Littérature scientifique sur le sujet « Blue Nile River »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Blue Nile River ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Blue Nile River"

1

Russo, Antonio, Getaneh Assefa et Balemwal Atnafu. « Sedimentary evolution of the Abay River (Blue Nile) Basin, Ethiopia ». Neues Jahrbuch für Geologie und Paläontologie - Monatshefte 1994, no 5 (1 mai 1994) : 291–308. http://dx.doi.org/10.1127/njgpm/1994/1994/291.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gelete, Gebre, Huseyin Gokcekus et Tagesse Gichamo. « Impact of climate change on the hydrology of Blue Nile basin, Ethiopia : a review ». Journal of Water and Climate Change 11, no 4 (3 octobre 2019) : 1539–50. http://dx.doi.org/10.2166/wcc.2019.014.

Texte intégral
Résumé :
Abstract Climate change alters the spacial and temporal availability of water resources by affecting the hydrologic cycle. The main objective of this paper is to review the climate change effect on the water resources of the Blue Nile River, Ethiopia. The impact of climate change on water resources is highly significant as all natural ecosystems and humans are heavily dependent on water. It alters precipitation, temperature, and streamflow of the Blue Nile river basin which is threatening the lives and livelihoods of people and life-supporting systems. Rainfall within the Blue Nile river basin is highly erratic and seasonal due to it being located in the inter-tropical convergent zone. The temperature and sediment load are shown to increase in the future while the rainfall and streamflow are decreasing. The Blue Nile basin is characterized by highly erosive rainfall, erodible soil, and shrinking forest cover. Therefore, mitigation and adaptation measures should be applied by considering these characteristics of the basin. Watershed management methods like afforestation and water conservation are recommended to reduce the impact on the Blue Nile basin.
Styles APA, Harvard, Vancouver, ISO, etc.
3

E.H., Osman, Gumaa Y.S.A. et Elhag A.M.H. « Land Cover/Land Use Trends along the Blue Nile River Blue Nile State – Sudan ». IRA-International Journal of Applied Sciences (ISSN 2455-4499) 13, no 1 (6 février 2019) : 1. http://dx.doi.org/10.21013/jas.v13.n1.p1.

Texte intégral
Résumé :
<p>The study focused on quantifying the extent and sources of the deterioration of the vegetation cover of the study area at the Sudanese Blue Nile watershed in relation to agriculture extension policy, inefficient management and Lack of governmental policy. </p><p>The Research was based on forest and vegetation inventory and soil analysis to determine the current situation using ground survey, forest inventory and remote sensing data as well as secondary information from other sources to cover historical records from 1990 to 2015.</p><p>The results showed a significant change in natural ecosystems during the study period due to the change in the land use patterns. The Closed forests, open forests, and rural settlement areas were found to decrease by -90%, -43% and -32% respectively during the period (1990-2000). This negative trend was reflected in a positive trend showed by expansion in agriculture (+267%), horticulture (+73%), bare land (144%), and urban areas (12%). During the period (2010-2015), which was the civil war period, the area of closed forests, open forests and urban areas were increased, in comparison to that of 1990-2000) by 201,10, and 247% respectively, while that of agriculture, Rural areas, and bare lands is negative (-51, -54 and -68% respectively).</p><p>The major factor for the change is mainly attributed to the migration of rural people towards urban areas due to civil war and economic crises. In addition, it is expected that there are other factors such as the absence of clear plans and coordination between concerned government authorities, at local and national levels, which may need further investigations and studies to clear the whole picture.</p>
Styles APA, Harvard, Vancouver, ISO, etc.
4

SWAIN, ASHOK. « Ethiopia, the Sudan, and Egypt : The Nile River Dispute ». Journal of Modern African Studies 35, no 4 (décembre 1997) : 675–94. http://dx.doi.org/10.1017/s0022278x97002577.

Texte intégral
Résumé :
The Nile flows for 6,700 kilometres through ten countries in north-eastern Africa – Rwanda, Burundi, Zaïre/Congo, Tanzania, Kenya, Uganda, Eritrea, Ethiopia, the Sudan, and Egypt – before reaching the Mediterranean, and is the longest international river system in the world – see Map 1. Its two main tributaries converge at Khartoum: the White Nile, which originates from Burundi and flows through the Equatorial Lakes, provides a small but steady flow that is fed by the eternal snows of the Ruwenzori (the ‘rain giver’) mountains, while the Blue Nile, which suffers from high seasonal fluctuations, descends from the lofty Ethiopian ‘water tower’ highlands. They provide 86 per cent of the waters of the Nile – Blue Nile 59 per cent, Baro-Akobo (Sobat) 14 per cent, Tekesse (Atbara) 13 per cent – while the contribution from the Equatorial Lakes region is only 14 per cent.
Styles APA, Harvard, Vancouver, ISO, etc.
5

