Articles de revues sur le sujet « Brain functional Network »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Brain functional Network ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Chan, John S. Y., Yifeng Wang, Jin H. Yan, and Huafu Chen. "Developmental implications of children’s brain networks and learning." Reviews in the Neurosciences 27, no. 7 (2016): 713–27. http://dx.doi.org/10.1515/revneuro-2016-0007.
Texte intégralWang, Zhongyang, Junchang Xin, Qi Chen, Zhiqiong Wang, and Xinlei Wang. "NDCN-Brain: An Extensible Dynamic Functional Brain Network Model." Diagnostics 12, no. 5 (2022): 1298. http://dx.doi.org/10.3390/diagnostics12051298.
Texte intégralCarnevale, Lorenzo, Angelo Maffei, Alessandro Landolfi, Giovanni Grillea, Daniela Carnevale, and Giuseppe Lembo. "Brain Functional Magnetic Resonance Imaging Highlights Altered Connections and Functional Networks in Patients With Hypertension." Hypertension 76, no. 5 (2020): 1480–90. http://dx.doi.org/10.1161/hypertensionaha.120.15296.
Texte intégralZheng, Weihao, Choong-Wan Woo, Zhijun Yao, et al. "Pain-Evoked Reorganization in Functional Brain Networks." Cerebral Cortex 30, no. 5 (2019): 2804–22. http://dx.doi.org/10.1093/cercor/bhz276.
Texte intégralLi, Gang, Yanting Xu, Yonghua Jiang, Weidong Jiao, Wanxiu Xu, and Jianhua Zhang. "Mental Fatigue Has Great Impact on the Fractal Dimension of Brain Functional Network." Neural Plasticity 2020 (November 12, 2020): 1–11. http://dx.doi.org/10.1155/2020/8825547.
Texte intégralLi, Han, Qizhong Zhang, Ziying Lin, and Farong Gao. "Prediction of Epilepsy Based on Tensor Decomposition and Functional Brain Network." Brain Sciences 11, no. 8 (2021): 1066. http://dx.doi.org/10.3390/brainsci11081066.
Texte intégralLiu, Xiao, Shuaizong Si, Bo Hu, Hai Zhao, and Jian Zhu. "A Generative Network Model of the Human Brain Normal Aging Process." Symmetry 12, no. 1 (2020): 91. http://dx.doi.org/10.3390/sym12010091.
Texte intégralLama, Ramesh Kumar, and Goo-Rak Kwon. "Resting-State Functional Connectivity Difference in Alzheimer’s Disease and Mild Cognitive Impairment Using Threshold-Free Cluster Enhancement." Diagnostics 13, no. 19 (2023): 3074. http://dx.doi.org/10.3390/diagnostics13193074.
Texte intégralBetzel, Richard F. "Organizing principles of whole-brain functional connectivity in zebrafish larvae." Network Neuroscience 4, no. 1 (2020): 234–56. http://dx.doi.org/10.1162/netn_a_00121.
Texte intégralGleiser, Pablo M., and Victor I. Spoormaker. "Modelling hierarchical structure in functional brain networks." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1933 (2010): 5633–44. http://dx.doi.org/10.1098/rsta.2010.0279.
Texte intégralMizuno, Megumi, Tomoyuki Hiroyasu, and Satoru Hiwa. "A Functional NIRS Study of Brain Functional Networks Induced by Social Time Coordination." Brain Sciences 9, no. 2 (2019): 43. http://dx.doi.org/10.3390/brainsci9020043.
Texte intégralWang, Mingliang, Jiashuang Huang, Mingxia Liu, and Daoqiang Zhang. "Functional Connectivity Network Analysis with Discriminative Hub Detection for Brain Disease Identification." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 1198–205. http://dx.doi.org/10.1609/aaai.v33i01.33011198.
