Littérature scientifique sur le sujet « Birational geometry of surfaces »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Birational geometry of surfaces ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Birational geometry of surfaces"
Ciliberto, Ciro, Thomas Dedieu, Flaminio Flamini et Rita Pardini. « Birational geometry of surfaces ». Bollettino dell'Unione Matematica Italiana 11, no 1 (mars 2018) : 1–3. http://dx.doi.org/10.1007/s40574-018-0157-1.
Texte intégralMella, Massimiliano. « Birational geometry of rational quartic surfaces ». Journal de Mathématiques Pures et Appliquées 141 (septembre 2020) : 89–98. http://dx.doi.org/10.1016/j.matpur.2020.07.007.
Texte intégralToda, Yukinobu. « Stability conditions and birational geometry of projective surfaces ». Compositio Mathematica 150, no 10 (17 juillet 2014) : 1755–88. http://dx.doi.org/10.1112/s0010437x14007337.
Texte intégralChi, Quo-Shin, Luis Fernández et Hongyou Wu. « Normalized potentials of minimal surfaces in spheres ». Nagoya Mathematical Journal 156 (1999) : 187–214. http://dx.doi.org/10.1017/s0027763000007133.
Texte intégralBlanc, Jérémy, et Frédéric Mangolte. « Geometrically rational real conic bundles and very transitive actions ». Compositio Mathematica 147, no 1 (13 septembre 2010) : 161–87. http://dx.doi.org/10.1112/s0010437x10004835.
Texte intégralLaza, Radu, et Kieran O’Grady. « Birational geometry of the moduli space of quartic surfaces ». Compositio Mathematica 155, no 9 (2 août 2019) : 1655–710. http://dx.doi.org/10.1112/s0010437x19007516.
Texte intégralMorrison, David R. « The birational geometry of surfaces with rational double points ». Mathematische Annalen 271, no 3 (septembre 1985) : 415–38. http://dx.doi.org/10.1007/bf01456077.
Texte intégralRyan, Tim, et Ruijie Yang. « Nef Cones of Nested Hilbert Schemes of Points on Surfaces ». International Mathematics Research Notices 2020, no 11 (28 mai 2018) : 3260–94. http://dx.doi.org/10.1093/imrn/rny088.
Texte intégralTanaka, Hiromu. « Minimal Models and Abundance for Positive Characteristic Log Surfaces ». Nagoya Mathematical Journal 216 (2014) : 1–70. http://dx.doi.org/10.1215/00277630-2801646.
Texte intégralTanaka, Hiromu. « Minimal Models and Abundance for Positive Characteristic Log Surfaces ». Nagoya Mathematical Journal 216 (2014) : 1–70. http://dx.doi.org/10.1017/s0027763000022431.
Texte intégralThèses sur le sujet "Birational geometry of surfaces"
Barros, Ignacio. « K3 surfaces and moduli of holomorphic differentials ». Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19290.
Texte intégralIn this thesis we investigate the birational geometry of various moduli spaces; moduli spaces of curves together with a k-differential of prescribed vanishing, best known as strata of differentials, moduli spaces of K3 surfaces with marked points, and moduli spaces of curves. For particular genera, we give estimates for the Kodaira dimension, construct unirational parameterizations, rational covering curves, and different birational models. In Chapter 1 we introduce the objects of study and give a broad brush stroke about their most important known features and open problems. In Chapter 2 we construct an auxiliary moduli space that serves as a bridge between certain finite quotients of Mgn for small g and the moduli space of polarized K3 surfaces of genus eleven. We develop the deformation theory necessary to study properties of the mentioned moduli space. In Chapter 3 we use this machinery to construct birational models for the moduli spaces of polarized K3 surfaces of genus eleven with marked points and we use this to conclude results about the Kodaira dimension. We prove that the moduli space of polarized K3 surfaces of genus eleven with n marked points is unirational when n<= 6 and uniruled when n<=7. We also prove that the moduli space of polarized K3 surfaces of genus eleven with n marked points has non-negative Kodaira dimension for n>= 9. In the final section, we make a connection with some of the missing cases in the Kodaira classification of Mgnbar. Finally, in Chapter 4 we address the question concerning the birational geometry of strata of holomorphic and quadratic differentials. We show strata of holomorphic and quadratic differentials to be uniruled in small genus by constructing rational curves via pencils on K3 and del Pezzo surfaces respectively. Restricting to genus 3<= g<=6 we construct projective bundles over rational varieties that dominate the holomorphic strata with length at most g-1, hence showing in addition, these strata are unirational.