ALI, Yasir S. A., Alessandra CROSATO, Yasir A. MOHAMED, Seifeldin H. ABDALLA et Nigel G. WRIGHT. « Sediment balances in the Blue Nile River Basin ». International Journal of Sediment Research 29, no 3 (septembre 2014) : 316–28. http://dx.doi.org/10.1016/s1001-6279(14)60047-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Mishra, Anil, Takeshi Hata, A. W. Abdelhadi, Akio Tada et Haruya Tanakamaru. « Recession flow analysis of the Blue Nile River ». Hydrological Processes 17, no 14 (2003) : 2825–35. http://dx.doi.org/10.1002/hyp.1436.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zaroug, M. A. H., E. A. B. Eltahir et F. Giorgi. « Droughts and floods over the upper catchment of the Blue Nile and their connections to the timing of El Niño and La Niña Events ». Hydrology and Earth System Sciences Discussions 10, no 8 (21 août 2013) : 10971–95. http://dx.doi.org/10.5194/hessd-10-10971-2013.

Texte intégral
Résumé :
Abstract. The Blue Nile originates from Lake Tana in the Ethiopian Highland and contributes about 67% of the discharge in the main Nile River. Previous studies investigated the relationship of sea surface temperature (SST) in the Pacific Ocean (Nino 3.4 region) to occurrence of floods and droughts in rainfall and river flow over the Nile basin. In this paper we focus on the dependence of occurrence of droughts and floods in the upper catchment of the Blue Nile on the timing of El Niño and La Niña events. Different events start in different times of the year and follow each other exhibiting different patterns and sequences. Here, we study the impact of this timing and temporal patterns on the Nile droughts and floods. We analyze discharge measurements (1965–2012) at the outlet of the upper catchment of the Blue Nile in relation to the El Niño index. When an El Niño event is followed by a La Niña event, there is a 67% chance for occurrence of an extreme flood. The association of start dates of El Niño with occurrence of droughts in the upper catchment of the Blue Nile is evaluated. An El Niño event that starts in (April–June) is associated with a significant drought occurrence in 83% of the cases. We propose that observations as well as global model forecasts of SST during this season could be used in seasonal forecasting of the Blue Nile flow.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Mehari, Abrehet Kahsay, Shewit Gebremedhin et Belayneh Ayele. « Effects of Bahir Dar Textile Factory Effluents on the Water Quality of the Head Waters of Blue Nile River, Ethiopia ». International Journal of Analytical Chemistry 2015 (2015) : 1–7. http://dx.doi.org/10.1155/2015/905247.

Texte intégral
Résumé :
The study was conducted in 2013/14 with the objective of determining the effects of Bahir Dar textile factory effluents on the head of Blue Nile River water quality. Dissolve oxygen was higher at the upstream site of the river, whereas BOD5, TDS, and total alkalinity values were higher at wastewater outlet of the factory site. The mean values of dissolved oxygen, BOD5, and total alkalinity were above maximum permissible limits set by WHO for drinking water at head of Blue Nile River. The mean value of BOD5 was above permissible limit of IFC for textile effluents to be discharged to surface water. A total of 836 aquatic macroinvertebrate individuals belonging to 21 families were collected. The Shannon-Wiener Diversity Index, the Hilsenhoff family-level biotic index, family richness, and percent dipterans were calculated. Hilsenhoff family-level biotic index and percent dipterans metrics differed significantly among sampling sites(P<0.05). Hilsenhoff family-level biotic index was higher at the most downstream site but percent dipterans were higher at site of discharge of effluent to the head of Blue Nile River. Therefore, there is indication that effluent demands frequent control and proper treatment before being discharged to the environment.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Berhane, Fisseha, Benjamin Zaitchik et Amin Dezfuli. « Subseasonal Analysis of Precipitation Variability in the Blue Nile River Basin ». Journal of Climate 27, no 1 (1 janvier 2014) : 325–44. http://dx.doi.org/10.1175/jcli-d-13-00094.1.

Texte intégral
Résumé :
Abstract The Ethiopian portion of the Blue Nile River basin is subject to significant interannual variability in precipitation. As this variability has implications for local food security and transboundary water resources, numerous studies have been directed at improved understanding and, potentially, predictability of the Blue Nile rainy season (June–September) precipitation. Taken collectively, these studies present a wide range of large-scale drivers associated with precipitation variability in the Blue Nile: El Niño–Southern Oscillation (ENSO), the Indian summer monsoon, sea level pressure (SLP) anomalies over the Arabian Peninsula and Gulf of Guinea, the quasi-biennial oscillation (QBO), and dynamics of the tropical easterly jet (TEJ) and African easterly jet (AEJ) have all been emphasized to varying degrees. This study aims to reconcile these diverse analyses by evaluating teleconnection patterns and potential mechanisms of association on the subseasonal scale. It is found that associations with the TEJ, Pacific modes of variability, and the Indian monsoon are strongest in the late rainy season. Mid–rainy season precipitation (July and August) shows mixed associations with Pacific/Indian Ocean variability and Atlantic Ocean indices, along with connections to regional pressure patterns and the AEJ. June precipitation is negatively correlated with SLP over the equatorial Atlantic and upper-tropospheric geopotential height. June and July precipitation show little significant correlation with the sea surface temperature over the equatorial Pacific Ocean. The observed intraseasonal evolution of teleconnections across the rainy season indicates that subseasonal analysis is required to advance understanding and prediction of Blue Nile precipitation variability.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Abdelhadi, A. W., Takeshi Hata et O. E. Hamad. « A Recession-Forecast Model for the Blue Nile River ». Hydrology Research 31, no 1 (1 février 2000) : 41–56. http://dx.doi.org/10.2166/nh.2000.0004.

