Littérature scientifique sur le sujet « Biomagnetic »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Biomagnetic ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Biomagnetic"
Embi, Abraham A. « THE HUMAN HAIR FOLLICLE PULSATING BIOMAGNETIC FIELD REACH AS POSSIBLE ADDITIONAL FACTOR IN MIGRAINE HEADACHES A BIOPHYSICS BASED HYPOTHESIS ». International Journal of Research -GRANTHAALAYAH 8, no 5 (8 juin 2020) : 221–29. http://dx.doi.org/10.29121/granthaalayah.v8.i5.2020.179.
Texte intégralSwithenby, S. J. « Biomagnetism and the biomagnetic inverse problem ». Physics in Medicine and Biology 32, no 1 (1 janvier 1987) : 3–4. http://dx.doi.org/10.1088/0031-9155/32/1/002.
Texte intégralA., Abraham. « BIOMAGNETISM AS FACTOR IN RED BLOOD CELLS DEFORMATION ». International Journal of Research -GRANTHAALAYAH 6, no 12 (31 décembre 2018) : 46–57. http://dx.doi.org/10.29121/granthaalayah.v6.i12.2018.1245.
Texte intégralEmbi Bs, Abraham A. « BIOMAGNETISM AS FACTOR IN RED BLOOD CELLS DEFORMATION ». International Journal of Research -GRANTHAALAYAH 6, no 12 (31 décembre 2018) : 46–57. http://dx.doi.org/10.29121/granthaalayah.v7.i1.2019.1076.
Texte intégralEmbi, Abraham A. « DEMONSTRATION OF THE HUMAN HAIR FOLLICLE MAGNETORECEPTION OF BIOMAGNETISM RADIATED BY THE CONCAVE PART OF THE HUMAN HAND ». International Journal of Research -GRANTHAALAYAH 8, no 5 (12 juin 2020) : 348–54. http://dx.doi.org/10.29121/granthaalayah.v8.i5.2020.291.
Texte intégralRechnitz, Garry A., et Christopher W. Babb. « Biomagnetic neurosensors ». Current Opinion in Biotechnology 7, no 1 (février 1996) : 55–59. http://dx.doi.org/10.1016/s0958-1669(96)80095-4.
Texte intégralLeech, Donal, et Garry A. Rechnitz. « Biomagnetic neurosensors ». Analytical Chemistry 65, no 22 (15 novembre 1993) : 3262–66. http://dx.doi.org/10.1021/ac00070a016.
Texte intégralYamada, Shokei, et Christopher C. Gallen. « Biomagnetic Technologies ». Neurosurgery 33, no 1 (juillet 1993) : 166–68. http://dx.doi.org/10.1227/00006123-199307000-00031.
Texte intégralYamada, Shokei, et Christopher C. Gallen. « Biomagnetic Technologies ». Neurosurgery 33, no 1 (1 juillet 1993) : 166–68. http://dx.doi.org/10.1097/00006123-199307000-00031.
Texte intégral川勝, 真喜, 宏一郎 小林, 義則 内川 et M. Kotani. « Measurement System for Biomagnetic Fields(Special Issue : Research of Biomagnetism) ». JAPANES JOURNAL OF MEDICAL INSTRUMENTATION 69, no 5 (1 mai 1999) : 240–45. http://dx.doi.org/10.4286/ikakikaigaku.69.5_240.
Texte intégralThèses sur le sujet "Biomagnetic"
Mishin, A. « Biomagnetic signal analysis ». Thesis, Swansea University, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.638202.
Texte intégralChopin, Chloé. « Biomagnetic sensors based on spin electronics ». Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP022.
Texte intégralMagnetic sensors based on the Giant Magnetoresistance (GMR) effect have a good sensitivity with a resistance which is proportional to the external magnetic field. In addition, they are sensitive at small scale (a few microns), at room temperature and along a unique axis of sensitivity. Thus, they are good candidates to measure the magnetic fields generated by the electrical activity of neurons at local scale like action potentials which have an amplitude expected between 10 and 100 pT at 1 kHz. As GMR sensors have a limit of detection (LOD) in the nT range at low frequency, several studies were conducted, including on the size and composition of the GMR sensor, to improve it. A probe that implements GMR sensors to conduct in-vivo experiments, called magnetrode, was also optimized in two ways. First, the tip thickness is reduced to decrease its invasiveness. Second, several GMR sensors are embedded on the magnetrode and in particular for 2D measurements. The optimized magnetrodes were then used for in-vivo recordings on rodents. They keep a limit of detection of 1 nT around 1 kHz for an increased stability which enables the reduction of the noise level of in-vivo experiments thanks to an averaging over a large number of events. In addition, a magnetrode for 2D measurements was developed. Finally, GMR sensors at the state of the art are implemented on a magnetrode with a tip thickness decreased down to 25 µm. Magnetrodes are able to detect in-vivo a magnetic signal with an amplitude around 250 pT
Thomas, Ian. « High resolution measurements of quasi-static biomagnetic fields ». Thesis, Open University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278302.
