Littérature scientifique sur le sujet « Biomechanical energy »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Biomechanical energy ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Biomechanical energy"
IVANCEVIC, TIJANA T. « JET-RICCI GEOMETRY OF TIME-DEPENDENT HUMAN BIOMECHANICS ». International Journal of Biomathematics 03, no 01 (mars 2010) : 79–91. http://dx.doi.org/10.1142/s179352451000088x.
Texte intégralWan, Linwei, Haomin Zheng et Deyuan Kong. « Methodological innovation in government environmental auditing through biomechanical principles : An approach to environmental impact performance evaluation ». Molecular & ; Cellular Biomechanics 22, no 4 (20 mars 2025) : 1704. https://doi.org/10.62617/mcb1704.
Texte intégralPost, Andrew, T. Blaine Hoshizaki, Michael D. Gilchrist, David Koncan, Lauren Dawson, Wesley Chen, Andrée-Anne Ledoux, Roger Zemek et _. _. « A comparison in a youth population between those with and without a history of concussion using biomechanical reconstruction ». Journal of Neurosurgery : Pediatrics 19, no 4 (avril 2017) : 502–10. http://dx.doi.org/10.3171/2016.10.peds16449.
Texte intégralZhang, Shuya. « Biomechanics-inspired utilization 5G multimedia for intelligent title recommendations in low carbon smart libraries through collaborative filtering algorithms ». Molecular & ; Cellular Biomechanics 22, no 4 (17 mars 2025) : 925. https://doi.org/10.62617/mcb925.
Texte intégralYu, Bo. « Practical research on wetland ecosystem services and traditional plant protection in the biosphere reserves of Yunnan : A biomechanics perspective ». Molecular & ; Cellular Biomechanics 22, no 3 (13 février 2025) : 817. https://doi.org/10.62617/mcb817.
Texte intégralCos, Ignasi, Nicolas Bélanger et Paul Cisek. « The influence of predicted arm biomechanics on decision making ». Journal of Neurophysiology 105, no 6 (juin 2011) : 3022–33. http://dx.doi.org/10.1152/jn.00975.2010.
Texte intégralLiu, Mingyi, Cherice Hill, Robin Queen et Lei Zuo. « A lightweight wearable biomechanical energy harvester ». Smart Materials and Structures 30, no 7 (16 juin 2021) : 075032. http://dx.doi.org/10.1088/1361-665x/ac03c3.
Texte intégralGao, Jinxia, et Tian Zhou. « Biomechanical and cellular factors affecting the speed and accuracy of tennis serve ». Molecular & ; Cellular Biomechanics 22, no 4 (19 mars 2025) : 1275. https://doi.org/10.62617/mcb1275.
Texte intégralLv, Xiaoping. « Innovation in classroom interaction mode of business English teaching driven by biomechanics and data analysis ». Molecular & ; Cellular Biomechanics 22, no 4 (5 mars 2025) : 1626. https://doi.org/10.62617/mcb1626.
Texte intégralZhang, Yunshu, et Yue Wei. « Low-carbon transformation and ecological safeguarding in the Yellow River Basin : Integrating biomechanical and biological insights ». Molecular & ; Cellular Biomechanics 21, no 2 (6 novembre 2024) : 408. http://dx.doi.org/10.62617/mcb.v21i2.408.
Texte intégralThèses sur le sujet "Biomechanical energy"
Denault, Sebastian Ramirez. « Evaluation of smart-fabric approach to biomechanical energy harvesting ». Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92178.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 35-37).
This thesis evaluates the proposed use of piezoelectric energy harvesting methods as a power source for light-up sneakers. Light-up sneakers currently marketed for purposes of pedestrian visibility and personal fashion are powered by primary or secondary batteries; maintenance requirements could potentially be reduced or eliminated by introducing a renewable power source drawn from the wearer's body. A test was made to determine the possible power levels available from piezoelectric fiber elements mounted on the shoe upper; approximately 10nW of power was developed during walking. In addition to performance in terms of power generated, cost, durability, manufacturability, and user impact also need to be considered before applying this technology.
by Sebastian Ramirez Denault.
