Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Breathomics.

Articles de revues sur le sujet « Breathomics »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Breathomics ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

van der Schee, Marc Philippe, Tamara Paff, Paul Brinkman, Willem Marinus Christiaan van Aalderen, Eric Gerardus Haarman, and Peter Jan Sterk. "Breathomics in Lung Disease." Chest 147, no. 1 (2015): 224–31. http://dx.doi.org/10.1378/chest.14-0781.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zolkipli-Cunningham, Zarazuela, Jane C. Naviaux, Tomohiro Nakayama, et al. "Metabolic and behavioral features of acute hyperpurinergia and the maternal immune activation mouse model of autism spectrum disorder." PLOS ONE 16, no. 3 (2021): e0248771. http://dx.doi.org/10.1371/journal.pone.0248771.

Texte intégral
Résumé :
Since 2012, studies in mice, rats, and humans have suggested that abnormalities in purinergic signaling may be a final common pathway for many genetic and environmental causes of autism spectrum disorder (ASD). The current study in mice was conducted to characterize the bioenergetic, metabolomic, breathomic, and behavioral features of acute hyperpurinergia triggered by systemic injection of the purinergic agonist and danger signal, extracellular ATP (eATP). Responses were studied in C57BL/6J mice in the maternal immune activation (MIA) model and controls. Basal metabolic rates and locomotor ac
Styles APA, Harvard, Vancouver, ISO, etc.
3

Venkatesan, Thirumalai Venky. "Revolutionising disease detection: The emergence of non-invasive VOC breathomics." Open Access Government 41, no. 1 (2024): 74–75. http://dx.doi.org/10.56367/oag-041-10923.

Texte intégral
Résumé :
Revolutionising disease detection: The emergence of non-invasive VOC breathomics Breathomics marks a revolutionary approach to disease detection by analyzing the chemical composition of exhaled breath. As the world recovers from the recent global health crises, the detection and management of pandemic diseases like COVID-19, RSV, and flu have come to the forefront. The COVID-19 pandemic alone has affected over 96 million people in the US, with a devastating count of more than a million fatalities. Similarly, respiratory syncytial virus (RSV) and influenza (flu) collectively burden the healthca
Styles APA, Harvard, Vancouver, ISO, etc.
4

Gallos, Ioannis K., Dimitrios Tryfonopoulos, Gidi Shani, Angelos Amditis, Hossam Haick, and Dimitra D. Dionysiou. "Advancing Colorectal Cancer Diagnosis with AI-Powered Breathomics: Navigating Challenges and Future Directions." Diagnostics 13, no. 24 (2023): 3673. http://dx.doi.org/10.3390/diagnostics13243673.

Texte intégral
Résumé :
Early detection of colorectal cancer is crucial for improving outcomes and reducing mortality. While there is strong evidence of effectiveness, currently adopted screening methods present several shortcomings which negatively impact the detection of early stage carcinogenesis, including low uptake due to patient discomfort. As a result, developing novel, non-invasive alternatives is an important research priority. Recent advancements in the field of breathomics, the study of breath composition and analysis, have paved the way for new avenues for non-invasive cancer detection and effective moni
Styles APA, Harvard, Vancouver, ISO, etc.
5

Peel, Adam M., Yoon K. Loke, and Andrew M. Wilson. "Asthma Breathomics and Biomedium Consideration." Chest 153, no. 5 (2018): 1283. http://dx.doi.org/10.1016/j.chest.2018.02.029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Drera, Giovanni, Sonia Freddi, Aleksei V. Emelianov, et al. "Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease." RSC Advances 11, no. 48 (2021): 30270–82. http://dx.doi.org/10.1039/d1ra03337a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kistenev, Yury, Alexey Borisov, Victor Nikolaev, Denis Vrazhnov, and Dmytry Kuzmin. "Laser photoacoustic spectroscopy applications in breathomics." Journal of Biomedical Photonics & Engineering 5, no. 1 (2019): 010303. http://dx.doi.org/10.18287/jbpe19.05.010303.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Freddi, Sonia, Camilla Marzuoli, Stefania Pagliara, Giovanni Drera, and Luigi Sangaletti. "Targeting biomarkers in the gas phase through a chemoresistive electronic nose based on graphene functionalized with metal phthalocyanines." RSC Advances 13, no. 1 (2023): 251–63. http://dx.doi.org/10.1039/d2ra07607a.