Texte intégralCameron, Seth Andrew 1967. « Novel Fourier methods for biomagnetic boundary value problems ». Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/278738.
Texte intégralSingh, Krishna Devi. « The development of biomagnetic systems : planar gradiometers and software tools ». n.p, 1991. http://oro.open.ac.uk/19786/.
Texte intégralHrkac, Viktor [Verfasser]. « Nanocharacterization of materials for biomagnetic sensing using TEM / Viktor Hrkac ». Kiel : Universitätsbibliothek Kiel, 2014. http://d-nb.info/1047578808/34.
Texte intégralSingh, K. D. « The development of biomagnetic systems : planar gradiometers and software tools ». Thesis, Open University, 1991. http://oro.open.ac.uk/19786/.
Texte intégralMoura, Matheus Sacilotto de. « Desenvolvimento em um biogradiômetro multicanal supercondutor com SQUIDs DC para registro de medidas de magnetocardiografia fetal ». Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/59/59135/tde-04042012-141710/.
Texte intégralIn this project we worked in the developing of a new instrumentation for mea- sure magnetic fields of biological source based in SQUID sensors and auxiliares systems, with aim of use this suite in measures of fetal magnetocardiography (fMCG), that is the recording of the magnetic fields generated by the fetal heart's activity, reflecting the electrophysiological processes that happen in it. This biomagnetic technique besides to be accurate enough to obtain measures of the magnetic field originated from the fetal heart, that is of the order of ten picoteslas at a few centimeters distance from the maternal abdomen, also realizes measures in outside sections at the mother's body turning it so promise. However, not obtained the desired sensitivity of the biogradiometer system, achieving just a sensitivity capable of detecting the magnetocardiography (MCG) signal of a developed cardiac system, which is about 100 pT. This work has met, yet, all information obtained by the biomagnetism group over the past years referent to the multichannel biogradiometer system.
OTERO, JOHNNY ALEXANDER BASTIDAS. « GENETIC ALGORITHMS APPLIED TO THE SOLUTION OF THE BIOMAGNETIC INVERSE PROBLEM ». PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=28372@1.
Texte intégralCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Sinais bioelétricos fornecem informações importantes sobre a função fisiológica de muitos organismos vivos. Em magnetismo, denomina-se problema direto aquele em que se determina o campo magnético a partir do conhecimento da fonte de corrente que o gerou. Por outro lado, existem situações em que se deseja determinar a fonte de corrente a partir de valores de campo magnético medidos. Esse tipo de problema é usual em Biomagnetismo e é denominado problema inverso. Por exemplo, com base em medições do campo magnético cardíaco é possível inferir sobre a atividade elétrica, no tecido cardíaco, que foi responsável por sua geração. Este trabalho propõe, apresenta e discute uma nova técnica destinada a resolver o problema biomagnético inverso, por meio de algoritmos genéticos. Objetiva-se estimar a posição, a orientação e a magnitude dos dipolos de corrente equivalentes, responsáveis pela geração de mapas de campos biomagnéticos obtidos experimentalmente por meio de medições realizadas em corações isolados de coelho utilizando um sistema SQUID de 16 canais. O algoritmo busca identificar a distribuição de dipolos que melhor se ajusta aos dados experimentais, objetivando minimizar o erro entre o mapa de campo magnético medido e o obtido por meio das soluções estimadas. O conhecimento dos parâmetros dos dipolos de corrente, em diferentes instantes de tempo, permite a correta interpretação e análise da informação médica obtida a partir dos campos biomagnéticos medidos experimentalmente, auxiliando na definição de diagnósticos e orientação de abordagens terapêuticas.
