Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Boundary layer.

Articles de revues sur le sujet « Boundary layer »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Boundary layer ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Bösenberg, Jens, and Holger Linné. "Laser remote sensing of the planetary boundary layer." Meteorologische Zeitschrift 11, no. 4 (2002): 233–40. http://dx.doi.org/10.1127/0941-2948/2002/0011-0233.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Chlond, Andreas, and Hartmut Grassl. "The atmospheric boundary layer." Meteorologische Zeitschrift 11, no. 4 (2002): 227. http://dx.doi.org/10.1127/0941-2948/2002/0011-0227.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Holloway, Simon, Hugo Ricketts, and Geraint Vaughan. "Boundary layer temperature measurements of a noctual urban boundary layer." EPJ Web of Conferences 176 (2018): 06004. http://dx.doi.org/10.1051/epjconf/201817606004.

Texte intégral
Résumé :
A low-power lidar system based in Manchester, United Kingdom has been developed to measure temperature profiles in the nocturnal urban boundary layer. The lidar transmitter uses a 355nm diode-pumped solid state Nd:YAG laser and two narrow-band interference filters in the receiver filter out rotational Raman lines that are dependent on temperature. The spectral response of the lidar is calibrated using a monochromator. Temperature profiles measured by the system are calibrated by comparison to co-located radiosondes.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Mamtaz, Farhana, Ahammad Hossain, and Nusrat Sharmin. "Solution of Boundary Layer and Thermal Boundary Layer Equation." Asian Research Journal of Mathematics 11, no. 4 (2018): 1–15. http://dx.doi.org/10.9734/arjom/2018/45267.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Donnelly, M. J., O. K. Rediniotis, S. A. Ragab, and D. P. Telionis. "The Interaction of Rolling Vortices With a Turbulent Boundary Layer." Journal of Fluids Engineering 117, no. 4 (1995): 564–70. http://dx.doi.org/10.1115/1.2817302.

Texte intégral
Résumé :
Laser-Doppler velocimetry is employed to measure the periodic field created by releasing spanwise vortices in a turbulent boundary layer. Phase-averaged vorticity and turbulence level contours are estimated and presented. It is found that vortices with diameter of the order of the boundary layer quickly diffuse and disappear while their turbulent kinetic energy spreads uniformly across the entire boundary layer. Larger vortices have a considerably longer life span and in turn feed more vorticity into the boundary layer.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kenyon, Kern E. "Curvature Boundary Layer." Physics Essays 16, no. 1 (2003): 74–85. http://dx.doi.org/10.4006/1.3025569.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Vranková, Andrea, and Milan Palko. "Atmospheric Boundary Layer." Applied Mechanics and Materials 820 (January 2016): 338–44. http://dx.doi.org/10.4028/www.scientific.net/amm.820.338.

Texte intégral
Résumé :
Atmospheric Boundary Layer (ABL) is the lowest part of the troposphere. The main feature of the Atmospheric Boundary Layer is the turbulent nature of the flow. The thickness of the boundary layer, formed by flowing air friction on the earth’s surface under various conditions move in quite a wide range. ABL is generally defined as being 0.5 km above the surface, although it can extend up to 2 km depending on time and location. The flow properties are most important over the surface of solid objects, which carry out all the reactions between fluid and solid.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Müller, Bernhard M. "Boundary‐layer microphone." Journal of the Acoustical Society of America 96, no. 5 (1994): 3206. http://dx.doi.org/10.1121/1.411273.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Piau, J. M. "Viscoplastic boundary layer." Journal of Non-Newtonian Fluid Mechanics 102, no. 2 (2002): 193–218. http://dx.doi.org/10.1016/s0377-0257(01)00178-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Fernholz, H. H. "Boundary Layer Theory." European Journal of Mechanics - B/Fluids 20, no. 1 (2001): 155–57. http://dx.doi.org/10.1016/s0997-7546(00)01101-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Cha, S. S., R. K. Ahluwalia, and K. H. Im. "Boundary layer nucleation." International Journal of Heat and Mass Transfer 32, no. 5 (1989): 825–35. http://dx.doi.org/10.1016/0017-9310(89)90231-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Bahl, Ravi. "Boundary-layer blowing." AIAA Journal 23, no. 1 (1985): 157–58. http://dx.doi.org/10.2514/3.8887.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Koizumi, David H. "Boundary layer microphone." Journal of the Acoustical Society of America 113, no. 2 (2003): 683. http://dx.doi.org/10.1121/1.1560240.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Schmidt, Axel, and Michael Nickel. "Boundary layer adapter." Journal of the Acoustical Society of America 128, no. 4 (2010): 2252. http://dx.doi.org/10.1121/1.3500761.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Garratt, J. R. "Boundary layer climates." Earth-Science Reviews 27, no. 3 (1990): 265. http://dx.doi.org/10.1016/0012-8252(90)90005-g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Holtslag, Bert. "Preface: GEWEX Atmospheric Boundary-layer Study (GABLS) on Stable Boundary Layers." Boundary-Layer Meteorology 118, no. 2 (2006): 243–46. http://dx.doi.org/10.1007/s10546-005-9008-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Anderson, E. J., W. R. McGillis, and M. A. Grosenbaugh. "The boundary layer of swimming fish." Journal of Experimental Biology 204, no. 1 (2001): 81–102. http://dx.doi.org/10.1242/jeb.204.1.81.

