Littérature scientifique sur le sujet « Biomedical analysis techniques »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Biomedical analysis techniques ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Biomedical analysis techniques"
Kataoka, Hiroyuki. « SPME techniques for biomedical analysis ». Bioanalysis 7, no 17 (septembre 2015) : 2135–44. http://dx.doi.org/10.4155/bio.15.145.
Texte intégralWitte, H., et M. Wacker. « Time-frequency Techniques in Biomedical Signal Analysis ». Methods of Information in Medicine 52, no 04 (2013) : 279–96. http://dx.doi.org/10.3414/me12-01-0083.
Texte intégralMalet-Martino, M., et U. Holzgrabe. « NMR techniques in biomedical and pharmaceutical analysis ». Journal of Pharmaceutical and Biomedical Analysis 55, no 1 (avril 2011) : 1–15. http://dx.doi.org/10.1016/j.jpba.2010.12.023.
Texte intégralSzultka, Malgorzata, Pawel Pomastowski, Viorica Railean-Plugaru et Boguslaw Buszewski. « Microextraction sample preparation techniques in biomedical analysis ». Journal of Separation Science 37, no 21 (25 septembre 2014) : 3094–105. http://dx.doi.org/10.1002/jssc.201400621.
Texte intégralKataoka, Hiroyuki, et Keita Saito. « Recent advances in SPME techniques in biomedical analysis ». Journal of Pharmaceutical and Biomedical Analysis 54, no 5 (avril 2011) : 926–50. http://dx.doi.org/10.1016/j.jpba.2010.12.010.
Texte intégralTurnell, David C., et John D. H. Cooper. « Automation of liquid chromatographic techniques for biomedical analysis ». Journal of Chromatography B : Biomedical Sciences and Applications 492 (août 1989) : 59–83. http://dx.doi.org/10.1016/s0378-4347(00)84464-3.
Texte intégralCerutti, S. « On Time-frequency Techniques in Biomedical Signal Analysis ». Methods of Information in Medicine 52, no 04 (2013) : 277–78. http://dx.doi.org/10.1055/s-0038-1627060.
Texte intégralAbaid Mahdi, Muhammed, et Samaher Al_Janabi. « Evaluation prediction techniques to achieve optimal biomedical analysis ». International Journal of Grid and Utility Computing 1, no 1 (2019) : 1. http://dx.doi.org/10.1504/ijguc.2019.10020511.
Texte intégralScriba, Gerhard K. E. « Chiral electromigration techniques in pharmaceutical and biomedical analysis ». Bioanalytical Reviews 3, no 2-4 (27 septembre 2011) : 95–114. http://dx.doi.org/10.1007/s12566-011-0024-3.
Texte intégralKalish, Heather, et Terry Phillips. « The Application of Micro-Analytical Techniques to Biomedical Analysis ». Current Pharmaceutical Analysis 5, no 3 (1 août 2009) : 208–28. http://dx.doi.org/10.2174/157341209788922057.
Texte intégralThèses sur le sujet "Biomedical analysis techniques"
Esposito, Andrea. « Techniques of proteomic analysis as tools for studies in biomedical field ». Doctoral thesis, Universita degli studi di Salerno, 2017. http://hdl.handle.net/10556/2487.
Texte intégralIt is known that prenatal exposure to pollutants and particularly heavy metals can have long term damaging consequences on infants, due to their accumulation in-body. Since the 1990s, ten million tonnes of waste have been illegally dumped in the area around Caserta and Naples. Thus, direct exposure to waste and heavy metals during the last two decades was very frequent in the so-called “Lands of fires”. The number of children suffering from cancer and of malformed fetuses in Italy's "Land of Fires", an area where toxic waste has been dumped by the mafia, is reported significantly higher than elsewhere in the country. In this thesis we examined the proteome of the umbilical cords from malformed fetuses obtained by therapeutic abortions, after mothers' being exposed to the pollution on “land of fire” during early pregnancy, and analyzed the differences between umbilical cords from malformed fetuses to healthy ones. The main goals were to understand the impact of the contamination by heavy metals on the fetus development, and to identify new putative biomarkers of exposure to metal contaminants. All umbilical cords were obtained in Campania region (Naples and Caserta, mainly in the “land of fires”). The collection of the biological samples was carried out in collaboration with the Caserta Hospital “Sant’Anna e San Sebastiano” and with the Avellino Hospital “San Giuseppe Moscati”. A proteomic approach based on Filter-Aided Sample Preparation (FASP) method was set up and performed. This bio-analytical strategy combines the advantages of in-gel and in-solution digestion for mass spectrometry–based proteomics, greatly reduces the time required for sample preparation and enables more flexibility in sample processing. Protein identification and quantification were performed by matching mass spectrometry data in on-line protein database, using the MaxQuant 1.5.2.8 software. Statistical analyses were employed to identify proteins whose levels were sensibly different in the umbilical cords from malformed fetuses. Gene Ontology (GO) classification was used in order to obtain functional information of the differentially expressed proteins and to correlate them to the embryonic development. Finally, Matrix Metalloproteinases (MMPs) have been shown to play significant roles in a number of physiological processes, including embryogenesis and angiogenesis, but they also contribute to the development of pathological processes. Thus, gelatin zymography technique was performed to detect MMPs enzymatic activity in the umbilical cords. Our results support a significant role of MMPs in the fetus development. [edited by author]
XIV n.s.