Texte intégral
Résumé :
An analytical model for the forecasting of the Blue Nile River low flow is developed and compared with the current modified similar year method. The model is based on the general non-linear reservoir equation and the historical flow of the river for the calibration period 1912-1961. The comparison is made after the year 1961 for 6 different years in terms of the temporal 10-day flows and for the period 1962-1996 in terms of the standard error of estimates (SEE). The model and the modified similar year forecasted 10-day flows were also compared with the actual temporal 10-day flows during the driest and the wettest year of the whole record between 1912-1998. Results showed that the model temporal distribution of flows is more close to the actual ones compared with the modified similar year method. The model has less SEE in 31 years out of 38 compared with the modified similar year method.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Blue Nile River"

1

Jian, Jun. « Predictability of Current and Future Multi-River discharges : Ganges, Brahmaputra, Yangtze, Blue Nile, and Murray-Darling Rivers ». Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19777.

Texte intégral
Résumé :
Thesis (Ph.D)--Earth and Atmospheric Sciences, Georgia Institute of Technology, 2008.
Committee Chair: Judith Curry; Committee Chair: Peter J Webster; Committee Member: Marc Stieglitz; Committee Member: Robert Black; Committee Member: Rong Fu.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tegegn, Ferezer. « Can precipitation change explain the increased in discharge from the Blue Nile River Basin ? » Thesis, Stockholms universitet, Institutionen för naturgeografi och kvartärgeologi (INK), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-43298.

Texte intégral
Résumé :
A large amount of Nile water originates in Ethiopia. However, large uncertainty arises concerning whether land degradation or climate change is the cause for the observed increase in discharge along downstream countries. Previous studies showed increases in discharge at Kessie, Bahir Dar and El Diem over the past four decades with no increase in basin-average rainfall. They cite changes in landscapes or soil coverage as a potential reason for this change. However, the study in this thesis shows that the change in discharge could also be explained in part by spatial changes in precipitation. This thesis investigates trends in rainfall within the Blue Nile River Basin f rom 1963 to 2003. For this study total monthly and daily precipitation data were collected from across the Blue Nile River Basin and analyzed statistically. The results indicate spatial variability in the rainfall observed. The general long-term trends in annual as well as in seasonal precipitation show a general decreasing trend along southwest regions of the study area. However, an increasing  trend was encountered along northeast and southeast region of the Basin (3 of 9 selected stations). Rainfall-runoff modelling was performed to estimate the required precipitation increase to produce the increase in discharge observed in the Blue Nile River Basin. Precipitation needed to increase between 10 % and 25 % to account for the increased discharge. This increase is similar to that observed for some of the precipitation stations showing that increase in discharge seen in the Blue Nile River Basin may in part be due to changes in precipitation.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Moussa, Osama Moursy. « Satellite data based sediment-yield models for the Blue Nile and the Atbara River Watersheds / ». The Ohio State University, 1987. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487585645576268.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Conway, Declan. « The development of a grid-based hydrological model of the Blue Nile and the sensitivity of Nile river discharge to climate change ». Thesis, University of East Anglia, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358456.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Borji, Tadesse Tufa. « Sedimentation and Sustainability of Hydropower Reservoirs : Cases of Grand Ethiopian Renaissance Dam on the Blue Nile River in Ethiopia ». Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for vann- og miljøteknikk, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-23593.