Texte intégral
Résumé :
Tangential and normal velocity profiles of the boundary layer surrounding live swimming fish were determined by digital particle tracking velocimetry, DPTV. Two species were examined: the scup Stenotomus chrysops, a carangiform swimmer, and the smooth dogfish Mustelus canis, an anguilliform swimmer. Measurements were taken at several locations over the surfaces of the fish and throughout complete undulatory cycles of their propulsive motions. The Reynolds number based on length, Re, ranged from 3×10(3) to 3×10(5). In general, boundary layer profiles were found to match known laminar and turbul
Styles APA, Harvard, Vancouver, ISO, etc.
18

Chehroudi, B., and R. L. Simpson. "Space–time results for a separating turbulent boundary layer using a rapidly scanning laser anemometer." Journal of Fluid Mechanics 160 (November 1985): 77–92. http://dx.doi.org/10.1017/s0022112085003391.

Texte intégral
Résumé :
A rapidly scanning one-velocity-component directionally sensitive fringe-type laser-Doppler anemometer which scans the measurement volume perpendicular to the optical axis of the transmitting optics was used to investigate the flow structure of the steady freestream separated turbulent boundary layer of Simpson, Chew & Shivaprasad (1981a). Space–time correlations were obtained for the first time in a separated turbulent boundary layer and showed that the integral lengthscale Ly for the large eddies grows in size towards detachment, although the ratio of this lengthscale to the boundary-lay
Styles APA, Harvard, Vancouver, ISO, etc.
19

Taylor, Peter A. "Marine Stratus—A Boundary-Layer Model." Atmosphere 15, no. 5 (2024): 585. http://dx.doi.org/10.3390/atmos15050585.

Texte intégral
Résumé :
A relatively simple 1D RANS model of the time evolution of the planetary boundary layer is extended to include water vapor and cloud droplets plus transfers between them. Radiative fluxes and flux divergence are also included. An underlying ocean surface is treated as a source of water vapor and as a sink for cloud or fog droplets. With a constant sea surface temperature and a steady wind, initially dry or relatively dry air will moisten, starting at the surface. Turbulent boundary layer mixing will then lead towards a layer with a well-mixed potential temperature (and so temperature decreasin
Styles APA, Harvard, Vancouver, ISO, etc.
20

Xu, Dachuan, Yunsong Gu, Xinglong Gao, Zebin Ren, and Jingxiang Chen. "Experimental Investigation on Boundary Layer Control and Pressure Performance for Low Reynolds Flow with Chemical Reaction." Applied Sciences 13, no. 20 (2023): 11335. http://dx.doi.org/10.3390/app132011335.

Texte intégral
Résumé :
This study examines boundary layer control and pressure recovery in low Reynolds number supersonic flow with chemical reactions in a chemical laser system. Our work prescribes a novel boundary layer control method for the optical cavity of a chemical laser system, and a design of a supersonic diffuser is compared and proposed to make a stable flow for the system. The flow characteristics of a low Reynolds number and internal reaction heat release were analyzed. Three types of experimental pieces were designed to passively control the boundary layer in the optical cavity. An active booster-type
Styles APA, Harvard, Vancouver, ISO, etc.
21

Carpenter, D. L., and J. Lemaire. "The Plasmasphere Boundary Layer." Annales Geophysicae 22, no. 12 (2004): 4291–98. http://dx.doi.org/10.5194/angeo-22-4291-2004.