S.B.
Andersson, Erik. « PHYSIOLOGICAL AND BIOMECHANICAL FACTORS DETERMINING CROSS-COUNTRY SKIING PERFORMANCE ». Doctoral thesis, Mittuniversitetet, Avdelningen för hälsovetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-27898.
Texte intégralVid tidpunkten för disputationen var följande delarbeten opublicerade: delarbete 5 inskickat
At the time of the doctoral defence the following papers were unpublished: paper 5 submitted
Horstman, Christopher Larry. « BIOMECHANICAL AND METABOLIC CHANGES WITHIN RABBIT ARTICULAR CARTILAGE FOLLOWING TREATMENT WITH RADIOFREQUENCY ENERGY ». MSSTATE, 2005. http://sun.library.msstate.edu/ETD-db/theses/available/etd-11112005-081324/.
Texte intégralDixon, Stacey A. « Biomechanical analysis of coronary arteries using a complementary energy model and designed experiments ». Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/17599.
Texte intégralSouza, Campos Flavio Ballerini. « Performance assessment of prosthetic heart valves using orifice area formulae and the energy index method ». FIU Digital Commons, 1993. http://digitalcommons.fiu.edu/etd/2432.
Texte intégralGonjo, Tomohiro. « A comparison of biomechanical and physiological characteristics between front crawl and back crawl ». Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/25462.
Texte intégralEng, Carolyn Margaret. « An Anatomical and Biomechanical Study of the Human Iliotibial Band's Role in Elastic Energy Storage ». Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11621.
Texte intégralHuman Evolutionary Biology
Hall, Michael G. « Biomechanical and energy analysis of the ischial containment and quadrilateral sockets for the trans femoral amputee ». Thesis, University of Strathclyde, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248527.
Texte intégralMarconi, Francesco. « Analysis of biomechanical in vitro tests on the human ribs ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18581/.
Texte intégralFernandes, Fábio António Oliveira. « Biomechanical analysis of helmeted head impacts : novel materials and geometries ». Doctoral thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/21227.
Texte intégralA cortiça é um material celular natural capaz de suster quantidades consideráveis de energia. Estas características tornam este material ideal para determinadas aplicações como a proteção de impactos. Considerando equipamentos de segurança passiva pessoal, os materiais sintéticos são hoje em dia os mais utilizados, em particular o poliestireno expandido. Este também é capaz de absorver razoáveis quantidades de energia via deformação permanentemente. Por outro lado, a cortiça além de ser um material natural, é capaz de recuperar grande parte da sua forma após deformada, uma característica desejada em aplicações com multi-impacto. Neste trabalho é efetuada uma avaliação da aplicabilidade da cortiça em equipamentos de segurança pessoal, especificamente capacetes. Vários tipos de cortiça aglomerada foram caracterizados experimentalmente. Impactos foram simulados numericamente para avaliar a validade dos modelos constitutivos e as propriedades utilizadas para simular o comportamento da cortiça. Capacetes foram selecionados como caso de estudo, dado as energias de impacto e repetibilidade de impactos a que estes podem ser sujeitos. Para avaliar os capacetes de um ponto de vista biomecânico, um modelo de cabeça humana em elementos finitos foi desenvolvido. Este foi validado de acordo com testes em cadáveres existentes na literatura. Dois modelos de capacete foram modelados. Um modelo de um capacete rodoviário feito de materiais sintéticos, o qual se encontra disponível no mercado e aprovado pelas principais normas de segurança de capacetes, que serve de referência. Este foi validado de acordo com os impactos da norma. Após validado, este foi avaliado com o modelo de cabeça humana em elementos finitos e uma análise ao risco de existência de lesões foi efetuado. Com este mesmo capacete, foi concluído que para incorporar cortiça aglomerada, a espessura teria de ser reduzida. Então um novo modelo de capacete foi desenvolvido, sendo este uma espécie de modelo genérico com espessuras constantes. Um estudo paramétrico foi realizado, variando a espessura do capacete e submetendo o mesmo a duplos impactos. Os resultados destes impactos e da análise com o modelo de cabeça indicaram uma espessura ótima de 40 mm de cortiça aglomerada, com a qual o capacete tem uma melhor resposta a vários impactos do que se feito de poliestireno expandido.
