10.32604/cmc.2022.031879.
Texte intégralKabbej, Marouane, Valérie Guillard, Hélène Angellier-Coussy, Caroline Wolf, Nathalie Gontard et Sébastien Gaucel. « 3D Modelling of Mass Transfer into Bio-Composite ». Polymers 13, no 14 (9 juillet 2021) : 2257. http://dx.doi.org/10.3390/polym13142257.
Texte intégralLawrance, Ani, Mani Veera Santhoshi Gollapalli, S. Savithri, Ajit Haridas et A. Arunagiri. « Modelling and simulation of food waste bio-drying ». Chemosphere 294 (mai 2022) : 133711. http://dx.doi.org/10.1016/j.chemosphere.2022.133711.
Texte intégralKumar, Y. Ravi. « Bio-Modelling Using Rapid Prototyping by Fused Deposition ». Advanced Materials Research 488-489 (mars 2012) : 1021–25. http://dx.doi.org/10.4028/www.scientific.net/amr.488-489.1021.
Texte intégralDemongeot, Jacques, Florence Thuderoz, Thierry Pascal Baum, François Berger et Olivier Cohen. « Bio-array images processing and genetic networks modelling ». Comptes Rendus Biologies 326, no 5 (mai 2003) : 487–500. http://dx.doi.org/10.1016/s1631-0691(03)00114-8.
Texte intégralThèses sur le sujet "Bio-modelling"
Cousin, Thibault. « Synthesis and molecular modelling of bio-based polyamides ». Phd thesis, INSA de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00952848.
Texte intégralMoscardo, Marco <1989>. « Modelling trophic network with PEPA and Bio-PEPA ». Master's Degree Thesis, Università Ca' Foscari Venezia, 2015. http://hdl.handle.net/10579/5973.
Texte intégralDennison, Catherine Lindsay. « Modelling and monitoring of a Herhof bio-degradation system ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0007/MQ33218.pdf.
Texte intégralBermudez, Contreras Edgar. « Modelling active bio-inspired object recognition in autonomous mobile agents ». Thesis, University of Sussex, 2010. http://sro.sussex.ac.uk/id/eprint/2364/.
Texte intégralGrimaud, Christel. « Logical modelling of reasoning and learning : a bio-inspired approach ». Thesis, Lille 3, 2016. http://www.theses.fr/2016LIL30026/document.
Texte intégralIn this dissertation, we take inspiration in cognitive sciences to address the issue of the logical modelling of reasoning and learning. Our main thrust is that to address these issues one should take inspiration in the way natural agents (i.e., humans and animals) actually proceed when they draw inferences and learn. Considering that reasoning incorporates a wide range of cognitive abilities, and that it would thus be unreasonable to hope to model the whole of human’s reasoning all at once, we focus here on a very basic kind of inferences that, we argue, can be considered as the primary core of reasoning in all brained animals. We identify a plausible underlying process for these inferences, first at the mental level of description and then at the neural level, and we develop a family of logical models that allow to simulate it. Then we tackle the issue of providing sets of rules to characterise the inference relations induced by these models. These rules are a by-product of the posited process, and should thus be seen as rules that, according to the model, result from the very functioning of brains. Finally we examine the learning processes attached to the considered inferences, and we show how to they can be modelled within our framework. To conclude we briefly discuss possible further developments of the framework, and in particular we give indications about how the modelling of some other cognitive abilities might be envisioned
Shirinskaya, Anna. « Physical modelling of bio sensors based on Organic Electrochemical Transistors ». Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX055/document.
Texte intégralOrganic Electrochemical Transistors are widely used as transducers for sensors in bioelectronics devices. Although these devices have been extensively studied in the last years, there is a lack of fundamental understanding of their working mechanism, especially concerning the de-doping mechanism.This thesis is dedicated to Organic Electrochemical Transistors modelling. First of all, a numerical steady state model was established. This model allows implementing the Poisson-Boltzmann, Nernst-Planck and Nernst equations to describe the de-doping process in the conductive PEDOT:PSS layer, and ions and holes distribution in the device. Two numerical models were proposed. In the first, Local Neutrality model, the assumption of electrolyte ions trapping in PEDOT:PSS layer was taken into consideration, thus the local neutrality was preserved. In the second model the ions were allowed to move freely under applied electric field inside conductive polymer layer, thus only global electroneutrality was kept. It was experimentally proven that the Global Neutrality numerical model is valid to explain the global physics of the device, the origin and the result of the de-doping process. The transition from totally numerical model to analytical model was performed by fitting the parametric analytical Boltzmann logistic function to numerically calculated conductivity profiles. As a result, an analytical equation for the Drain current dependence on applied voltage was derived. By fitting this equation to experimentally measured Drain current- applied voltage profiles, we could obtain the maximum conductivity of a fully doped PEDOT:PSS layer. The maximum conductivity is shown to be dependent not only on the material, but also on device channel size. Using the maximum conductivity value together with the Conventional Semiconductor model it is possible to extract the other parameters for the full description of the OECT: intrinsic charge carrier density, initial holes density, initial PSS- concentration and conductive polymer layer volumetric capacitance. Having a tool to make easy parameters extraction and characterization of any OECT, permits not only to increase the level of device description, but most importantly to highlight the correlation between external and internal device parameters.Finally it is shown how to make the whole description of the real OECT device, all the models were validated by fitting the modeled and experimentally measured data profiles.As a result, not only the purely theoretical model was presented in this thesis to describe the device physics, but also the prominent step was made on simple real device characterization
Smith, David Everett. « Modelling and controlling a bio-inspired flapping-wing micro aerial vehicle ». Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43577.