Texte intégral
Résumé :
Abstract. As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist
Styles APA, Harvard, Vancouver, ISO, etc.
22

Iamandi, Constantin, Andrei Georgescu, and Cristian Erbasu. "Atmospheric Boundary Layer Change." International Journal of Fluid Mechanics Research 29, no. 3-4 (2002): 5. http://dx.doi.org/10.1615/interjfluidmechres.v29.i3-4.170.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Vranková, Andrea, and Milan Palko. "Atmospheric Boundary Layer Modelling." Applied Mechanics and Materials 820 (January 2016): 351–58. http://dx.doi.org/10.4028/www.scientific.net/amm.820.351.

Texte intégral
Résumé :
The aim of the paper was to define the input options over the boundary layer, as the entrance boundary conditions for simulation in ANSYS. The boundary layer is designed for use in external aerodynamics of buildings (part of the urban structure) for selected sites occurring in the territory of the Slovak Republic.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Donner, L. J. "The atmospheric boundary layer." Eos, Transactions American Geophysical Union 76, no. 17 (1995): 177. http://dx.doi.org/10.1029/95eo00101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Hiraoka, H., M. Ohashi, Susumu Kurita, et al. "TC4 Atmospheric Boundary Layer." Wind Engineers, JAWE 2006, no. 108 (2006): 693–708. http://dx.doi.org/10.5359/jawe.2006.693.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

BLOTTNER, F. G. "Chemical Nonequilibrium Boundary Layer." Journal of Spacecraft and Rockets 40, no. 5 (2003): 810–18. http://dx.doi.org/10.2514/2.6907.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Swain, Mark R., and Hubert Gallée. "Antarctic Boundary Layer Seeing." Publications of the Astronomical Society of the Pacific 118, no. 846 (2006): 1190–97. http://dx.doi.org/10.1086/507153.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Anderson, John D. "Ludwig Prandtl’s Boundary Layer." Physics Today 58, no. 12 (2005): 42–48. http://dx.doi.org/10.1063/1.2169443.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Kerschen, E. J. "Boundary Layer Receptivity Theory." Applied Mechanics Reviews 43, no. 5S (1990): S152—S157. http://dx.doi.org/10.1115/1.3120795.

Texte intégral
Résumé :
The receptivity mechanisms by which free-stream disturbances generate instability waves in laminar boundary layers are discussed. Free-stream disturbances have wavelengths which are generally much longer than those of instability waves. Hence, the transfer of energy from the free-stream disturbance to the instability wave requires a wavelength conversion mechanism. Recent analyses using asymptotic methods have shown that the wavelength conversion takes place in regions of the boundary layer where the mean flow adjusts on a short streamwise length scale. This paper reviews recent progress in th
Styles APA, Harvard, Vancouver, ISO, etc.
30

Bridges, Thomas J., and Philip J. Morris. "Boundary layer stability calculations." Physics of Fluids 30, no. 11 (1987): 3351. http://dx.doi.org/10.1063/1.866467.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Esplin, G. J. "Boundary Layer Emission Monitoring." JAPCA 38, no. 9 (1988): 1158–61. http://dx.doi.org/10.1080/08940630.1988.10466465.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Mahrt, L. "Nocturnal Boundary-Layer Regimes." Boundary-Layer Meteorology 88, no. 2 (1998): 255–78. http://dx.doi.org/10.1023/a:1001171313493.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Trowbridge, John H., and Steven J. Lentz. "The Bottom Boundary Layer." Annual Review of Marine Science 10, no. 1 (2018): 397–420. http://dx.doi.org/10.1146/annurev-marine-121916-063351.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Arav, Nahum, and Mitchell C. Begelman. "Radiation-viscous boundary layer." Astrophysical Journal 401 (December 1992): 125. http://dx.doi.org/10.1086/172045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Cheskidov, Alexey. "Turbulent boundary layer equations." Comptes Rendus Mathematique 334, no. 5 (2002): 423–27. http://dx.doi.org/10.1016/s1631-073x(02)02275-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

BOTTARO, ALESSANDRO. "A ‘receptive’ boundary layer." Journal of Fluid Mechanics 646 (March 8, 2010): 1–4. http://dx.doi.org/10.1017/s0022112009994228.