Cork is a natural cellular material capable of withstanding considerable amounts of energy. These features make it an ideal material for some applications, such as impact protection. Regarding personal safety gear, synthetic materials, particularly expanded polystyrene, are typically used. These are also able to absorb reasonable amounts of energy by deforming permanently. On the other hand, in addition to cork being a natural material, it recovers almost entirely after deformation, which is a desired characteristic in multi-impact applications. In this work, the applicability of agglomerated cork in personal safety gear, specifically helmets, is analysed. Different types of agglomerated cork were experimentally characterized. These experiments were simulated in order to assess the validity of the constitutive models used to replicate cork's mechanical behaviour. In order to assess the helmets from a biomechanical point of view, a finite element human head model was developed. This head model was validated by simulating the experiments performed on cadavers available in the literature. Two helmet models were developed. One of a motorcycle helmet made of synthetic materials, which is available on the market and certified by the main motorcycle helmets safety standards, being used as reference. This helmet model was validated against the impacts performed by the European standard. After validated, this helmet model was analysed with the human head model, by assessing its head injury risk. With this helmet, it was concluded that a thinner helmet made of agglomerated cork might perform better. Thus, a new helmet model with a generic geometry and a constant thickness was developed. Several versions of it were created by varying the thickness and subjecting them to double impacts. The results from these impacts and the analyses carried out with the finite element head model indicated an optimal thickness of 40 mm, with which the agglomerated cork helmet performed better than the one made of expanded polystyrene.
Livres sur le sujet "Biomechanical energy"
Whitehouse, D. A. An investigation into the energy expenditure and biomechanics of two sailing postures. Cardiff : S.G.I.H.E., 1985.
Trouver le texte intégralJohn, Zumerchik, dir. Encyclopedia of sports science. New York : Macmillan Library Reference USA, 1997.
Trouver le texte intégralWeiselfish-Giammatteo, Sharon. Integrative manual therapy for biomechanics : Application of muscle energy and 'beyond' technique : treatment of the spine, ribs, and extremities. Berkeley, Calif : North Atlantic Books, 2003.
Trouver le texte intégralBiomechanical alterations and energy expenditure during walking and running with hand weights. 1988.
Trouver le texte intégralBiomechanical alterations and energy expenditure during walking and running with hand weights. 1987.
Trouver le texte intégralEng, Carolyn Margaret. An Anatomical and Biomechanical Study of the Human Iliotibial Band's Role in Elastic Energy Storage. 2014.
Trouver le texte intégralPrice, Kathleen Marie. A biomechanical and physiological analysis of efficiency during different running paces. 1992.
Trouver le texte intégralA biomechanical and physiological analysis of efficiency during different running paces. 1992.
Trouver le texte intégralPrice, Kathleen Marie. A biomechanical and physiological analysis of efficiency during different running paces. 1992.
Trouver le texte intégralBiewener, Andrew A., et Shelia N. Patek, dir. Muscles and Skeletons. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198743156.003.0002.
Texte intégralChapitres de livres sur le sujet "Biomechanical energy"
Loret, Benjamin, et Fernando M. F. Simões. « Transfers of mass, momentum, and energy ». Dans Biomechanical Aspects of Soft Tissues, 313–43. Boca Raton : Taylor & Francis, 2017. : CRC Press, 2017. http://dx.doi.org/10.1201/9781315110783-11.
Texte intégralMeena, Ankit, T. Jagadeesha, Manoj Nikam, Seung-Bok Choi et Vikram G. Kamble. « Design of Energy Harvesting Mechanism for Walking Applications ». Dans Advanced Materials for Biomechanical Applications, 273–301. Boca Raton : CRC Press, 2022. http://dx.doi.org/10.1201/9781003286806-15.