Harris, Justin Clay. « NEW BIOINFORMATIC TECHNIQUES FOR THE ANALYSIS OF LARGE DATASETS ». UKnowledge, 2007. http://uknowledge.uky.edu/gradschool_diss/544.
Texte intégralRohen, V. E. « Applications of statistical pattern recognition techniques to the analysis of ballistocardiograms ». Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235284.
Texte intégralJeon, Seonghye. « Bayesian data mining techniques in public health and biomedical applications ». Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43712.
Texte intégralJakeway, Stephen Christopher. « Development of optical techniques for biomolecule detection in miniaturized total analysis systems ». Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271699.
Texte intégralSeydnejad, Saeid Reza. « Analysis of heart rate variability and blood pressure variation by nonlinear modelling techniques ». Thesis, Imperial College London, 1998. http://hdl.handle.net/10044/1/7814.
Texte intégralD'Angelo, Maurissa S. « Analysis of Amputee Gait using Virtual Reality Rehabilitation Techniques ». Wright State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=wright1279121086.
Texte intégralBERNACCHIA, NATASCIA. « Measurement techniques based on image processing for the assessment of biomedical parameters ». Doctoral thesis, Università Politecnica delle Marche, 2014. http://hdl.handle.net/11566/242751.
Texte intégralBiomedical imaging represents an important topic in the field of diagnosis and clinical research. Image analysis and processing software also helps to automatically identify what might not be apparent to the human eye. The technological development and the use of different imaging modalities create more challenges, as the need to analyse a significant volume of images so that high quality information can be produced for disease diagnosis, treatment and monitoring, in clinical structures as well as at home. All the measurement systems routinely used in clinical environment require to be put in di-rect contact with the subject, which in some cases can be uncomfortable or even non-suited for long monitoring. On the other hand, in some cases contact could alter shape or composition of the samples under study, and state-of-the-art techniques could require a lot of time and provide very low resolution. This doctoral thesis presents a series of new experimental applications of the image analysis and processing in the biomedical field. The aim was to develop and validate new method-ologies, based on image analysis, for non contact measurement of quantities of different nature. The study is focused on the extraction of morphological characteristics of cell ag-gregates to assess of the regeneration processes in infarcted hearts, the design of a non con-tact methodology to measure mechanical properties of rabbit patellar tendons subjected to tensile tests, the development of new methods for the monitoring of physiological parame-ters (heart and respiration rate, chest volume variations) through the use of image acquisi-tion systems, as Kinect™ device and a digital camera. The experimental setups, designed in this work, were validated, showing high correlation respect to the reference methods. Imaging systems, although so different in many aspects, have demonstrated to be suitable for the respective tasks, confirming the feasibility of the imaging approach in the biomedical field.
Graça, Cristo dos Santos Lopes Ruano Maria da. « Investigation of real-time spectral analysis techniques for use with pulsed ultrasonic Doppler blood flow detectors ». Thesis, Bangor University, 1992. https://research.bangor.ac.uk/portal/en/theses/investigation-of-realtime-spectral-analysis-techniques-for-use-with-pulsed-ultrasonic-doppler-blood-flow-detectors(f184d2a8-bde7-492a-b487-438704d3ea04).html.
Texte intégralKirk, E. M. « Biomedical applications of narrow-bore liquid chromatography with computer-aided detection : Application of multivariate digital techniques to biomedical samples in narrow-bore column high-performance liquid chromatography with photodiode array detection ». Thesis, University of Bradford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384276.