Texte intégral
Résumé :
Receptivity is the process which describes how environmental disturbances (such as gusts, acoustic waves or wall roughness) are filtered by a boundary layer and turned into downstream-growing waves. It is closely related to the identification of initial conditions for the disturbances and requires knowledge of the characteristics of the specific external forcing field. Without such a knowledge, it makes sense to focus on worst case scenarios and search for those initial states which maximize the disturbance amplitude at a given downstream position, and hence to identify upper bounds on growth
Styles APA, Harvard, Vancouver, ISO, etc.
37

Bénech, B. "The atmospheric boundary layer." Atmospheric Research 29, no. 3-4 (1993): 286–87. http://dx.doi.org/10.1016/0169-8095(93)90017-i.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Durand, Pierre. "Atmospheric boundary layer flows." Atmospheric Research 41, no. 2 (1996): 177–78. http://dx.doi.org/10.1016/0169-8095(95)00045-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

King, J. C. "The atmospheric boundary layer." Dynamics of Atmospheres and Oceans 18, no. 1-2 (1993): 115–16. http://dx.doi.org/10.1016/0377-0265(93)90006-s.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

De Keyser, J., M. W. Dunlop, C. J. Owen, et al. "Magnetopause and Boundary Layer." Space Science Reviews 118, no. 1-4 (2005): 231–320. http://dx.doi.org/10.1007/s11214-005-3834-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Simpson, R. L. "Turbulent Boundary-Layer Separation." Annual Review of Fluid Mechanics 21, no. 1 (1989): 205–32. http://dx.doi.org/10.1146/annurev.fl.21.010189.001225.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Wu, Xiaohua, Parviz Moin, and Jean-Pierre Hickey. "Boundary layer bypass transition." Physics of Fluids 26, no. 9 (2014): 091104. http://dx.doi.org/10.1063/1.4893454.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Xu, Qin, and Wei Gu. "Semigeostrophic Frontal Boundary Layer." Boundary-Layer Meteorology 104, no. 1 (2002): 99–110. http://dx.doi.org/10.1023/a:1015565624074.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Businger, J. A. "The atmospheric boundary layer." Earth-Science Reviews 34, no. 4 (1993): 283–84. http://dx.doi.org/10.1016/0012-8252(93)90069-j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Hobbs, S. E. "The atmospheric boundary layer." Journal of Atmospheric and Terrestrial Physics 57, no. 3 (1995): 322. http://dx.doi.org/10.1016/0021-9169(95)90026-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Ostermeyer, Georg-Peter, Thomas Vietor, Michael Müller, David Inkermann, Johannes Otto, and Hendrik Lembeck. "The Boundary Layer Machine." PAMM 17, no. 1 (2017): 159–60. http://dx.doi.org/10.1002/pamm.201710049.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Mahrt, L. "Boundary-layer moisture regimes." Quarterly Journal of the Royal Meteorological Society 117, no. 497 (1991): 151–76. http://dx.doi.org/10.1002/qj.49711749708.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Smith, Roger K., and Michael T. Montgomery. "Hurricane boundary-layer theory." Quarterly Journal of the Royal Meteorological Society 136, no. 652 (2010): 1665–70. http://dx.doi.org/10.1002/qj.679.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Kuntz, D. W., V. A. Amatucci, and A. L. Addy. "Turbulent boundary-layer properties downstream of the shock-wave/boundary-layer interaction." AIAA Journal 25, no. 5 (1987): 668–75. http://dx.doi.org/10.2514/3.9681.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

S. S. PARASNIS, M. K. KULKARNI, and J. S. PILLAI. "Simulation of boundary layer parameters using one dimensional atmospheric boundary layer model." Journal of Agrometeorology 3, no. 1-2 (2001): 261–66. http://dx.doi.org/10.54386/jam.v3i1-2.411.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!