Texte intégral
Résumé :
Summary Sediment accumulation in a reservoir is a serious problem that threatens sustainability of the reservoir and has severe consequence on reservoir productivity during its operation time. In order to predict the reservoir sediment deposition pattern, evaluate its consequences on the reservoir yield and identify appropriate reservoir sediment management strategy, accurate quantification of long term average sediment yield is needed. The accuracy of sediment yield estimate depends on availability of good quality suspended and bed load data for period long enough to account for temporal variability, which however is very limited in the Blue Nile Basin. Thus there should be a means to estimate the sediment yield based on the very limited data. In this study sediment rating curve developed based on available data was used to generate longer sediment concentration data from the discharge history in order to quantify sediment yield at different locations (Kessie, Burie and Tato) in the basin. Sediment yield estimated based on rating curve was compared with sediment yield estimated based on data obtained from secondary sources (bathymetric survey data of Roserires reservoir and average sediment concentration at El-Deim) and delivery ratio. Comparisons of various scenarios were made to finally estimate total sediment load of 245 million t/year at GERD. Deposition pattern of sediment entering the GERD reservoir was predicted based on Empirical Area Reduction method. The sediment deposit depth in the reservoir increases gradually and fills up the storage below the minimum water level which defines the life of the reservoir. According to the Empirical Area Reduction method, the GERD reservoir will have life of 116 years for the estimated annual sediment load of 245 million tonnes, trap efficiency of 100% and average deposit density 1.12 t/m3. The reservoir storage capacity will be lost at an average rate of 0.3 % per year. Consequences of storage capacity loss on production capacity were evaluated where the average annual energy loss due to active storage loss amounts 27 GWh. The estimated present value of economic loss indicates that the total economic values forgone due to the live storage loss was found to vary between 0.26% and 0.06% of the original dam cost, 4.33 billion USD when the discount rate varied between 5% and 13% respectively. Various reservoir sediment management strategies were evaluated with the catchment area, environmental and social considerations, reservoir capacity to inflow ratio and total sediment load as governing parameters. According to the preliminary assessment and further evaluation of management strategies using RESCON model dredging was found appropriate for the GERD reservoir. Based on the RESCON model estimates, 20 dredges capable of removing 11 million m3 per year each have to be installed in order to keep the reservoir sustainable.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Cherie, Netsanet Zelalem [Verfasser]. « Downscaling and Modeling the Effects of Climate Change on Hydrology and Water Resources in the Upper Blue Nile River Basin, Ethiopia / Netsanet Zelalem Cherie ». Kassel : Universitätsbibliothek Kassel, 2013. http://d-nb.info/103616117X/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Yitbarek, Baye Andarge. « Hydrogeological and hydrochemical framework of complex volcanic system in the Upper Awash River basin, Central Ethiopia : with special emphasis on inter-basins groundwater transfer between Blue Nile and Awash rivers ». Poitiers, 2009. http://theses.edel.univ-poitiers.fr/theses/2009/Yitbarek-Baye-Andarge/2009-Yitbarek-Baye-Andarge-These.pdf.