Texte intégral
Résumé :
An electronic nose based on graphene chemiresistor sensors functionalized with phthalocyanines has been developed to detect selected biomarkers in the gas phase for breathomics, environmental monitoring, and food control applications.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ivan, Ignatius, Ignatius Ivan, Maureen Miracle Stella, et al. "Plasmodium falciparum Breath Metabolomics (Breathomics) Analysis as a Non-Invasive Practical Method to Diagnose Malaria in Pediatric." Indonesian Journal of Tropical and Infectious Disease 9, no. 1 (2021): 24. http://dx.doi.org/10.20473/ijtid.v9i1.24069.

Texte intégral
Résumé :
Children under 5 years of age are particularly vulnerable to malaria. Malaria has caused 445,000 deaths worldwide. Currently, rapid diagnostic tests (RDTs) are the fastest method to diagnose malaria. However, there are limitations that exist such as low sensitivity in detecting infections with low parasitemia. Practical, non-invasive and high ability tests to detect parasite are needed to find specific biomarkers for P. falciparum infection to determine the potential of P. falciparum 4 thioether in breathomics analysis by GC-MS as a practical non-invasive method in diagnosing malaria in pediat
Styles APA, Harvard, Vancouver, ISO, etc.
10

Azim, Adnan, Clair Barber, Paddy Dennison, John Riley, and Peter Howarth. "Exhaled volatile organic compounds in adult asthma: a systematic review." European Respiratory Journal 54, no. 3 (2019): 1900056. http://dx.doi.org/10.1183/13993003.00056-2019.

Texte intégral
Résumé :
The search for biomarkers that can guide precision medicine in asthma, particularly those that can be translated to the clinic, has seen recent interest in exhaled volatile organic compounds (VOCs). Given the number of studies reporting “breathomics” findings and its growing integration in clinical trials, we performed a systematic review of the literature to summarise current evidence and understanding of breathomics technology in asthma.A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-oriented systematic search was performed (CRD42017084145) of MEDLINE, Embase an
Styles APA, Harvard, Vancouver, ISO, etc.
11

Brinkman, Paul, Anke-Hilse Maitland-van der Zee, and Ariane H. Wagener. "Breathomics and treatable traits for chronic airway diseases." Current Opinion in Pulmonary Medicine 25, no. 1 (2019): 94–100. http://dx.doi.org/10.1097/mcp.0000000000000534.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Ferraro, Valentina Agnese, Silvia Carraro, Paola Pirillo, et al. "Breathomics in Asthmatic Children Treated with Inhaled Corticosteroids." Metabolites 10, no. 10 (2020): 390. http://dx.doi.org/10.3390/metabo10100390.

Texte intégral
Résumé :
Background: “breathomics” enables indirect analysis of metabolic patterns underlying a respiratory disease. In this study, we analyze exhaled breath condensate (EBC) in asthmatic children before (T0) and after (T1) a three-week course of inhaled beclomethasone dipropionate (BDP). Methods: we recruited steroid-naive asthmatic children for whom inhaled steroids were indicated and healthy children, evaluating asthma control, spirometry and EBC (in asthmatics at T0 and T1). A liquid-chromatography–mass-spectrometry untargeted analysis was applied to EBC and a mass spectrometry-based target analysi
Styles APA, Harvard, Vancouver, ISO, etc.
13

Sterk, Peter J., Niki Fens, and G. Elisiana Carpagnano. "Wake-up call by breathomics in sleep apnoea." European Respiratory Journal 42, no. 1 (2013): 1–4. http://dx.doi.org/10.1183/09031936.00000113.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