Texte intégralZeng, Lingwei, Chunchen Wang, Kewei Sun, et al. "Upregulation of a Small-World Brain Network Improves Inhibitory Control: An fNIRS Neurofeedback Training Study." Brain Sciences 13, no. 11 (2023): 1516. http://dx.doi.org/10.3390/brainsci13111516.
Texte intégralXu, Yuehua, Miao Cao, Xuhong Liao, et al. "Development and Emergence of Individual Variability in the Functional Connectivity Architecture of the Preterm Human Brain." Cerebral Cortex 29, no. 10 (2018): 4208–22. http://dx.doi.org/10.1093/cercor/bhy302.
Texte intégralGordon, Evan M., Timothy O. Laumann, Scott Marek, et al. "Default-mode network streams for coupling to language and control systems." Proceedings of the National Academy of Sciences 117, no. 29 (2020): 17308–19. http://dx.doi.org/10.1073/pnas.2005238117.
Texte intégralLi, Xun, Yu-Feng Zang, and Han Zhang. "Exploring Dynamic Brain Functional Networks Using Continuous “State-Related” Functional MRI." BioMed Research International 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/824710.
Texte intégralHahn, Andreas, Georg S. Kranz, Ronald Sladky, et al. "Individual Diversity of Functional Brain Network Economy." Brain Connectivity 5, no. 3 (2015): 156–65. http://dx.doi.org/10.1089/brain.2014.0306.
Texte intégralHsu, Howard Muchen, Zai-Fu Yao, Kai Hwang, and Shulan Hsieh. "Between-module functional connectivity of the salient ventral attention network and dorsal attention network is associated with motor inhibition." PLOS ONE 15, no. 12 (2020): e0242985. http://dx.doi.org/10.1371/journal.pone.0242985.
Texte intégralLaiou, Petroula, Andrea Biondi, Elisa Bruno, et al. "Temporal Evolution of Multiday, Epileptic Functional Networks Prior to Seizure Occurrence." Biomedicines 10, no. 10 (2022): 2662. http://dx.doi.org/10.3390/biomedicines10102662.
Texte intégralLaiou, Petroula, Andrea Biondi, Elisa Bruno, et al. "Temporal Evolution of Multiday, Epileptic Functional Networks Prior to Seizure Occurrence." Biomedicines 10, no. 10 (2022): 2662. http://dx.doi.org/10.3390/biomedicines10102662.
Texte intégralLaiou, Petroula, Andrea Biondi, Elisa Bruno, et al. "Temporal Evolution of Multiday, Epileptic Functional Networks Prior to Seizure Occurrence." Biomedicines 10, no. 10 (2022): 2662. http://dx.doi.org/10.3390/biomedicines10102662.
Texte intégralLaiou, Petroula, Andrea Biondi, Elisa Bruno, et al. "Temporal Evolution of Multiday, Epileptic Functional Networks Prior to Seizure Occurrence." Biomedicines 10, no. 10 (2022): 2662. http://dx.doi.org/10.3390/biomedicines10102662.
Texte intégralLaiou, Petroula, Andrea Biondi, Elisa Bruno, et al. "Temporal Evolution of Multiday, Epileptic Functional Networks Prior to Seizure Occurrence." Biomedicines 10, no. 10 (2022): 2662. http://dx.doi.org/10.3390/biomedicines10102662.
Texte intégralLaiou, Petroula, Andrea Biondi, Elisa Bruno, et al. "Temporal Evolution of Multiday, Epileptic Functional Networks Prior to Seizure Occurrence." Biomedicines 10, no. 10 (2022): 2662. http://dx.doi.org/10.3390/biomedicines10102662.
Texte intégralLaiou, Petroula, Andrea Biondi, Elisa Bruno, et al. "Temporal Evolution of Multiday, Epileptic Functional Networks Prior to Seizure Occurrence." Biomedicines 10, no. 10 (2022): 2662. http://dx.doi.org/10.3390/biomedicines10102662.