Texte intégralLivres sur le sujet "Biomedical analysis techniques"
Haidekker, Mark A. Advanced biomedical image analysis. Hoboken, N.J : John Wiley & Sons, 2010.
Trouver le texte intégral1970-, Gonzalez Fabio A., et Romero Eduardo 1963-, dir. Biomedical image analysis and machine learning technologies : Applications and techniques. Hershey, PA : Medical Information Science Reference, 2010.
Trouver le texte intégralKaraa, Wahiba Ben Abdessalem, et Nilanjan Dey. Biomedical image analysis and mining techniques for improved health outcomes. Hershey PA : Medical Information Science Reference, 2016.
Trouver le texte intégral1970-, Gonzalez Fabio A., et Romero Eduardo 1963-, dir. Biomedical image analysis and machine learning technologies : Applications and techniques. Hershey, PA : Medical Information Science Reference, 2010.
Trouver le texte intégralNorio, Ichinose, dir. Fluorometric analysis in biomedical chemistry : Trends and techniques including HPLC applications. New York : Wiley, 1991.
Trouver le texte intégralSrinivasan, Gokulakrishnan. Vibrational spectroscopic imaging for biomedical applications. New York : McGraw-Hill, 2010.
Trouver le texte intégralM, Cullum Brian, Carter J. Chance et Society of Photo-optical Instrumentation Engineers., dir. Smart medical and biomedical sensor technology IV : 3-4 October 2006, Boston, Massachusetts, USA. Bellingham, Wash., USA : SPIE, 2006.
Trouver le texte intégralCullum, Brian M., et Eric S. McLamore. Smart biomedical and physiological sensor technology IX : 26 April 2012, Baltimore, Maryland, United States. Sous la direction de SPIE (Society). Bellingham, Wash : SPIE, 2012.
Trouver le texte intégralGannot, Israel. Optical fibers, sensors, and devices for biomedical diagnostics and treatment XI : 22-23 January 2011 San Francisco, California, United States. Bellingham : sponsored and published by SPIE, 2011.
Trouver le texte intégralCullum, Brian M. Smart biomedical and physiological sensor technology VI : 16-17 April 2009, Orlando, Florida, United States. Bellingham, Wash : SPIE, 2009.
Trouver le texte intégralChapitres de livres sur le sujet "Biomedical analysis techniques"
Nisar, Muhammad Shemyal, et Xiangwei Zhao. « Nanophotonic Techniques for Single-Cell Analysis ». Dans Nanophotonics in Biomedical Engineering, 79–109. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6137-5_4.
Texte intégralFeng, Ting, Weiya Xie, Wenyi Xu, Ya Gao, Teng Liu, Dean Ta, Menglu Qian et Qian Cheng. « Photoacoustic Techniques for Bone Characterization ». Dans Biomedical Photoacoustics, 433–75. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-61411-8_17.
Texte intégralHenao Higuita, María Camila, Macheily Hernández Fernández, Delio Aristizabal Martínez et Hermes Fandiño Toro. « Analysis of Finger Thermoregulation by Using Signal Processing Techniques ». Dans Bioinformatics and Biomedical Engineering, 537–49. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17935-9_48.
Texte intégralDussaut, J. S., C. A. Gallo, J. A. Carballido et I. Ponzoni. « Analysis of Gene Expression Discretization Techniques in Microarray Biclustering ». Dans Bioinformatics and Biomedical Engineering, 257–66. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56154-7_24.
Texte intégralPuentes Vargas, Margarita. « Extraction Techniques ». Dans Planar Metamaterial Based Microwave Sensor Arrays for Biomedical Analysis and Treatment, 33–45. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06041-5_3.
Texte intégralPradhan, Jitesh, Arup Kumar Pal et Haider Banka. « Medical Image Retrieval System Using Deep Learning Techniques ». Dans Deep Learning for Biomedical Data Analysis, 101–28. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71676-9_5.
Texte intégralScriba, Gerhard K. E. « Chiral electromigration techniques in pharmaceutical and biomedical analysis ». Dans Frontiers of Bioanalytical Chemistry, 225–44. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-36303-0_11.
Texte intégralTina et Ritu Gupta. « Analysis of deep learning techniques in biomedical images ». Dans Artificial Intelligence and Blockchain in Industry 4.0, 78–94. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003452591-6.
Texte intégralPrabha, R., V. Subashini, M. Aishwarya, B. Hemalatha et A. Sadhana. « Analysis of antenna for biomedical applications ». Dans Antennas for Industrial and Medical Applications with Optimization Techniques for Wireless Communication, 151–61. Boca Raton : CRC Press, 2024. https://doi.org/10.1201/9781003560487-10.