FENS, N., R. A. DOUMA, P. J. STERK, and P. W. KAMPHUISEN. "Breathomics as a diagnostic tool for pulmonary embolism." Journal of Thrombosis and Haemostasis 8, no. 12 (2010): 2831–33. http://dx.doi.org/10.1111/j.1538-7836.2010.04064.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Peel, Adam M., Andrew M. Wilson, and Yoon K. Loke. "Asthma breathomics-promising biomarkers in need of validation." Pediatric Pulmonology 53, no. 3 (2018): 263–65. http://dx.doi.org/10.1002/ppul.23941.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Yockell-Lelièvre, Hélène, Romy Philip, Palash Kaushik, Ashok Prabhu Masilamani, and Sarkis H. Meterissian. "Breathomics: A Non-Invasive Approach for the Diagnosis of Breast Cancer." Bioengineering 12, no. 4 (2025): 411. https://doi.org/10.3390/bioengineering12040411.

Texte intégral
Résumé :
Breast cancer is the most commonly diagnosed cancer worldwide, underscoring the critical need for effective early detection methods to reduce mortality. Traditional detection techniques, such as mammography, present significant limitations, particularly in women with dense breast tissue, highlighting the need for alternative screening approaches. Breathomics, based on the analysis of Volatile Organic Compounds (VOCs) present in exhaled breath, offers a non-invasive, potentially transformative diagnostic tool. These VOCs are metabolic byproducts from various organs of the human body whose prese
Styles APA, Harvard, Vancouver, ISO, etc.
17

Neerincx, Anne H., Susanne J. H. Vijverberg, Lieuwe D. J. Bos, et al. "Breathomics from exhaled volatile organic compounds in pediatric asthma." Pediatric Pulmonology 52, no. 12 (2017): 1616–27. http://dx.doi.org/10.1002/ppul.23785.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Golsanamlu, Zahra, Han Jin, Jafar Soleymani, and Abolghasem Jouyban. "Application of high-resolution analytical techniques in breathomics studies." Microchemical Journal 211 (April 2025): 113073. https://doi.org/10.1016/j.microc.2025.113073.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Daniel, DArul Pon, and K. Thangavel. "Breathomics for gastric cancer classification using back-propagation neural network." Journal of Medical Signals & Sensors 6, no. 3 (2016): 172. http://dx.doi.org/10.4103/2228-7477.186879.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Sterk, Peter J. "Modern Inflammatory Phenotyping of Asthma. Breathomics Is Here to Stay." American Journal of Respiratory and Critical Care Medicine 200, no. 4 (2019): 405–6. http://dx.doi.org/10.1164/rccm.201904-0733ed.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Ray, Bishakha, Saurabh Parmar, Varsha Vijayan, Satyendra Vishwakarma, and Suwarna Datar. "Detection of trace volatile organic compounds in spiked breath samples: a leap towards breathomics." Nanotechnology 33, no. 20 (2022): 205505. http://dx.doi.org/10.1088/1361-6528/ac4c5e.

Texte intégral
Résumé :
Abstract Breathomics is the future of non-invasive point-of-care devices. The field of breathomics can be split into the isolation of disease-specific volatile organic compounds (VOCs) and their detection. In the present work, an array of five quartz tuning fork (QTF)-based sensors modified by polymer with nanomaterial additive has been utilized. The array has been used to detect samples of human breath spiked with ∼0.5 ppm of known VOCs namely, acetone, acetaldehyde, octane, decane, ethanol, methanol, styrene, propylbenzene, cyclohexanone, butanediol, and isopropyl alcohol which are bio-marke
Styles APA, Harvard, Vancouver, ISO, etc.
22

Bos, Lieuwe D., Peter J. Sterk, and Stephen J. Fowler. "Breathomics in the setting of asthma and chronic obstructive pulmonary disease." Journal of Allergy and Clinical Immunology 138, no. 4 (2016): 970–76. http://dx.doi.org/10.1016/j.jaci.2016.08.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Jia, Zhunan, Abhijeet Patra, Viknish Kutty, and Thirumalai Venkatesan. "Critical Review of Volatile Organic Compound Analysis in Breath and In Vitro Cell Culture for Detection of Lung Cancer." Metabolites 9, no. 3 (2019): 52. http://dx.doi.org/10.3390/metabo9030052.