Beri, Pietro. « On birational transformations and automorphisms of some hyperkähler manifolds ». Thesis, Poitiers, 2020. http://www.theses.fr/2020POIT2267.
Texte intégralMy thesis work focuses on double EPW sextics, a family of hyperkähler manifolds which, in the general case, are equivalent by deformation to Hilbert's scheme of two points on a K3 surface. In particular I used the link that these manifolds have with Gushel-Mukai varieties, which are Fano varieties in a Grassmannian if their dimension is greater than two, K3 surfaces if their dimension is two.The first chapter contains some reminders of the theory of Pell's equations and lattices, which are fundamental for the study of hyperkähler manifolds. Then I recall the construction which associates a double covering to a sheaf on a normal variety.In the second chapter I discuss hyperkähler manifolds and describe their first properties; I also introduce the first case of hyperkähler manifold that has been studied, the K3 surfaces. This family of surfaces corresponds to the hyperkähler manifolds in dimension two.Furthermore, I briefly present some of the latest results in this field, in particular I define different module spaces of hyperkähler manifolds, and I describe the action of automorphism on the second cohomology group of a hyperkähler manifold.The tools introduced in the previous chapter do not provide a geometrical description of the action of automorphism on the manifold for the case of the Hilbert scheme of points on a general K3 surface. In the third chapter, I therefore introduce a geometrical description up to a certain deformation. This deformation takes into account the structure of Hilbert scheme. To do so, I introduce an isomorphism between a connected component of the module space of manifolds of type K3[n] with a polarization, and the module space of manifolds of the same type with an involution of which the rank of the invariant is one. This is a generalization of a result obtained by Boissière, An. Cattaneo, Markushevich and Sarti in dimension two. The first two parts of this chapter are a joint work with Alberto Cattaneo.In the fourth chapter, I define EPW sextics, using O'Grady's argument, which shows that a double covering of a EPW sextic in the general case is deformation equivalent to the Hilbert square of a K3 surface. Next, I present the Gushel-Mukai varieties, with emphasis on their connection with EPW sextics; this approach was introduced by O'Grady, continued by Iliev and Manivel and systematized by Kuznetsov and Debarre.In the fifth chapter, I use the tools introduced in the fourth chapter in the case where a K3 surface can be associated to a EPW sextic X. In this case I give explicit conditions on the Picard group of the surface for X to be a hyperkähler manifold. This allows to use Torelli's theorem for a K3 surface to demonstrate the existence of some automorphisms on X. I give some bounds on the structure of a subgroup of automorphisms of a sextic EPW under conditions of existence of a fixed point for the action of the group.Still in the case of the existence of a K3 surface associated with a EPW sextic X, I improve the bound obtained previously on the automorphisms of X, by giving an explicit link with the number of conics on the K3 surface. I show that the symplecticity of an automorphism on X depends on the symplecticity of a corresponding automorphism on the surface K3.The sixth chapter is a work in collaboration with Alberto Cattaneo. I study the group of birational automorphisms on Hilbert's scheme of points on a projective surface K3, in the generic case. This generalizes the result obtained in dimension two by Debarre and Macrì. Then I study the cases where there is a birational model where these automorphisms are regular. I describe in a geometrical way some involutions, whose existence has been proved before
Fanelli, Andrea. « Two structural aspects in birational geometry : geography of Mori fibre spaces and Matsusaka's theorem for surfaces in positive characteristic ». Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/26285.
Texte intégralBenzerga, Mohamed. « Structures réelles sur les surfaces rationnelles ». Thesis, Angers, 2016. http://www.theses.fr/2016ANGE0081.
Texte intégralThe aim of this PhD thesis is to give a partial answer to the finiteness problem for R-isomorphism classes of real forms of any smooth projective complex rational surface X, i.e. for the isomorphism classes of R-schemes whose complexification is isomorphic to X. We study this problem in terms of real structures (or antiholomorphic involutions, which generalize complex conjugation) on X: the advantage of this approach is that it helps us rephrasing our problem with automorphism groups of rational surfaces, via Galois cohomology. Thanks to recent results on these automorphism groups, using hyperbolic geometry and, to a lesser extent, holomorphic dynamics and metric geometry, we prove several finiteness results which go further than Del Pezzo surfaces and can apply to some rational surfaces with large automorphism groups
Boitrel, Aurore. « Groupes d'automorphismes des surfaces del Pezzo sur un corps parfait ». Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASM002.