Texte intégralRibhu, Nazmus Sakib, M. K. A. Ahamed Khan, Manickam Ramasamy, Chun Kit Ang, Lim Wei Hong, Duc Chung Tran, Sridevi et Deisy. « Investigation of Gait and Biomechanical Motion for Developing Energy Harvesting System ». Dans Lecture Notes in Networks and Systems, 151–67. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4355-9_13.
Texte intégralKriechbaumer, A., M. P. Trejo Ramírez, U. Mittag, M. Itskov, J. M. López Ramírez et J. Rittweger. « Design, Development and Validation of an Artificial Muscle Biomechanical Rig (AMBR) for Finite Element Model Validation ». Dans Emerging Challenges for Experimental Mechanics in Energy and Environmental Applications, Proceedings of the 5th International Symposium on Experimental Mechanics and 9th Symposium on Optics in Industry (ISEM-SOI), 2015, 319–27. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28513-9_44.
Texte intégralLucas, George L., Francis W. Cooke et Elizabeth A. Friis. « Work and Energy Concepts ». Dans A Primer of Biomechanics, 89–97. New York, NY : Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4419-8487-6_7.
Texte intégralTanaka, Masao, Shigeo Wada et Masanori Nakamura. « Spring Network Modeling Based on the Minimum Energy Concept ». Dans Computational Biomechanics, 141–79. Tokyo : Springer Japan, 2012. http://dx.doi.org/10.1007/978-4-431-54073-1_4.
Texte intégralSchreiner, K. E. « Dissipation of Mechanical Energy in Muscles ». Dans Biomechanics : Current Interdisciplinary Research, 635–38. Dordrecht : Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-011-7432-9_95.
Texte intégraldi Prampero, Pietro E., et Cristian Osgnach. « The Energy Cost of Sprint Running and the Energy Balance of Current World Records from 100 to 5000 m ». Dans Biomechanics of Training and Testing, 269–97. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-05633-3_12.
Texte intégralSemegn, Alehegn Melesse, Bereket Haile Woldegiorgis et Zerihun Wondimu Lemessa. « Recent Developments in Biomechanics-Based Prediction of Musculoskeletal Disorders : A Review ». Dans Green Energy and Technology, 155–67. Cham : Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-77339-6_10.
Texte intégralCarter, D. R., D. P. Fyhrie, R. Whalen, T. E. Orr, D. J. Schurman et D. J. Rapperport. « Control of Chondro-Osseous Skeletal Biology by Mechanical Energy ». Dans Biomechanics : Basic and Applied Research, 219–24. Dordrecht : Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3355-2_26.
Texte intégralActes de conférences sur le sujet "Biomechanical energy"
Chan, Hugo Hung-Tin, Haisu Liao, Xuan Zhao, Junrui Liang, Wei-Hsin Liao, Xinyu Wu et Fei Gao. « A smart wearable device for capturing biomechanical energy from human knee motion ». Dans 2024 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 387–92. IEEE, 2024. http://dx.doi.org/10.1109/aim55361.2024.10637186.
Texte intégralMurugan, Muthuvel, Ala Tabiei et Gregory Hiemenz. « Crash Dynamic Model for Rotorcraft Adaptive Seat Energy Absorber Evaluation ». Dans Vertical Flight Society 71st Annual Forum & Technology Display, 1–8. The Vertical Flight Society, 2015. http://dx.doi.org/10.4050/f-0071-2015-10143.
Texte intégralDonelan, J. Maxwell, Veronica Naing et Qingguo Li. « Biomechanical energy harvesting ». Dans 2009 IEEE Radio and Wireless Symposium (RWS). IEEE, 2009. http://dx.doi.org/10.1109/rws.2009.4957269.
Texte intégralLi, Q., V. Naing, J. A. Hoffer, D. J. Weber, A. D. Kuo et J. M. Donelan. « Biomechanical energy harvesting : Apparatus and method ». Dans 2008 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2008. http://dx.doi.org/10.1109/robot.2008.4543774.