Texte intégral
Résumé :
Breath analysis is a promising technique for lung cancer screening. Despite the rapid development of breathomics in the last four decades, no consistent, robust, and validated volatile organic compound (VOC) signature for lung cancer has been identified. This review summarizes the identified VOC biomarkers from both exhaled breath analysis and in vitro cultured lung cell lines. Both clinical and in vitro studies have produced inconsistent, and even contradictory, results. Methodological issues that lead to these inconsistencies are reviewed and discussed in detail. Recommendations on addressin
Styles APA, Harvard, Vancouver, ISO, etc.
24

Lamote, Kevin, Kristiaan Nackaerts, and Jan P. van Meerbeeck. "Strengths, Weaknesses, and Opportunities of Diagnostic Breathomics in Pleural Mesothelioma—A Hypothesis." Cancer Epidemiology Biomarkers & Prevention 23, no. 6 (2014): 898–908. http://dx.doi.org/10.1158/1055-9965.epi-13-0737.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Couto, Mariana, Corália Barbosa, Diana Silva, et al. "Oxidative stress in asthmatic and non-asthmatic adolescent swimmers-A breathomics approach." Pediatric Allergy and Immunology 28, no. 5 (2017): 452–57. http://dx.doi.org/10.1111/pai.12729.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Ridolo, Erminia, Cristoforo Incorvaia, Enrico Heffler, Carlo Cavaliere, Giovanni Paoletti, and Giorgio Walter Canonica. "The Present and Future of Allergen Immunotherapy in Personalized Medicine." Journal of Personalized Medicine 12, no. 5 (2022): 774. http://dx.doi.org/10.3390/jpm12050774.

Texte intégral
Résumé :
Allergic diseases are particularly suitable for personalized medicine, because they meet the needs for therapeutic success, which include a known molecular mechanism of the disease, a diagnostic tool for that disease and a treatment that blocks this mechanism. A range of tools is available for personalized allergy diagnosis, including molecular diagnostics, treatable traits and omics (i.e., proteomics, epigenomics, metabolomics, transcriptomics and breathomics), to predict patient response to therapies, detect biomarkers and mediators and assess disease control status. Such tools enhance aller
Styles APA, Harvard, Vancouver, ISO, etc.
27

Arasaradnam, R. P., M. McFarlane, K. Ling, et al. "Breathomics—exhaled volatile organic compound analysis to detect hepatic encephalopathy: a pilot study." Journal of Breath Research 10, no. 1 (2016): 016012. http://dx.doi.org/10.1088/1752-7155/10/1/016012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Iacubino, Martina, Ioannis Parodis, Lorenzo Rocco, et al. "BREATHOMICS IN SYSTEMIC LUPUS ERYTHEMATOSUS: UNCOVERING NONINVASIVE MARKERS OF DISEASE ACTIVITY AND FATIGUE." Journal of Rheumatology 52, Suppl 1 (2025): 92.1–92. https://doi.org/10.3899/jrheum.2025-0390.pv024.

Texte intégral
Résumé :
PV024 / #545Poster Topic:AS04 - BiomarkersBackground/Purpose3TR (taxonomy, treatment, targets and remission) aims to provide insights into the mechanisms of response and nonresponse to treatment in autoimmune diseases. The lupus arm of 3TR focuses on identifying reliable biomarkers that could serve as indicators of disease or disease severity, and molecular processes that determine patients’ response to medication. Volatile organic compounds (VOCs) can be generated by metabolic processes in the body being impacted by disease pathology. VOCs diffuse from their point of origin into the blood to
Styles APA, Harvard, Vancouver, ISO, etc.
29

Freddi, Sonia, and Luigi Sangaletti. "Trends in the Development of Electronic Noses Based on Carbon Nanotubes Chemiresistors for Breathomics." Nanomaterials 12, no. 17 (2022): 2992. http://dx.doi.org/10.3390/nano12172992.