Bioelectric signals provide important information about the physiological function of many living organisms. In magnetism, the so-called direct problem deals with the determination of the magnetic field associated to well known current sources. On the other hand, there are situations where it is necessary to determine the current source responsible for the generation of a measured magnetic field. This type of problem is common in Biomagnetism and is called inverse problem. For example, based on cardiac magnetic field measurements it is possible to infer the electrical activity in the heart tissue, responsible for its generation. This work proposes, presents and discusses a new technique designed to solve the biomagnetic inverse problem by genetic algorithms. It is intended to estimate the position, orientation and magnitude of the equivalent current dipoles, responsible for the generation of biomagnetic field maps measured with a 16 channel SQUID system. The algorithm attempts to identify the distribution of dipoles that best fits the measured experimental data, aiming at minimizing the error between the experimental magnetic field maps and those obtained by the estimated solutions. The experimental data analyzed in this study were acquired by measurements in isolated rabbit hearts. The knowledge of parameters of current dipoles at different instants of time allows the correct interpretation and analysis of medical information obtained from the experimentally measured biomagnetic fields, providing diagnosis and guiding therapeutic procedures.
Gyawali, Shashi Raj. « Design and construction of helmholtz coil for biomagnetic studies on soybean ». Diss., Columbia, Mo. : University of Missouri-Columbia, 2008. http://hdl.handle.net/10355/5686.
Texte intégralThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 12, 2009) Includes bibliographical references.
Livres sur le sujet "Biomagnetic"
Ueno, Shoogo, dir. Biomagnetic Stimulation. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9507-3.
Texte intégralShoogo, Ueno, et International Symposium on Biomagnetic Stimulation (1991 : Fukuoka-shi, Japan), dir. Biomagnetic stimulation. New York : Plenum Press, 1994.
Trouver le texte intégral(Oslo), Dynal, dir. Biomagnetic techniques in molecular biology : Technical handbook. 2e éd. Oslo, Norway : Dynal, 1995.
Trouver le texte intégralRobert, Plonsey, dir. Bioelectromagnetism : Principles and applications of bioelectric and biomagnetic fields. New York : Oxford University Press, 1995.
Trouver le texte intégralTitomir, L. I. Bioelectric and biomagnetic fields : Theory and applications in electrocardiology. Boca Raton : CRC Press, 1994.
Trouver le texte intégralPhilpott, William H. Biomagnetic handbook : Today's introduction to the energy medicine of tomorrow. Choctaw, OK : Enviro-Tech Products, 1990.
Trouver le texte intégral1929-, Bachmann Kurt, Stefan H, Vieth Jürgen et Biomagnetic Center Erlangen, dir. Biomagnetism : Principles, models and clinical research : proceedings of the opening symposium of the Biomagnetic Center Erlangen (5. - 6. October 1990). Erlangen : Palm & Enke, 1992.
Trouver le texte intégralKneppo, Peter. Biomagnitnye izmerenii͡a︡. Moskva : Ėnergoatomizdat, 1989.
Trouver le texte intégralChapitres de livres sur le sujet "Biomagnetic"
Krause, Hans-Joachim, et Hui Dong. « Biomagnetic Sensing ». Dans Springer Series on Chemical Sensors and Biosensors, 449–74. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/5346_2017_13.
Texte intégralKoch, H. « Biomagnetic Sensors ». Dans Superconducting Quantum Electronics, 128–50. Berlin, Heidelberg : Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_5.
Texte intégralFreeston, Ian L. « The History of Magnetic Nerve Stimulation and its Development at the University of Sheffield ». Dans Biomagnetic Stimulation, 1–7. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9507-3_1.
Texte intégralBarker, Anthony T. « Magnetic Nerve Stimulation : Principles, Advantages and Disadvantages ». Dans Biomagnetic Stimulation, 9–28. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9507-3_2.
Texte intégralUeno, Shoogo. « Focal and Vectorial Magnetic Stimulation of the Human Brain ». Dans Biomagnetic Stimulation, 29–47. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9507-3_3.
Texte intégralRothwell, J. C. « Motor Cortical Stimulation in Man ». Dans Biomagnetic Stimulation, 49–57. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9507-3_4.
Texte intégralKraus, Karl H., Walter J. Levy, Lavern D. Gugino, Rhamsis Ghaly, Vahe Amassian et John Cadwell. « Clinical Application of Transcranial Magnetic Stimulation for Intraoperative Monitoring of the Spinal Cord and Mapping of the Motor Cortex ». Dans Biomagnetic Stimulation, 59–73. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9507-3_5.
Texte intégralNyenhuis, John, Joe Bourland, Gabriel Mouchawar, Leslie Geddes, Kirk Foster, Jim Jones, William Schoenlein et al. « Magnetic Stimulation of the Heart and Safety Issues in Magnetic Resonance Imaging ». Dans Biomagnetic Stimulation, 75–89. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9507-3_6.