Texte intégralGetman, I. A., S. V. Podlesnij et D. Yu Mikhieienko. « Energy conservation law in biomechanical systems ». Dans NEW DEVELOPMENT AREAS OF DIGITALIZATION AT THE BEGINNING OF THE THIRD MILLENNIUM. Baltija Publishing, 2021. http://dx.doi.org/10.30525/978-9934-26-172-5-16.
Texte intégralSinatra, Francy L., Stephanie L. Carey et Rajiv Dubey. « Biomechanical Model Representing Energy Storing Prosthetic Feet ». Dans ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-38707.
Texte intégralApgar, Collier, George Schmidt, Jacob Wild, Zachary Patterson, David Hieronymous, Paul Revesman et Jacquelyn Nagel. « Biomechanical energy harvesting using a knee mounted generator ». Dans 2016 Systems and Information Engineering Design Symposium (SIEDS). IEEE, 2016. http://dx.doi.org/10.1109/sieds.2016.7489278.
Texte intégralFadhel, Yosra Ben, Sana Ktata, Salem Rahmani et Kamal Al-Haddad. « Energy management circuit from internal biomechanical energy harvester to power a pacemaker ». Dans 2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM). IEEE, 2022. http://dx.doi.org/10.1109/cistem55808.2022.10043879.
Texte intégralCheng, Wing Ling, Chao Chen et Wei-Hsin Liao. « Design considerations in medium-power biomechanical energy harvesting circuits ». Dans 2014 IEEE International Conference on Information and Automation (ICIA). IEEE, 2014. http://dx.doi.org/10.1109/icinfa.2014.6932758.
Texte intégralShamsuddin, Saeed Ahmed Khan, Abdul Qadir Rahimoon, Ahsanullah Abro, Mehran Ali, Izhar Hussain et Farooq Ahmed. « Biomechanical Energy Harvesting by Single Electrode-based Triboelectric Nanogenerator ». Dans 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). IEEE, 2019. http://dx.doi.org/10.1109/icomet.2019.8673493.
Texte intégralRapports d'organisations sur le sujet "Biomechanical energy"
Zhang, Qiming, et Heath Hogmann. Harvesting Electric Energy During Walking With a Backpack : Physiological, Ergonomic, Biomechanical, and Electromechanical Materials, Devices, and System Considerations. Fort Belvoir, VA : Defense Technical Information Center, janvier 2005. http://dx.doi.org/10.21236/ada428873.
Texte intégralQuillen, William S., et M. J. Highsmith. Metabolic and Biomechanical Measures of Gait Efficiency of Three Multi-Axial, Vertical Shock and Energy Storing Return Prosthetic Feet During Simple & ; Complex Mobility Activities. Fort Belvoir, VA : Defense Technical Information Center, octobre 2012. http://dx.doi.org/10.21236/ada574692.
Texte intégralQuillen, William S., et M. J. Highsmith. Metabolic and Biomechanical Measures of Gait Efficiency of Three Multi-Axial, Vertical Shock and Energy Storing Return Prosthetic Feet During Simple & ; Complex Mobility Activities. Fort Belvoir, VA : Defense Technical Information Center, octobre 2013. http://dx.doi.org/10.21236/ada601342.
Texte intégralQuillen, William S., et M. J. Highsmith. Metabolic and Biomechanical Measures of Gait Efficiency of Three Multi-Axial, Vertical Shock and Energy Storing-Return Prosthetic Feet During Simple and Complex Mobility Activities. Fort Belvoir, VA : Defense Technical Information Center, décembre 2014. http://dx.doi.org/10.21236/ada615208.
Texte intégralGoel, Dr Divanshu, et Dr Manjeet Singh. HYBRID EXTERNAL FIXATION FOR PROXIMAL TIBIAL FRACTURES. World Wide Journals, février 2023. http://dx.doi.org/10.36106/ijar/1505336.
Texte intégral