Texte intégralDel Pezzo surfaces are algebraic surfaces with quite special properties, that play an importantpart in the classification of projective algebraic surfaces up to birational transformations.The classification of smooth rational del Pezzo surfaces of degree d over an arbitraryperfect field is classical for d = 7, 8, 9 and new for d = 6. The same is the case for thedescription of their groups of automorphisms. Their classification and the description of theirautomorphism groups is much more difficult for d ≤ 5, as one can see already if the groundfield is the field of real numbers, and the classification is open over a general perfect field.Partial classifications exist over finite fields. Accordingly, we do not know their automorphismgroups in general.The objective of the thesis is to classify the smooth rational del Pezzo surfaces of degreed = 5 and d = 4 over an arbitrary perfect field and describe their automorphism groups.Due to the difficulty of the project, the case d = 4 will only be studied over the field ofreal numbers
Krylov, Igor. « Birational geometry of Fano fibrations ». Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28857.
Texte intégralDURIGHETTO, Sara. « Classical and Derived Birational Geometry ». Doctoral thesis, Università degli studi di Ferrara, 2019. http://hdl.handle.net/11392/2488324.
Texte intégralNell'ambito della geometria algebrica, lo studio delle trasformazioni birazionali e delle loro proprietà riveste un ruolo di importanza primaria. In questo, si affiancano l'approccio classico della scuola italiana che si concentra sul gruppo di Cremona e quello più moderno che utilizza strumenti come categorie derivate e decomposizioni semiortogonali. Del gruppo di Cremona Cr_n, cioé il gruppo degli automorfismi birazionali di P^n, in generale non si conosce molto e ci si concentra sul caso complesso. Si conosce un insieme di generatori solo nel caso di dimensione 2. Inoltre non é ancora nota una classicazione tramite trasformazioni di Cremona delle curve e dei sistemi lineari di P^2. Tra i casi noti ci sono: le curve irriducibili e quelle formate da due componenti irriducibili. In questa tesi ci si approccia al caso di una configurazione di d rette nel piano proiettivo. Il teorema finale fornisce condizioni necessarie o sufficienti alla contraibilità. Da un punto di vista categoriale invece, le decomposizioni semiortogonali della cat- egoria derivata di una varietà ci forniscono degli invarianti utili nello studio della varietà. Seguendo l'approccio di Clemens-Griffiths riguardante la cubica complessa di dimensione 3, si vuole caratterizzare le ostruzioni alla razionalità di una varietà X di dimensione n. L'idea è di raccogliere le componenti di una decomposizione ortog- onale che non sono equivalenti a categorie derivate di varietà di dimensione almeno n-1 e in questo modo definire quella che chiamiamo componente di Griffiths- Kuznetsov di X. In questa tesi si studia il caso delle superci geometricamante razionali su un campo arbitrario, si definisce tale componente e si mostra che essa è un invariante birazionale. Si vede anche che la componente di Griffiths-Kuznetsov è nulla solo se la supercie è razionale.
Zong, Hong R. « Topics in birational geometry of algebraic varieties ». Thesis, Princeton University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3665359.
Texte intégralVarious questions related to birational properties of algebraic varieties are concerned.
Rationally connected varieties are recognized as the buildings blocks of all varieties by the Minimal Model theory. We prove that every curve on a separably rationally connected variety is rationally equivalent to a (non-effective) integral sum of rational curves. That is, the Chow group of 1-cycles is generated by rational curves. As a consequence, we solve a question of Professor Burt Totaro on integral Hodge classes on rationally connected 3-folds. And by a result of Professor Claire Voisin, the general case will be a consequence of the Tate conjecture for surfaces over finite fields.
Using the same philosophy looking for degenerated rational components through forgetful maps between moduli spaces of curves, we prove Weak Approximation conjecture to Prof. Hassett and Prof. Tschinkel for isotrivial families of rationally connected varieties. Theory of Twisted Stable maps is essentially used, with an alternative proof where some notion from Derived Algebraic Geometry is applied. It is remarkable that technics and ideas developed in this part, shed light upon and essentially led to the final solution to weak approximation of Cubic Surfaces, which is a problem concerned by Number Theorists for many years, and this is currently the best known result in this subject.