Texte intégral
Résumé :
The remarkable potential of breath analysis in medical care and diagnosis, and the consequent development of electronic noses, is currently attracting the interest of the research community. This is mainly due to the possibility of applying the technique for early diagnosis, screening campaigns, or tracking the effectiveness of treatment. Carbon nanotubes (CNTs) are known to be good candidates for gas sensing, and they have been recently considered for the development of electronic noses. The present work has the aim of reviewing the available literature on the development of CNTs-based electr
Styles APA, Harvard, Vancouver, ISO, etc.
30

Campagna, Davide, Fabio Cibella, Pasquale Caponnetto, et al. "Changes in breathomics from a 1-year randomized smoking cessation trial of electronic cigarettes." European Journal of Clinical Investigation 46, no. 8 (2016): 698–706. http://dx.doi.org/10.1111/eci.12651.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Li, Wenwen, Yong Liu, Yu Liu, Shouquan Cheng, and Yixiang Duan. "Exhaled isopropanol: new potential biomarker in diabetic breathomics and its metabolic correlations with acetone." RSC Advances 7, no. 28 (2017): 17480–88. http://dx.doi.org/10.1039/c7ra00815e.

Texte intégral
Résumé :
Concomitant findings of acetone (ACE) and isopropanol (IPA) in blood and other biological samples have been reported in diabetic decedents and clinic cases, but exhaled IPA has rarely been studied in breath research.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Kiss, Helga, Zoltán Örlős, Áron Gellért, et al. "Exhaled Biomarkers for Point-of-Care Diagnosis: Recent Advances and New Challenges in Breathomics." Micromachines 14, no. 2 (2023): 391. http://dx.doi.org/10.3390/mi14020391.

Texte intégral
Résumé :
Cancers, chronic diseases and respiratory infections are major causes of mortality and present diagnostic and therapeutic challenges for health care. There is an unmet medical need for non-invasive, easy-to-use biomarkers for the early diagnosis, phenotyping, predicting and monitoring of the therapeutic responses of these disorders. Exhaled breath sampling is an attractive choice that has gained attention in recent years. Exhaled nitric oxide measurement used as a predictive biomarker of the response to anti-eosinophil therapy in severe asthma has paved the way for other exhaled breath biomark
Styles APA, Harvard, Vancouver, ISO, etc.
33

Dutta, Priyanka, and Govind Gupta. "A mini review on wearable electronics in Breathomics: The use of metal oxide nanomaterials." Microchemical Journal 214 (July 2025): 113911. https://doi.org/10.1016/j.microc.2025.113911.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Tondo, Pasquale, Giulia Scioscia, Marcin Di Marco, et al. "Electronic Nose Analysis of Exhaled Breath Volatile Organic Compound Profiles during Normoxia, Hypoxia, and Hyperoxia." Molecules 29, no. 18 (2024): 4358. http://dx.doi.org/10.3390/molecules29184358.

Texte intégral
Résumé :
This study investigates volatile organic compound (VOC) profiles in the exhaled breath of normal subjects under different oxygenation conditions—normoxia (FiO2 21%), hypoxia (FiO2 11%), and hyperoxia (FiO2 35%)—using an electronic nose (e-nose). We aim to identify significant differences in VOC profiles among the three conditions utilizing principal component analysis (PCA) and canonical discriminant analysis (CDA). Our results indicate distinct VOC patterns corresponding to each oxygenation state, demonstrating the potential of e-nose technology in detecting physiological changes in breath co
Styles APA, Harvard, Vancouver, ISO, etc.
35

Moninuola, Funmilayo S., Oluwadamilola Oshin, Emmanuel Adetiba, et al. "A Review of Technological Progression from Radiomics to Breathomics for Early Detection of Lung Cancer." Journal of Computer Science 17, no. 11 (2021): 1071–84. http://dx.doi.org/10.3844/jcssp.2021.1071.1084.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Wang, Peiyu, Qi Huang, Shushi Meng, et al. "Identification of lung cancer breath biomarkers based on perioperative breathomics testing: A prospective observational study." eClinicalMedicine 47 (May 2022): 101384. http://dx.doi.org/10.1016/j.eclinm.2022.101384.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

de Vries, Rianne, Yennece W. F. Dagelet, Pien Spoor, et al. "Clinical and inflammatory phenotyping by breathomics in chronic airway diseases irrespective of the diagnostic label." European Respiratory Journal 51, no. 1 (2018): 1701817. http://dx.doi.org/10.1183/13993003.01817-2017.