Texte intégralKaur, Raj Kamal, et Sarneet Kaur. « Exploring explainable AI : Techniques and comparative analysis ». Dans Explainable Artificial Intelligence for Biomedical and Healthcare Applications, 1–14. Boca Raton : CRC Press, 2024. http://dx.doi.org/10.1201/9781003220107-1.
Texte intégralActes de conférences sur le sujet "Biomedical analysis techniques"
Salazar, Sara Valentina Hernández, Javier Chaparro Preciado et Santiago Agudo Muñoz. « Comparative Analysis of Machine Learning and Deep Learning Techniques for Hand Gesture Recognition Using Surface Electromyography ». Dans 2024 3rd International Congress of Biomedical Engineering and Bioengineering (CIIBBI), 1–6. IEEE, 2024. https://doi.org/10.1109/ciibbi63846.2024.10784625.
Texte intégralMigla, Sandis, Oskars Selis, Pauls Eriks Sics et Arturs Aboltins. « Error Analysis and Correction Techniques for PPM Communication Links with Jitter and Clock Drift ». Dans 2024 IEEE International Conference on Microwaves, Communications, Antennas, Biomedical Engineering and Electronic Systems (COMCAS), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/comcas58210.2024.10666259.
Texte intégralCerri, G., R. De Leo et A. Spalvieri. « Microstrip Disk Applicators for Biomedical Applications : A Very Efficient Numerical Analysis Technique ». Dans EMC_1986_Wroclaw, 62–70. IEEE, 1986. https://doi.org/10.23919/emc.1986.10828529.
Texte intégralMa, Jianguo, Min Wei, Lijun Xu, Boya Chen, Yulin Liu, Jie Du et Zijie Fang. « Ultrasonic spectral analysis for biomedical imaging ». Dans 2017 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2017. http://dx.doi.org/10.1109/ist.2017.8261549.
Texte intégralEssa, Hayder J., et Issa Jaafar. « New analysis techniques for blood pressure biomedical signals ». Dans 2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA). IEEE, 2014. http://dx.doi.org/10.1109/wartia.2014.6976177.
Texte intégralChen, Xuequan, Emma Pickwell-MacPherson, Qiushuo Sun, Jiarui Wang, Hannah Lindley, Kai Liu, Kaidi Li, Xavier Barker, Rayko Stantchev et Arturo Hernandez. « THz Instrumentation and Analysis Techniques for Biomedical Research ». Dans 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019. http://dx.doi.org/10.1109/irmmw-thz.2019.8874398.
Texte intégralRobb, Richard A., Armando Manduca, Dennis P. Hanson et Ronald A. Karwoski. « Advanced techniques in volume visualization and analysis ». Dans Visualization in Biomedical Computing, sous la direction de Richard A. Robb. SPIE, 1992. http://dx.doi.org/10.1117/12.131124.
Texte intégralOrtiz, Sergio, Pablo Pérez-Merino, Enrique Gambra et Susana Marcos. « Image analysis and quantification in anterior segment OCT : techniques and applications ». Dans Biomedical Optics. Washington, D.C. : OSA, 2012. http://dx.doi.org/10.1364/biomed.2012.btu2b.6.
Texte intégralCostea, I. M., C. I. Dumitrescu, N. Dumitru et B. Soare. « Biomedical signals analysis techniques using the signal processor TMS320C6211B ». Dans 2014 37th ISSE International Spring Seminar in Electronics Technology (ISSE). IEEE, 2014. http://dx.doi.org/10.1109/isse.2014.6887617.
Texte intégralGaeta, Giovanni M., Flora Zenone, Carlo Camerlingo, Roberto Riccio, Gianfranco Moro, Maria Lepore et Pietro L. Indovina. « Data analysis in Raman measurements of biological tissues using wavelet techniques ». Dans Biomedical Optics 2005, sous la direction de Peter Rechmann et Daniel Fried. SPIE, 2005. http://dx.doi.org/10.1117/12.593394.
Texte intégralRapports d'organisations sur le sujet "Biomedical analysis techniques"
Vingre, Anete, Peter Kolarz et Billy Bryan. On your marks, get set, fund ! Rapid responses to the Covid-19 pandemic. Fteval - Austrian Platform for Research and Technology Policy Evaluation, avril 2022. http://dx.doi.org/10.22163/fteval.2022.538.
Texte intégral