Texte intégral
Résumé :
Une approche utilisant plusieurs méthodes convergentes a été mise en oeuvre pour étudier le cadre hydrogéologique du système aquifère volcanique fracturé et complexe du bassin supérieur du fleuve Awash situé sur le bord du Rift éthiopien. L'écoulement des eaux souterraines et les mécanismes de recharge des différents aquifères ont été étudiés à l'aide de méthodes conventionnelles de terrain, de l'hydrochimie, de l'hydrologie isotopique et de la modélisation numérique des flux souterrains. Des relations lithohydrostratigraphiques ont été établies à partir des logs lithologiques de forages exploratoires profonds. Les résultats montrent un modèle d'écoulement et des caractéristiques hydrauliques des différents aquifères volcaniques très complexes. La corrélation litho-hydrostratigraphique indique que l'aquifère basaltique inférieur, constitué de scories poreuses et perméables, est continu tout le long depuis le Nil Bleu jusqu'à la zone étudiée. L'analyse de la variation temporelle et spatiale des échantillons d’eau provenant d'endroits différents a révélé des interactions nettes entre l'eau souterraine et l'eau superficielle. De nouvelles évidences des transferts d'eau inter-bassins sont apparues. Deux aquifères basaltiques régionaux (l'aquifère supérieur et l'aquifère inférieur) ont été identifiés, montrant des signatures hydrochimiques et isotopiques bien distinctes. Dans la partie sud de la zone étudiée, l'aquifère supérieur et l'aquifère inférieur forment un système aquifère régional non confiné. Dans les parties nord et centrale du bassin au contraire, il apparaît que les deux systèmes sont séparés par un aquiclude régional, donnant lieu par endroits à des puits artésiens. Les eaux souterrainex provenant des puits d'exploration profonds (plus de 250 m) pénétrant l'aquifère basaltique inférieur et des puits situés au sud se sont révélées modérément mineralisées (TDS 400-650 mg/l), avec une composition isotopique stable, relativement moins enrichie et avec presque pas de tritium. Par contre, l'aquifère supérieur superficiel a une concentration ionique moins importante, davantage enrichie isotopiquement. Les résultats des différentes méthodes montrent clairement qu'il existe un transfert d'eau souterraine du nord du bassin adjacent du Nil Bleu vers le bassin supérieur du fleuve Awash. Les résultats convergent également pour attester de l'origine commune de la recharge et de la continuité hydraulique de l'aquifère basaltique inférieur exploité par des forages. Ceci peut avoir des implications pratiques capitales car l'existence d'importantes ressources d'eau souterraine en profondeur peut résoudre les problèmes d'approvisionnement de nombreuses villes, y compris la capitale, Addis Ababa. Ces résultats pourront aussi contribuer à mettre à jour d'autres aquifères régionaux le long des limites du rift dans des zones ayant une structure hydrogéologique similaire à celle du bassin supérieur du fleuve Awash
Integrated approach has been used to investigate the hydrogeological framework of a complex fractured volcanic aquifer system in the Upper Awash river basin located at the western shoulder of the Ethiopian rift. The groundwater flow system and mechanism of recharge of different aquifers have been studied using conventional hydrogeological field investigations, hydrochemistry, isotope hydrology and numerical groundwater flow modeling techniques. Litho-hydrostratigraphic relationships were constructed from lithologic logs obtained from exploratory drilling of deep boreholes. The result indicates quite complex flow pattern and hydraulic characteristics of the different volcanic aquifers. The litho-hydrostratigraphic correlation indicates that the permeable and porous scoraceous lower basaltic aquifer is extended laterally all the way from the Blue Nile Plateau to the study area. . The analysis of the temporal and spatial variation of water samples from different places revealed clear undwater-surface water interactions. New evidences have also emerged on the inter-basin groundwater transfer. Two distinct regional basaltic aquifers (Upper and lower) are identified showing distinct hydrochemical and isotopic signatures. In the southern part of the study area the upper and lower aquifers form one unconfined regional aquifer system. In the northern and central part of the basin, it appears that the two systems are separated by regional aquiclude forming confined aquifers, in places with artesian wells. The groundwater from the deep exploratory wells (>250m) tapping the lower basaltic aquifer and wells located in the south were found to be moderately mineralized (TDS: 400-600 mg/l), with relatively depleted stable isotope composition and with almost zero tritium. In contrast, the upper shallow aquifer has lesser ionic concentration, more isotopically enriched. Evidences from the different methods clearly indicate inter-basin groundwater transfer from the Blue Nile basin to the Upper Awash basin. The evidences also converge to testify common origin of recharge, presence of hydraulic connectivity for systems tapping the lower basaltic aquifer. This has enormous practical implication in finding large groundwater reserve at a greater depth that can solve the current water supply problems of the community including the capital Addis Ababa. It will also have important role in finding more regional aquifers along the plateau-rift margins in many areas having similar hydrogeological setup as the study area
Styles APA, Harvard, Vancouver, ISO, etc.
8

Stamou, Athanasia-Tatiana [Verfasser], Peter [Akademischer Betreuer] Rutschmann, Peter [Gutachter] Rutschmann et Wolfgang [Gutachter] Kinzelbach. « Water Resources Optimization using the Nexus Approach : A Case Study of the Upper Blue Nile River Basin, Ethiopia / Athanasia-Tatiana Stamou ; Gutachter : Peter Rutschmann, Wolfgang Kinzelbach ; Betreuer : Peter Rutschmann ». München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1178672301/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mekonnen, Dagnenet Fenta [Verfasser], Markus [Akademischer Betreuer] Disse, Ralf [Gutachter] Ludwig, Markus [Gutachter] Disse et Karl [Gutachter] Auerswald. « Impacts of changes in Climate, Land Cover and Water Management on Water Availability of the Upper Blue Nile River Basin, Ethiopia / Dagnenet Fenta Mekonnen ; Gutachter : Ralf Ludwig, Markus Disse, Karl Auerswald ; Betreuer : Markus Disse ». München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1190818795/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Woldesenbet, Tekalegn Ayele. « Assessing Impacts of Land Use/Cover and Climate Changes on Hydrological Regime in the Headwater Region of the Upper Blue Nile River Basin, Ethiopia ». Doctoral thesis, 2017. https://ul.qucosa.de/id/qucosa%3A15775.