Texte intégral
Résumé :
Asthma and chronic obstructive pulmonary disease (COPD) are complex and overlapping diseases that include inflammatory phenotypes. Novel anti-eosinophilic/anti-neutrophilic strategies demand rapid inflammatory phenotyping, which might be accessible from exhaled breath.Our objective was to capture clinical/inflammatory phenotypes in patients with chronic airway disease using an electronic nose (eNose) in a training and validation set.This was a multicentre cross-sectional study in which exhaled breath from asthma and COPD patients (n=435; training n=321 and validation n=114) was analysed using
Styles APA, Harvard, Vancouver, ISO, etc.
38

Banga, Ivneet, Anirban Paul, Nathan Kodjo Mintah Churcher, Ruchita Mahesh Kumar, Sriram Muthukumar, and Shalini Prasad. "Passive breathomics for ultrasensitive characterization of acute and chronic respiratory diseases using electrochemical transduction mechanism." TrAC Trends in Analytical Chemistry 170 (January 2024): 117455. http://dx.doi.org/10.1016/j.trac.2023.117455.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Yishai Aviram, Lilach, Dana Marder, Hagit Prihed, et al. "pyAIR—A New Software Tool for Breathomics Applications—Searching for Markers in TD-GC-HRMS Analysis." Molecules 27, no. 7 (2022): 2063. http://dx.doi.org/10.3390/molecules27072063.

Texte intégral
Résumé :
Volatile metabolites in exhaled air have promising potential as diagnostic biomarkers. However, the combination of low mass, similar chemical composition, and low concentrations introduces the challenge of sorting the data to identify markers of value. In this paper, we report the development of pyAIR, a software tool for searching for volatile organic compounds (VOCs) markers in multi-group datasets, tailored for Thermal-Desorption Gas-Chromatography High Resolution Mass-Spectrometry (TD-GC-HRMS) output. pyAIR aligns the compounds between samples by spectral similarity coupled with retention
Styles APA, Harvard, Vancouver, ISO, etc.
40

Beale, David, Oliver Jones, Avinash Karpe, et al. "A Review of Analytical Techniques and Their Application in Disease Diagnosis in Breathomics and Salivaomics Research." International Journal of Molecular Sciences 18, no. 1 (2016): 24. http://dx.doi.org/10.3390/ijms18010024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Smolinska, A., A.-Ch Hauschild, R. R. R. Fijten, J. W. Dallinga, J. Baumbach, and F. J. van Schooten. "Current breathomics—a review on data pre-processing techniques and machine learning in metabolomics breath analysis." Journal of Breath Research 8, no. 2 (2014): 027105. http://dx.doi.org/10.1088/1752-7155/8/2/027105.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Chen, Siwei, Longfa Fang, Teng Yang, et al. "Unveiling the systemic impact of airborne microplastics: Integrating breathomics and machine learning with dual-tissue transcriptomics." Journal of Hazardous Materials 490 (June 2025): 137781. https://doi.org/10.1016/j.jhazmat.2025.137781.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Covington, J., M. Mcfarlane, L. Kho, et al. "PWE-110 Breathomics – distinguishing minimal from overt hepatic encephalopathy using volatile organic compound analysis: a pilot study." Gut 64, Suppl 1 (2015): A260.2—A261. http://dx.doi.org/10.1136/gutjnl-2015-309861.559.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Lazaros, Konstantinos, Styliani Adam, Marios G. Krokidis, Themis Exarchos, Panagiotis Vlamos, and Aristidis G. Vrahatis. "Non-Invasive Biomarkers in the Era of Big Data and Machine Learning." Sensors 25, no. 5 (2025): 1396. https://doi.org/10.3390/s25051396.