Texte intégralWall, Julie. « Post-cochlear auditory modelling for sound localisation using bio-inspired techniques ». Thesis, Ulster University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.525140.
Texte intégralRamraj, Anitha. « Computational modelling of intermolecular interactions in bio, organic and nano molecules ». Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/computational-modelling-of-intermolecular-interactions-in-bio-organic-and-nano-molecules(7a41f3cd-1847-4ccf-8853-5fd8be2a2c15).html.
Texte intégralBuoso, Stefano. « High-fidelity modelling and feedback control of bio-inspired membrane wings ». Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/32832.
Texte intégralLivres sur le sujet "Bio-modelling"
Basualdo, Marta S., Rachid Outbib et Diego Feroldi. PEM fuel cells with bio-fuel processor systems : A multidisciplinar study of modelling, simulation, fault diagnosis and advanced control. London : Springer, 2010.
Trouver le texte intégralJ, Naidoo Kevin, et Royal Society of Chemistry (Great Britain), dir. Modelling molecular structure and reactivity in biological systems. Cambridge : Royal Society of Chemistry, 2006.
Trouver le texte intégralClimate under cover : Digital dynamic simulation in plant bio-engineering. Dordrecht : Kluwer Academic Publishers, 1993.
Trouver le texte intégralHuman Modelling for Bio-Inspired Robotics. Elsevier, 2017. http://dx.doi.org/10.1016/c2014-0-02964-4.
Texte intégralMishra, Deepak R., Igor Ogashawara et Anatoly Abraham Gitelson. Bio-Optical Modelling and Remote Sensing of Inland Waters. Elsevier Science & Technology Books, 2017.
Trouver le texte intégralUeda, Jun, et Yuichi Kurita. Human Modelling for Bio-Inspired Robotics : Mechanical Engineering in Assistive Technologies. Elsevier Science & Technology Books, 2016.
Trouver le texte intégralBoon, Mieke. Theoretical and experimental methods in the modelling of bio-oxidation kinetics of sulphide Minerals. Mieke Boon, 1996.
Trouver le texte intégralBasualdo, Marta S., Rachid Outbib et Diego Feroldi. PEM Fuel Cells with Bio-Ethanol Processor Systems : A Multidisciplinary Study of Modelling, Simulation, Fault Diagnosis and Advanced Control. Springer, 2013.
Trouver le texte intégralASME. Print Proceedings of the ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems Volume 2 : Modelling, Simulation and Control ; Bio-Inspired Smart Materials and Systems ; Energy Harvesting. American Society of Mechanical Engineers, The, 2016.
Trouver le texte intégralTakakura, Tadashi. Climate Under Cover : Digital Dynamic Simulation in Plant Bio-Engineering. Springer, 1993.
Trouver le texte intégralChapitres de livres sur le sujet "Bio-modelling"
Chhatre, Sunil. « Modelling Approaches for Bio-Manufacturing Operations ». Dans Advances in Biochemical Engineering/Biotechnology, 85–107. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/10_2012_170.
Texte intégralTang, Dunbing, Lei Wang, Wenbin Gu, Weidong Yuan et Dingshan Tang. « Modelling of Bio-inspired Manufacturing System ». Dans Advances in Intelligent and Soft Computing, 1165–74. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10430-5_89.
Texte intégralGheorghe, Marian, Ioanna Stamatopoulou, Mike Holcombe et Petros Kefalas. « Modelling Dynamically Organised Colonies of Bio-entities ». Dans Lecture Notes in Computer Science, 207–24. Berlin, Heidelberg : Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11527800_17.
Texte intégralMassink, Mieke, Diego Latella, Andrea Bracciali et Jane Hillston. « Modelling Non-linear Crowd Dynamics in Bio-PEPA ». Dans Fundamental Approaches to Software Engineering, 96–110. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19811-3_8.
Texte intégralFass, Didier, et Franck Gechter. « Towards a Theory for Bio $$-$$ - Cyber Physical Systems Modelling ». Dans Digital Human Modeling. Applications in Health, Safety, Ergonomics and Risk Management : Human Modeling, 245–55. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21073-5_25.