Texte intégral
Résumé :
Summary Fresh water availability and distribution have been declining over time due to population increase, climate change and variability, emerging new demands due to economic growth, and changing consumption patterns. Spatial and temporal changes in environmental changes, such as climate and land use/cover (LULC) dynamics have an enormous impact on water availability. Food and energy security, urbanization and industrial growth, as well as climate change (CC) will pose critical challenges on water resources. Climate variability and change may affect both the supply and demand sides of the balance, and thus add to the challenges. Land-cover changes are vastly prominent in the developing countries that are characterized by agriculture-based economies and rapidly increasing human population. The consequent changes in water availability and increase in per capita water demand will adversely affect the food, water and energy security of those countries. Therefore, evaluating the response of the catchment to environmental changes is crucial in the critical part of the basin for sustainable water resource management and development. In particular, assessing the contribution of individual LULC classes to changes in water balance components is vital for effective water and land resource management, and for mitigation of climate change impacts. The dynamic water balance of a catchment is analyzed by hydrological models that consider spatio-temporal catchment characteristics. As a result, hydrological models have become indispensable tools for the study of hydrological processes and the impacts of environmental stressors on the hydrologic system. Physically-based distributed hydrological models are able to explicitly account for the spatial variability of hydrological process, catchment characteristics such as climatic parameters, and land use/cover changes. For improved illustration of physical processes in space and time, the distributed hydrological models need serially complete and homogenized rainfall and temperature data. However, observed rainfall and temperature data are neither serially complete nor homogeneous, particularly in developing countries. Using inhomogeneous climatological data inputs to hydrological models affects the output magnitude of climate and land use/cover change impacts and, hence, climate change adaptation. The Nile River Basin, one of the transboundary river flows through 11 riparian states, serves the livelihoods of millions of people in the basin (nearly 20 per cent of the African population) and covers one-tenth of the land cover of Africa. The basin is characterized by high population growth and high temporal variability in the river flow and rainfall patterns. The Blue Nile river basin, which contributes 62% of the annual main Nile flow, has faced serious land degradation. This has led to increased soil erosion and loss of soil fertility. The most overwhelming challenge that the basin faces is food insecurity caused by subsistence farming and rain-fed agriculture (over 70% of the basin’s population), together with high rainfall variability. Drought and floods are also critical issues in the Blue Nile basin, with the potential for exacerbation by environmental changes. Understanding how LULC and climate changes influence basin hydrology will therefore enable decision makers to introduce policies aimed at reducing the detrimental effects of future environmental changes on water resources. Understanding types and impacts of major environmental stressors in representative and critical regions of the basin is crucial for developing of effective response strategies for sustainable land- and water-resource management in the Eastern Nile Basin in general, and at the Tana and Beles watersheds in particular. In this study, serially completed and homogenized rainfall and temperature dataset are maintained from 1980 to 2013 to fill-in the gap which characterized previous studies on trend analyses. The new hydroclimatic data revealed that the climate the study region has become wetter and warmer. The proportional contribution of main rainy season rainfall to annual total rainfall has increased. This might result in high runoff and ultimately flooding as well as erosion and sedimentation in the source region of the Blue Nile, and siltation in the downstream reservoirs unless soil and water conservation measures are taking place. In the Tana sub-basin, it is found that expansion of cultivation land and decline in woody shrub are the major contributors to the rise in surface run-off and to the decline in the groundwater component from 1986 to 2010. Similarly, decline of woodland and expansion of cultivation land are found to be the major contributors to the increase in surface run-off and water yield. They also contributed to the decrease in groundwater and actual evapotranspiration components in the Beles watershed. Increased run-off and reduced baseflow and actual evapotranspiration would have negative impacts on water resources, especially in relation to erosion and sedimentation in the upper Blue Nile River Basin. As a result, expansion of cultivation land and decline in woody shrub/woodland appear to be major environmental stressors affecting local water resources. GCMs simulated near-future annual total rainfall and average temperature were used to investigate the sensitivity of the catchment to near-future CC. The results showed an increase in streamflow in the annual and the main rainy season, but decrease in the dry period when compared to the baseline period. Catchment response for future LULC scenario showed opposite effect to that of near-future CC. The combined effects of climate change and LULC dynamics can be quite different from the effects resulting from LULC or CC alone. At the outlet of the Tana watershed, streamflow response is amplified under concurrent land cover and climate change scenarios compared to the baseline scenario; but the streamflow has an augmenting response at the outlet of the Beles watershed under future climate change and land use scenarios compared to that of current period. The important inference from these findings is that it could be possible to alleviate intense floods or droughts due to future climate change by planning LULC to achieve particular hydrological effects of land cover in the basin. Continuing expansion of cultivation land and decrease in natural vegetation, coupled with increased rainfall due to climate change, would result in high surface runoff in the main rainy season, which would subsequently increase flooding, erosion and sedimentation in already degraded lands. Sound mitigation measures should therefore be applied to reduce these adverse environmental consequences. On the other hand, the simulated climate and land-use change impacts on the Tana watershed hydrological regime might increase the availability of streamflow to be harnessed by water-storage structures. In conclusion, the present study has developed an innovative approach to identify the major environmental stressors of critical source region of the Blue Nile River in order to effectively managing the water resources and climate risk. Understanding the catchment responses to environmental changes improves sustainability of the water resources management particularly given that the hydropower and the irrigation schemes are recently established for energy and food security.:TABLE OF CONTENTS LIST OF ABBREVIATIONS LIST OF FIGURES LIST OF TABLES 1. General Introduction 2. The study area 3. Gap Filling and Homogenization of Climatological Datasets in the Headwater Region of the Upper Blue Nile Basin, Ethiopia Abstract 3.1. Introduction 3.1.1. Data 3.2. Methodology 3.2.1. Quality control and gap filling 3.2.2. Homogenization 3.3. Results and Discussion 3.3.1. Gap filling 3.3.2. Homogeneity 3.3.3. Verification of the homogenization 3.3.4. Impact of homogenization on the rainfall and temperature series 3.4. Conclusions Acknowledgements 4. Revisiting trend analysis of hydroclimatic data in the Upper Blue Nile basin based on homogenized data Abstract 4.1 Introduction 4.2 Data and Methodology 4. 2.1 Data 4. 2.2 Linear trend 4. 2.3 Trend magnitude 4.3 Results and Discussions 4.3.1. Linear mean climate trends 4.3.1.1. Rainfall 4.3.1.2. Maximum Temperature (Tmax) 4.3.1.3. Minimum Temperature (Tmin) 4.3.1.4. Mean temperature (Tmean) 4.3.1.5. Diurnal temperature range (DTR) 4.3.1.6. Streamflow 4.3.2. Effect of homogenization on Tmax, Tmin, Tmean and DTR linear trends 4.3.3. Linear extreme climate trends 4.3.1. Temperature 4.3.2. Precipitation 4.4 Conclusions Acknowledgements 5. Recent Changes in Land Use/Cover in the Headwater Region of the Upper Blue Nile Basin, Ethiopia 85 Abstract 5.1 Introduction 5.2 Materials and Methods 5.2.1 Data used and image pre-processing 5.2.2 Classification accuracy assessment 5.2.3 Extent and rate of change 5.2.4 Detecting the most systematic transitions (dominant signals of change) 5.4 Results and Discussion 5.4.1 Accuracy assessment 5.4.2 Extent and rate of LULC changes 5.4.3 Rate of land use and land cover change 5.4.4 Detection of most systematic transitions 5.5 Conclusions Acknowledgements 6. Hydrological Responses to Land use/cover Changes in the Tana and Beles Watersheds, the Upper Blue Nile, Ethiopia Abstract 6.1 Introduction 6.2 Method 6.2.1 Hydrological modeling 6.2.2 Partial least squares regression 6.3 Results and Discussion 6.3.1 Calibration and validation of SWAT 6.3.2 Impacts of LULC changes on hydrology at the basin scale 6.3.3 Contribution of changes in individual LULCs to hydrological components 6.4 Conclusions Acknowledgements 7. Combined Impact of Climate and Land Use Changes on Hydrology in the Tana and Beles Sub-Basins, Upper Blue Nile, Ethiopia Abstract 7.1 Introduction 7.2 Methodology 7.2.1 Simulation 7.2.2 Climate change scenarios 7.2.3 LULC change scenarios 7.3 Results and Discussion 7.3.1 Future versus current LULC impact on the basin hydrology 7.3.2 Future versus baseline climate 7.3.3 Impact of combined future climate and LULC changes on hydrology 7.4 Uncertainties and Limitations 7.5 Conclusions Acknowledgements 8. Overall Conclusions, Recommendations and Future Research Directions 8.1. Overall Conclusions 8.2 Recommendations and Directions for further research References
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Blue Nile River"