Then we turn to Minimal Model theory in both zero and positive characteristics. Firstly, projective globally F-regular threefolds of characteristic p ≥ 11, are shown to be rationally chain connected, and back to characteristic zero, we use hard-core technics of Minimal Model program, esp. finite generate of canonical rings due to Professor Hacon, Professor McKernan et al. to characterize Toric varieties and geometric rational varieties as log canonical log-Calabi Yau varieties with "large" boundary, where the specific meanings of "large" are originated from some notion of "charges" from String theory, and hence is related to Mirror Symmetry. This part of works also answered a Conjecture due to Prof. Shokurov.
Rulla, William Frederick. « The birational geometry of M₃ and M₂, ₁ / ». Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3008434.
Texte intégralMassarenti, Alex. « Biregular and Birational Geometry of Algebraic Varieties ». Doctoral thesis, SISSA, 2013. http://hdl.handle.net/20.500.11767/4679.
Texte intégralLivres sur le sujet "Birational geometry of surfaces"
János, Kollár. Birational geometry of algebraic varieties. Cambridge : Cambridge University Press, 1998.
Trouver le texte intégralMatsuki, Kenji. Weyl groups and birational transformations among minimal models. Providence, RI : American Mathematical Society, 1995.
Trouver le texte intégralKawamata, Yujiro, et Vyacheslav V. Shokurov, dir. Birational Algebraic Geometry. Providence, Rhode Island : American Mathematical Society, 1997. http://dx.doi.org/10.1090/conm/207.
Texte intégralBrunella, Marco. Birational Geometry of Foliations. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14310-1.
Texte intégralHochenegger, Andreas, Manfred Lehn et Paolo Stellari, dir. Birational Geometry of Hypersurfaces. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18638-8.
Texte intégralShigefumi, Mori, Miyaoka Yoichi et Kyōto Daigaku. Sūri Kaiseki Kenkyūjo., dir. Higher dimensional birational geometry. Tokyo, Japan : Mathematical Society of Japan, 2002.
Trouver le texte intégralColombo, Elisabetta, Barbara Fantechi, Paola Frediani, Donatella Iacono et Rita Pardini, dir. Birational Geometry and Moduli Spaces. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37114-2.
Texte intégralBerenstein, Arkady, et Vladimir Retakh, dir. Noncommutative Birational Geometry, Representations and Combinatorics. Providence, Rhode Island : American Mathematical Society, 2013. http://dx.doi.org/10.1090/conm/592.
Texte intégralCheltsov, Ivan, Ciro Ciliberto, Hubert Flenner, James McKernan, Yuri G. Prokhorov et Mikhail Zaidenberg, dir. Automorphisms in Birational and Affine Geometry. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05681-4.
Texte intégralBogomolov, Fedor, Brendan Hassett et Yuri Tschinkel, dir. Birational Geometry, Rational Curves, and Arithmetic. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6482-2.
Texte intégralChapitres de livres sur le sujet "Birational geometry of surfaces"
Matsuki, Kenji. « Birational Geometry of Surfaces ». Dans Introduction to the Mori Program, 9–108. New York, NY : Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4757-5602-9_2.
Texte intégralMumford, David. « The Birational Geometry of Surfaces ». Dans Algebraic Geometry I Complex Projective Varieties, 156–80. Berlin, Heidelberg : Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-61833-8_8.
Texte intégralLiedtke, Christian. « Algebraic Surfaces in Positive Characteristic ». Dans Birational Geometry, Rational Curves, and Arithmetic, 229–92. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6482-2_11.
Texte intégralVárilly-Alvarado, Anthony. « Arithmetic of Del Pezzo surfaces ». Dans Birational Geometry, Rational Curves, and Arithmetic, 293–319. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6482-2_12.
Texte intégralCiliberto, Ciro, Thomas Dedieu, Concettina Galati et Andreas Leopold Knutsen. « A Note on Severi Varieties of Nodal Curves on Enriques Surfaces ». Dans Birational Geometry and Moduli Spaces, 29–36. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37114-2_3.
Texte intégralKovács, Sándor J. « The Cone of Curves of K3 Surfaces Revisited ». Dans Birational Geometry, Rational Curves, and Arithmetic, 163–69. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6482-2_8.