Texte intégralHart, Michael G., Stephen J. Price, and John Suckling. "Functional connectivity networks for preoperative brain mapping in neurosurgery." Journal of Neurosurgery 126, no. 6 (2016): 1941–50. http://dx.doi.org/10.3171/2016.6.jns1662.
Texte intégralGomez Portillo, Ignacio J., and Pablo M. Gleiser. "An Adaptive Complex Network Model for Brain Functional Networks." PLoS ONE 4, no. 9 (2009): e6863. http://dx.doi.org/10.1371/journal.pone.0006863.
Texte intégralZhang, Guifeng, Shanshan Qu, Yu Zheng, et al. "Key Regions of the Cerebral Network are Altered after Electroacupuncture at the Baihui (GV20) and Yintang Acupuncture Points in Healthy Volunteers: An Analysis Based on Resting fcMRI." Acupuncture in Medicine 31, no. 4 (2013): 383–88. http://dx.doi.org/10.1136/acupmed-2012-010301.
Texte intégralDe Vico Fallani, Fabrizio, Jonas Richiardi, Mario Chavez, and Sophie Achard. "Graph analysis of functional brain networks: practical issues in translational neuroscience." Philosophical Transactions of the Royal Society B: Biological Sciences 369, no. 1653 (2014): 20130521. http://dx.doi.org/10.1098/rstb.2013.0521.
Texte intégralOliver, Isaura, Jaroslav Hlinka, Jakub Kopal, and Jörn Davidsen. "Quantifying the Variability in Resting-State Networks." Entropy 21, no. 9 (2019): 882. http://dx.doi.org/10.3390/e21090882.
Texte intégralShah, Disha, Ines Blockx, Georgios A. Keliris, et al. "Cholinergic and serotonergic modulations differentially affect large-scale functional networks in the mouse brain." Brain Structure and Function 221, no. 6 (2015): 3067–79. https://doi.org/10.1007/s00429-015-1087-7.
Texte intégralNavas, Adrián, David Papo, Stefano Boccaletti, et al. "Functional Hubs in Mild Cognitive Impairment." International Journal of Bifurcation and Chaos 25, no. 03 (2015): 1550034. http://dx.doi.org/10.1142/s0218127415500340.
Texte intégralKahali, Sayan, Marcus E. Raichle, and Dmitriy A. Yablonskiy. "The Role of the Human Brain Neuron–Glia–Synapse Composition in Forming Resting-State Functional Connectivity Networks." Brain Sciences 11, no. 12 (2021): 1565. http://dx.doi.org/10.3390/brainsci11121565.
Texte intégralBarredo, Jennifer, Emily Aiken, Mascha van 't Wout-Frank, Benjamin D. Greenberg, Linda L. Carpenter, and Noah S. Philip. "Network Functional Architecture and Aberrant Functional Connectivity in Post-Traumatic Stress Disorder: A Clinical Application of Network Convergence." Brain Connectivity 8, no. 9 (2018): 549–57. http://dx.doi.org/10.1089/brain.2018.0634.
Texte intégralWylie, Korey P., Donald C. Rojas, Jody Tanabe, Laura F. Martin, and Jason R. Tregellas. "Nicotine increases brain functional network efficiency." NeuroImage 63, no. 1 (2012): 73–80. http://dx.doi.org/10.1016/j.neuroimage.2012.06.079.
Texte intégralLanger, Nicolas, Andreas Pedroni, Lorena R. R. Gianotti, Jürgen Hänggi, Daria Knoch, and Lutz Jäncke. "Functional brain network efficiency predicts intelligence." Human Brain Mapping 33, no. 6 (2011): 1393–406. http://dx.doi.org/10.1002/hbm.21297.
Texte intégralCui, Dong, Han Li, Hongyuan Shao, Guanghua Gu, Xiaonan Guo, and Xiaoli Li. "Construction and Analysis of a New Resting-State Whole-Brain Network Model." Brain Sciences 14, no. 3 (2024): 240. http://dx.doi.org/10.3390/brainsci14030240.