1

Morell, Virginia. Blue Nile : Ethiopia's river of magic and mystery. Washington, D.C : Adventure Press, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Woube, Mengistu. Resource use and conflicts along the Blue Nile River Basin. Uppsala] : University of Uppsala, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Conway, Declan. The development of a grid-based hydrologic model of the Blue Nile and the sensitivity of Nile River discharge to climate change. Norwich : University of East Anglia, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Alan, Moorehead. The Blue Nile. Harper Perennial, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Alan, Moorehead. The Blue Nile. Harper Perennial, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Morell, Virginia. Expedicion Al Nilo Azul/Blue Nile : El Rio De LA Magia Y El Misterio. Rba Publicaciones Editores Revistas, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Morell, Virginia. Blue Nile : Ethiopia's River of Magic and Mystery (Adventure Press). National Geographic, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

D, El Khalifa M., Jāmiʼat al-Kharṭūm. Maʻhad al-Dirāsāt al-Bīʼīyah., Environmental Management in the Sudan (Program) et United States. Agency for International Development., dir. Blue Nile River from the Ethiopian border to Khartoum : Final report. [Khartoum], Sudan : Institute of Environmental Studies, University of Khartoum, 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ali, Yasir Salih Ahmed. Impact of Soil Erosion in the Upper Blue Nile on Downstream Reservoir Sedimentation. Taylor & Francis Group, 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Abdel Aziz, Azza Ahmed, et Aroob Alfaki. Shifting Terrains of Political Participation in Sudan : Elements dating from the second colonial (1898–1956) period to the contemporary era. International Institute for Democracy and Electoral Assistance, 2021. http://dx.doi.org/10.31752/idea.2021.70.