Texte intégral
Résumé :
Invasive diagnostic techniques, while offering critical insights into disease pathophysiology, are often limited by high costs, procedural risks, and patient discomfort. Non-invasive biomarkers represent a transformative alternative, providing diagnostic precision through accessible biological samples or physiological data, including blood, saliva, breath, and wearable health metrics. They encompass molecular and imaging approaches, revealing genetic, epigenetic, and metabolic alterations associated with disease states. Furthermore, advances in breathomics and gut microbiome profiling further
Styles APA, Harvard, Vancouver, ISO, etc.
45

Huang, Qi, Shaodong Wang, Qingyun Li, et al. "Assessment of Breathomics Testing Using High-Pressure Photon Ionization Time-of-Flight Mass Spectrometry to Detect Esophageal Cancer." JAMA Network Open 4, no. 10 (2021): e2127042. http://dx.doi.org/10.1001/jamanetworkopen.2021.27042.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Arasaradnam, Ramesh, Ling Kho, Michael McFarlane, et al. "Mo1019 Breathomics - Distinguishing Minimal From Overt Hepatic Encephalopathy by Volatile Organic Compound Detection in Breath: A Pilot Study." Gastroenterology 148, no. 4 (2015): S—1064—S—1065. http://dx.doi.org/10.1016/s0016-5085(15)33638-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Stavropoulos, Georgios, Daisy M. A. E. Jonkers, Zlatan Mujagic, et al. "Implementation of quality controls is essential to prevent batch effects in breathomics data and allow for cross-study comparisons." Journal of Breath Research 14, no. 2 (2020): 026012. http://dx.doi.org/10.1088/1752-7163/ab7b8d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Henderson, Ben, Guilherme Lopes Batista, Carlo G. Bertinetto, et al. "Exhaled Breath Reflects Prolonged Exercise and Statin Use during a Field Campaign." Metabolites 11, no. 4 (2021): 192. http://dx.doi.org/10.3390/metabo11040192.

Texte intégral
Résumé :
Volatile organic compounds (VOCs) in exhaled breath provide insights into various metabolic processes and can be used to monitor physiological response to exercise and medication. We integrated and validated in situ a sampling and analysis protocol using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) for exhaled breath research. The approach was demonstrated on a participant cohort comprising users of the cholesterol-lowering drug statins and non-statin users during a field campaign of three days of prolonged and repeated exercise, with no restrictions on food or drink
Styles APA, Harvard, Vancouver, ISO, etc.
49

Trefz, Phillip, Sibylle C. Schmidt, Pritam Sukul, Jochen K. Schubert, Wolfram Miekisch, and Dagmar-Christiane Fischer. "Non-Invasive Assessment of Metabolic Adaptation in Paediatric Patients Suffering from Type 1 Diabetes Mellitus." Journal of Clinical Medicine 8, no. 11 (2019): 1797. http://dx.doi.org/10.3390/jcm8111797.

Texte intégral
Résumé :
An analysis of exhaled volatile organic compounds (VOC) may deliver systemic information quicker than available invasive techniques. Metabolic aberrations in pediatric type 1 diabetes (T1DM) are of high clinical importance and could be addressed via breathomics. Real-time breath analysis was combined with continuous glucose monitoring (CGM) and blood tests in children suffering from T1DM and age-matched healthy controls in a highly standardized setting. CGM and breath-resolved VOC analysis were performed every 5 minutes for 9 hours and blood was sampled at pre-defined time points. Per particip
Styles APA, Harvard, Vancouver, ISO, etc.
50

Catino, Annamaria, Gianluigi de Gennaro, Alessia Di Gilio, et al. "Breath Analysis: A Systematic Review of Volatile Organic Compounds (VOCs) in Diagnostic and Therapeutic Management of Pleural Mesothelioma." Cancers 11, no. 6 (2019): 831. http://dx.doi.org/10.3390/cancers11060831.

Texte intégral
Résumé :
Malignant pleural mesothelioma (MPM) is a rare neoplasm related to asbestos exposure and with high mortality rate. The management of patients with MPM is complex and controversial, particularly with regard to early diagnosis. In the last few years, breath analysis has been greatly implemented with this aim. In this review the strengths of breath analysis and preliminary results in searching breath biomarkers of MPM are highlighted and discussed, respectively. Through a systematic electronic literature search, collecting papers published from 2000 until December 2018, fifteen relevant scientifi
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!