Texte intégralMarkov, Marko S. « Biological Effects of Extremely Low Frequency Magnetic Fields ». Dans Biomagnetic Stimulation, 91–103. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9507-3_7.
Texte intégralÖberg, P. Åke. « Magnetic Stimulation of Nerve Tissue ». Dans Biomagnetic Stimulation, 105–17. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9507-3_8.
Texte intégralActes de conférences sur le sujet "Biomagnetic"
Kullmann, W. H. « Biomagnetic imaging ». Dans Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.94596.
Texte intégralAlvarez, Robert E. « Limitations On Biomagnetic Imaging ». Dans Medical Imaging II, sous la direction de Roger H. Schneider et Samuel J. Dwyer III. SPIE, 1988. http://dx.doi.org/10.1117/12.968609.
Texte intégralDallas, William J. « Overview of biomagnetic imaging ». Dans San Diego '90, 8-13 July, sous la direction de Arthur F. Gmitro, Paul S. Idell et Ivan J. LaHaie. SPIE, 1990. http://dx.doi.org/10.1117/12.23648.
Texte intégralRASSI, D., et Y. ZHURAVLEV. « BIOMAGNETIC MEASUREMENTS USING SQUID INSTRUMENTATION ». Dans Proceedings of the First Regional Conference. World Scientific Publishing Company, 2000. http://dx.doi.org/10.1142/9789812793676_0083.
Texte intégralJahns, Robert, Reinhard Knochel, Henry Greve, Eric Woltermann, Enno Lage et Eckard Quandt. « Magnetoelectric sensors for biomagnetic measurements ». Dans 2011 IEEE International Symposium on Medical Measurements and Applications (MeMeA). IEEE, 2011. http://dx.doi.org/10.1109/memea.2011.5966676.
Texte intégralDallas, William J. « Volume currents in biomagnetic imaging ». Dans Medical Imaging '90, Newport Beach, 4-9 Feb 90, sous la direction de Roger H. Schneider. SPIE, 1990. http://dx.doi.org/10.1117/12.18777.
Texte intégralRissanen, Giebler et Malmivuo. « Balanced ABC-Vectorgradiometer For Biomagnetic Research ». Dans Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.595867.
Texte intégralAlvarez, Robert E. « Biomagnetic Imaging Using Arrays Of SQUIDs ». Dans 1989 Medical Imaging, sous la direction de Samuel J. Dwyer III, R. Gilbert Jost et Roger H. Schneider. SPIE, 1989. http://dx.doi.org/10.1117/12.953186.
Texte intégralDallas, W. J., H. A. Schlitt, W. Kullmann et W. E. Smith. « Biomagnetic Imaging : A Point Spread Description ». Dans Medical Imaging II, sous la direction de Roger H. Schneider et Samuel J. Dwyer III. SPIE, 1988. http://dx.doi.org/10.1117/12.968618.
Texte intégralRissanen, Antti, Frank Giesler et Jaakko Malmivuo. « Balanced ABC-vectorgradiometer for biomagnetic research ». Dans 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.5761253.
Texte intégralRapports d'organisations sur le sujet "Biomagnetic"
Reich, D. H., C. S. Chen, C. L. Chien, G. J. Meyer, K. Leong, P. C. Searson et G. Xiao. Multifunctional Magnetic Nanowires for Biomagnetic Interfacing Concepts. Fort Belvoir, VA : Defense Technical Information Center, juillet 2006. http://dx.doi.org/10.21236/ada453239.
Texte intégralHughett, Paul William. Algorithms for biomagnetic source imaging with prior anatomical and physiological information. Office of Scientific and Technical Information (OSTI), décembre 1995. http://dx.doi.org/10.2172/195677.
Texte intégralKouznetsov, Konstantin Alexander. The high temperature superconductor YBa2Cu3O7-δ : symmetry of the order parameter, and gradiometers for biomagnetic applications. Office of Scientific and Technical Information (OSTI), décembre 1999. http://dx.doi.org/10.2172/753117.
Texte intégralKraus, R. H. Jr, E. R. Flynn, M. Espy, Q. X. Jia, X. D. Wu et D. Reagor. Ultra-sensitive sensors for weak electromagnetic fields using high-{Tc} SQUIDS for biomagnetism, NDE, and corrosion currents. Office of Scientific and Technical Information (OSTI), novembre 1998. http://dx.doi.org/10.2172/677153.
Texte intégral