Texte intégralLee, Junghan, Deokjong Lee, Kee Namkoong, and Young-Chul Jung. "Aberrant posterior superior temporal sulcus functional connectivity and executive dysfunction in adolescents with internet gaming disorder." Journal of Behavioral Addictions 9, no. 3 (2020): 589–97. http://dx.doi.org/10.1556/2006.2020.00060.
Texte intégralLehnertz, Klaus, and Timo Bröhl. "Functional Importance Backbones of the Brain at Rest, Wakefulness, and Sleep." Brain Sciences 15, no. 7 (2025): 772. https://doi.org/10.3390/brainsci15070772.
Texte intégralHan, Xiao, He Jin, Kuangshi Li, et al. "Acupuncture Modulates Disrupted Whole-Brain Network after Ischemic Stroke: Evidence Based on Graph Theory Analysis." Neural Plasticity 2020 (August 19, 2020): 1–10. http://dx.doi.org/10.1155/2020/8838498.
Texte intégralZhu, Xiaofeng, Hongming Li, Heng Tao Shen, Zheng Zhang, Yanli Ji, and Yong Fan. "Fusing functional connectivity with network nodal information for sparse network pattern learning of functional brain networks." Information Fusion 75 (November 2021): 131–39. http://dx.doi.org/10.1016/j.inffus.2021.03.006.
Texte intégralIraji, Armin, Hanbo Chen, Natalie Wiseman, et al. "Compensation through Functional Hyperconnectivity: A Longitudinal Connectome Assessment of Mild Traumatic Brain Injury." Neural Plasticity 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/4072402.
Texte intégralPeng, Ciyuan, Huafei Huang, Tianqi Guo, et al. "Joint Structural-Functional Brain Graph Transformer." ACM Transactions on Intelligent Systems and Technology, April 12, 2025. https://doi.org/10.1145/3729243.
Texte intégralSoriano. "Spontaneous functional recovery after focal damage in neuronal cultures." March 30, 2020. https://doi.org/10.1523/ENEURO.0254-19.2019.
Texte intégralHuang, Yali, Charles M. Glasier, Xiaoxu Na, and Xiawei Ou. "White matter functional networks in the developing brain." Frontiers in Neuroscience 18 (October 23, 2024). http://dx.doi.org/10.3389/fnins.2024.1467446.
Texte intégralZhang, Xue, Yingying Xie, Jie Tang, et al. "Dissect Relationships Between Gene Co-expression and Functional Connectivity in Human Brain." Frontiers in Neuroscience 15 (December 9, 2021). http://dx.doi.org/10.3389/fnins.2021.797849.
Texte intégralGuo, Yi, Zhonghua Lin, Zhen Fan, and Xin Tian. "Epileptic brain network mechanisms and neuroimaging techniques for the brain network." Neural Regeneration Research, December 21, 2023. http://dx.doi.org/10.4103/1673-5374.391307.
Texte intégralZanin, Massimiliano, Bahar Güntekin, Tuba Aktürk, et al. "Telling functional networks apart using ranked network features stability." Scientific Reports 12, no. 1 (2022). http://dx.doi.org/10.1038/s41598-022-06497-w.
Texte intégralSaberi, Majid, Jenny R. Rieck, Shamim Golafshan, et al. "The brain selectively allocates energy to functional brain networks under cognitive control." Scientific Reports 14, no. 1 (2024). https://doi.org/10.1038/s41598-024-83696-7.
Texte intégralCao, Bolin, Yu Guo, Fengguang Xia, et al. "Dynamic reconfiguration of brain functional networks in world class gymnasts: a resting-state functional MRI study." Brain Communications, February 19, 2025. https://doi.org/10.1093/braincomms/fcaf083.
Texte intégral