Texte intégralWarby, Michael K., et John R. Whiteman. « Modelling of Thermoforming Processes for Bio-Degradable Thermoplastic Materials ». Dans UK Success Stories in Industrial Mathematics, 205–10. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25454-8_26.
Texte intégralPatra, Asesh, Meet Patel, Priyabrata Chattopadhyay, Anubhab Majumder et Sanjoy Kumar Ghoshal. « A Bio-inspired Climbing Robot : Dynamic Modelling and Prototype Development ». Dans Lecture Notes in Mechanical Engineering, 191–209. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1071-7_17.
Texte intégralSivagnanamani, G. S., P. Ramesh, Mohit Hemanth Kumar et V. Arul Mozhi Selvan. « Fracture Analysis of Fused Deposition Modelling of Bio-composite Filaments ». Dans Fracture Failure Analysis of Fiber Reinforced Polymer Matrix Composites, 71–84. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0642-7_4.
Texte intégralMavelli, Fabio, Emiliano Altamura et Pasquale Stano. « Giant Vesicles as Compartmentalized Bio-reactors : A 3D Modelling Approach ». Dans Communications in Computer and Information Science, 184–96. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32695-5_17.
Texte intégralLi, Cai, Robert Lowe et Tom Ziemke. « Modelling Walking Behaviors Based on CPGs : A Simplified Bio-inspired Architecture ». Dans From Animals to Animats 12, 156–66. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33093-3_16.
Texte intégralActes de conférences sur le sujet "Bio-modelling"
Massey, Roslyn, Rana Amache, Siziwe Bebe et Ravi Prakash. « A Comprehensive Modelling Approach for Bio-EDLC systems ». Dans 2020 IEEE SENSORS. IEEE, 2020. http://dx.doi.org/10.1109/sensors47125.2020.9278742.
Texte intégral« Modelling volatility spillovers for bio-ethanol, sugarcane and corn ». Dans 21st International Congress on Modelling and Simulation (MODSIM2015). Modelling and Simulation Society of Australia and New Zealand, 2015. http://dx.doi.org/10.36334/modsim.2015.e3.chang.
Texte intégralTietz, U., C. C. Berndt et K. P. Schmitz. « Microstructural Modelling and Performance Simulation of Engineered Bio-Composites ». Dans ITSC2010, sous la direction de B. R. Marple, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima et G. Montavon. DVS Media GmbH, 2010. http://dx.doi.org/10.31399/asm.cp.itsc2010p0516.
Texte intégralVasiliadou, Ioanna A., Dimitris V. Vayenas, Constantinos V. Chrysikopoulos, Theodore E. Simos, George Psihoyios, Ch Tsitouras et Zacharias Anastassi. « Mathematical Modelling of Bacterial Populations in Bio-remediation Processes ». Dans NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011 : International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637898.
Texte intégralKeskin, Ali Umit, et Feride Sermin Utku. « Rheological Modelling of Bio-fluids Using Moving Coil Transducers ». Dans The 2nd World Congress on Electrical Engineering and Computer Systems and Science. Avestia Publishing, 2016. http://dx.doi.org/10.11159/icbes16.132.
Texte intégralLisnichenko, Marina, et Stanislav Protasov. « BIO MATERIAL MODELING QUANTUM CIRCUIT COMPRESSION ». Dans Mathematical modeling in materials science of electronic component. LCC MAKS Press, 2022. http://dx.doi.org/10.29003/m3058.mmmsec-2022/15-17.
Texte intégralMao, Xiaomin, et Haizhu Hu. « Modelling Bio-Enhanced TCE DNAPL Elimination in a Soil Column ». Dans 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5516966.
Texte intégralDonzella, V., S. Talebi Fard et L. Chrostowski. « Modelling of asymmetric slot racetracks for improved bio-sensors performance ». Dans 2013 13th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2013. http://dx.doi.org/10.1109/nusod.2013.6633106.
Texte intégralMorales, Manuel E., et Stephane Lhuillery. « Modelling Circularity in Bio-based Economy Through Territorial System Dynamics ». Dans 2021 IEEE European Technology and Engineering Management Summit (E-TEMS). IEEE, 2021. http://dx.doi.org/10.1109/e-tems51171.2021.9524890.
Texte intégralYe et Choy. « Modelling of the Pulmonary Circulation via Electrical Bio-Impedance Technique ». Dans Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.590117.
Texte intégralRapports d'organisations sur le sujet "Bio-modelling"
Rural NEET Youth Policy Brief - Youth and Mobility in EU Rural Areas. COST Action 18213 : Rural NEET Youth Network : Modeling the risks underlying rural NEETs social exclusion, mai 2022. http://dx.doi.org/10.15847/cisrnyn.neetpbym.2022.05.
Texte intégralAfrican Open Science Platform Part 1 : Landscape Study. Academy of Science of South Africa (ASSAf), 2019. http://dx.doi.org/10.17159/assaf.2019/0047.
Texte intégral