Texte intégralBertram, Aaron, et Izzet Coskun. « The Birational Geometry of the Hilbert Scheme of Points on Surfaces ». Dans Birational Geometry, Rational Curves, and Arithmetic, 15–55. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6482-2_2.
Texte intégralFriedman, Robert. « Birational Geometry ». Dans Universitext, 59–83. New York, NY : Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1688-9_4.
Texte intégralSmith, Karen E., Lauri Kahanpää, Pekka Kekäläinen et William Traves. « Birational Geometry ». Dans An Invitation to Algebraic Geometry, 105–22. New York, NY : Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4757-4497-2_7.
Texte intégralLi, Tian-Jun, et Yongbin Ruan. « Symplectic birational geometry ». Dans CRM Proceedings and Lecture Notes, 307–26. Providence, Rhode Island : American Mathematical Society, 2009. http://dx.doi.org/10.1090/crmp/049/12.
Texte intégralActes de conférences sur le sujet "Birational geometry of surfaces"
BIRKAR, CAUCHER. « BIRATIONAL GEOMETRY OF ALGEBRAIC VARIETIES ». Dans International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0068.
Texte intégralPOPA, MIHNEA. « 𝒟-MODULES IN BIRATIONAL GEOMETRY ». Dans International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0077.
Texte intégralHacon, Christopher D., et James McKernan. « Boundedness Results in Birational Geometry ». Dans Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0058.
Texte intégralKatzarkov, Ludmil. « Birational geometry and homological mirror symmetry ». Dans Proceedings of the Australian-Japanese Workshop. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812706898_0008.
Texte intégralHACON, CHRISTOPHER D. « CAUCHER BIRKAR’S WORK IN BIRATIONAL ALGEBRAIC GEOMETRY ». Dans International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0003.
Texte intégralKoiller, Jair, Stefanella Boatto, Fernando Etayo, Mario Fioravanti et Rafael Santamaría. « Vortex pairs on surfaces ». Dans GEOMETRY AND PHYSICS : XVII International Fall Workshop on Geometry and Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3146241.
Texte intégralTakeuchi, Nobuko. « Surfaces which contain many circles ». Dans Geometry and topology of caustics. Warsaw : Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc82-0-14.
Texte intégralPeng, Chia-Kuei, et Liang Xiao. « Willmore Surfaces and Minimal Surfaces with Flat Ends ». Dans Differential Geometry in Honor of Professor S S Chern. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792051_0021.
Texte intégralBabiker, Hassan. « Projections of surfaces with singular boundary ». Dans Geometry and topology of caustics. Warsaw : Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc82-0-1.
Texte intégralJoets, Alain. « Singularities in drawings of singular surfaces ». Dans Geometry and topology of caustics. Warsaw : Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc82-0-10.
Texte intégralRapports d'organisations sur le sujet "Birational geometry of surfaces"
Munteanu, Marian I., et Ana I. Nistor. New Results on the Geometry of the Translation Surfaces. GIQ, 2012. http://dx.doi.org/10.7546/giq-11-2010-157-169.
Texte intégralMunteanu, Marian I. New Results on the Geometry of the Translation Surfaces. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-18-2010-49-62.
Texte intégralLudu, Andrei. Differential Geometry of Moving Surfaces and its Relation to Solitons. GIQ, 2012. http://dx.doi.org/10.7546/giq-12-2011-43-69.
Texte intégralBrosnahan et DeVries. PR-317-10702-R01 Testing for the Dilation Strength of Salt. Chantilly, Virginia : Pipeline Research Council International, Inc. (PRCI), décembre 2011. http://dx.doi.org/10.55274/r0010026.
Texte intégralChen, Weixing. PR378-173601-Z01 Effect of Pressure Fluctuations on the Growth Rate of Near-Neutral pH SCC. Chantilly, Virginia : Pipeline Research Council International, Inc. (PRCI), juillet 2021. http://dx.doi.org/10.55274/r0012112.
Texte intégralSnyder, Victor A., Dani Or, Amos Hadas et S. Assouline. Characterization of Post-Tillage Soil Fragmentation and Rejoining Affecting Soil Pore Space Evolution and Transport Properties. United States Department of Agriculture, avril 2002. http://dx.doi.org/10.32747/2002.7580670.bard.
Texte intégral