Texte intégral
Résumé :
This report presents elements of the development of Sudanese women’s political participation through time. It highlights several political routes from their early days until the contemporary era. The study is based on an analysis of secondary sources alongside empirical data derived from four states within Sudan, namely: Blue Nile, Central Darfur, Kassala and River Nile. Different themes are explored and they include: the meanings of political participation, women’s leadership roles, identifying structural limitations that hinder the participation of women in politics, possible avenues for women’s participation, the presence of women in politics, variations in religious interpretations and their impact on political participation, the status of the Sudanese constitution and the views of women and men on the extent that women might advance in the next elections. The report also address how the December revolution of 2018 might improve the situation for women’s political participation, since it marks a break from the earlier practices of the Islamist regime that had a severe negative impact on the freedoms of Sudanese women and their ability to engage in political activities. Political parties are considered gatekeepers for women’s access to political positions of power as they play an important role in institutionalizing women’s inclusion in politics. Ensuring that political parties in Sudan play an active role in the advancement of gender equality and the enhancement of women’s political participation is particularly important as Sudan prepares for its transition to democracy.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Blue Nile River"

1

Gessesse, Gizaw Desta. « Assessment of Soil Erosion in the Blue Nile Basin ». Dans Nile River Basin, 193–218. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02720-3_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Rientjes, Tom H. M., Janaka B. U. Perera, Alemseged T. Haile, Ambro S. M. Gieske, Martijn J. Booij et Paolo Reggiani. « Hydrological Balance of Lake Tana, Upper Blue Nile Basin, Ethiopia ». Dans Nile River Basin, 69–89. Dordrecht : Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0689-7_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Fenta, Ayele Almaw, Tom Rientjes, Alemseged Tamiru Haile et Paolo Reggiani. « Satellite Rainfall Products and Their Reliability in the Blue Nile Basin ». Dans Nile River Basin, 51–67. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02720-3_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Melesse, Assefa M., Wossenu Abtew, Shimelis G. Setegn et Tibebe Dessalegne. « Hydrological Variability and Climate of the Upper Blue Nile River Basin ». Dans Nile River Basin, 3–37. Dordrecht : Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0689-7_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Awulachew, Seleshi B., Fasikaw Dessie Wubet, Matthew McCartney et Yilma Sileshi Shiferaw. « Hydrological Water Availability, Trends and Allocation in the Blue Nile Basin ». Dans Nile River Basin, 283–96. Dordrecht : Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0689-7_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Nigussie, Tewodros Assefa, Abebe Fanta, Assefa M. Melesse et Shoeb Quraishi. « Modeling Rainfall Erosivity From Daily Rainfall Events, Upper Blue Nile Basin, Ethiopia ». Dans Nile River Basin, 307–35. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02720-3_17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Steenhuis, Tammo S., Seifu A. Tilahun, Zelalem K. Tesemma, Tigist Y. Tebebu, Mamaru Moges, Fasikaw A. Zimale, Abeyou W. Worqlul, Muluken L. Alemu, Essayas K. Ayana et Yasir A. Mohamed. « Soil Erosion and Discharge in the Blue Nile Basin : Trends and Challenges ». Dans Nile River Basin, 133–47. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02720-3_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Desalegn, Dereje T., Seleshi B. Awulachew et Semu A. Moges. « Blue Nile (Abbay) Hydropower Potential, Prioritization, and Trade-Offs on Priority Investments ». Dans Nile River Basin, 321–34. Dordrecht : Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0689-7_16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Reitberger, Bianca, et Matthew McCartney. « Concepts of Environmental Flow Assessment and Challenges in the Blue Nile Basin, Ethiopia ». Dans Nile River Basin, 337–58. Dordrecht : Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0689-7_17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Rientjes, Tom H. M., Alemseged T. Haile, Ambro S. M. Gieske, Ben H. P. Maathuis et Emad Habib. « Satellite Based Cloud Detection and Rainfall Estimation in the Upper Blue Nile Basin ». Dans Nile River Basin, 93–107. Dordrecht : Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0689-7_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Blue Nile River"

1

Gani, Nahid D., Shelby Bowden et Matthijs C. van Soest. « TIMING OF THE BLUE NILE CANYON INCISION : AN UNDERSTANDING FROM LOW-TEMPERATURE THERMOCHRONOLOGY FROM NORTHERN AND SOUTHERN SECTIONS OF THE RIVER ». Dans GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-320825.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Blue Nile River"

1

Johnston, M. Robyn, et Matthew McCartney. Inventory of water storage types in the Blue Nile and Volta River Basins. International Water Management Institute (IWMI)., 2010. http://dx.doi.org/10.5337/2010.214.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zemadim, B., M. McCartney, S. Langan et S. Sharma. A participatory approach for hydrometeorological monitoring in the Blue Nile River Basin of Ethiopia. International Water Management Institute (IWMI)., 2013. http://dx.doi.org/10.5337/2014.200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie