Littérature scientifique sur le sujet « Buck converter »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Buck converter ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Buck converter"

1

Sundar, T., et S. Sankar. « Modeling and Simulation of Closed Loop Controlled Parallel Cascaded Buck Boost Converter Inverter Based Solar System ». International Journal of Power Electronics and Drive Systems (IJPEDS) 6, no 3 (1 septembre 2015) : 648. http://dx.doi.org/10.11591/ijpeds.v6.i3.pp648-656.

Texte intégral
Résumé :
<p>This Work deals with design, modeling and simulation of parallel cascaded buck boost converter inverter based closed loop controlled solar system. Two buck boost converters are cascaded in parallel to reduce the ripple in DC output. The DC from the solar cell is stepped up using boost converter. The output of the boost converter is converted to 50Hz AC using single phase full bridge inverter. The simulation results of open loop and closed loop systems are compared. This paper has presented a simulink model for closed loop controlled solar system. Parallel cascaded buck boost converter is proposed for solar system.</p>
Styles APA, Harvard, Vancouver, ISO, etc.
2

Sreedhar, Jadapalli, et B. Basavaraja. « Plan and analysis of synchronous buck converter for UPS application ». International Journal of Engineering & ; Technology 7, no 1.1 (21 décembre 2017) : 679. http://dx.doi.org/10.14419/ijet.v7i1.1.10827.

Texte intégral
Résumé :
DC-DC converters occupies very significant role in the field of industries or daily life applications. To charge batteries of low voltage connected to uninterrupted power supply (UPS), DC-DC converters are needed. Batteries requires low voltage and the available voltage at the source is to be step-down to the required level of voltage at the point of utility (PoU). While designing DC-DC converters, efficiency and simplicity of the circuit is very much important. Simply for the UPS applications, Buck converter can deliver the voltage at required level which is very simple in operation but the increased losses in diode can be addresses by using a synchronous Buck converter. By using synchronous Buck converter, the diode conduction losses in Buck converter can be minimized, thus improving the efficiency of the converter. In this paper, Synchronous Buck converter is used to charge the batteries of UPS. In this paper Design, modeling of synchronous Buck converter for UPS application was done and its results were obtained by using Matlab/Simulink. A hardware prototype was also developed and the hardware results were also shown.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Monteiro, Joaquim, V. Fernão Pires, Daniel Foito, Armando Cordeiro, J. Fernando Silva et Sónia Pinto. « A Buck-Boost Converter with Extended Duty-Cycle Range in the Buck Voltage Region for Renewable Energy Sources ». Electronics 12, no 3 (24 janvier 2023) : 584. http://dx.doi.org/10.3390/electronics12030584.

Texte intégral
Résumé :
Buck-boost DC–DC converters are useful as DC grid interfaces for renewable energy resources. In the classical buck-boost converter, output voltages smaller than the input voltage (the buck region) are observed for duty cycles between 0 and 0.5. Several recent buck-boost converters have been designed to present higher voltage gains. Nevertheless, those topologies show a reduced duty-cycle range, leading to output voltages in the buck region, and thus require the use of very low duty cycles to achieve the lower range of buck output voltages. In this work, we propose a new buck-boost DC-DC converter that privileges the buck region through the extension of the duty-cycle range, enabling buck operation. In fact, the converter proposed here allows output voltages below the input voltage even with duty cycles higher than 0.6. We present the analysis, design, and testing of the extended buck-boost DC-DC converter. Several tests were conducted to illustrate the characteristics of the extended buck-boost DC-DC converter. Test results were obtained using both simulation software and a laboratory prototype.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Can, Erol. « A Common Capacitor Hybrid Buck-Boost Converter ». Jordan Journal of Electrical Engineering 9, no 1 (2023) : 71. http://dx.doi.org/10.5455/jjee.204-1666615450.

Texte intégral
Résumé :
DC-DC converters are electronic circuit elements that are frequently used to change the direct current (DC) level. This paper presents a hybrid buck-boost converter - with constant modulation index - that can change a DC voltage at two directions compared to the conventional buck-boost DC-DC converters. First, the circuit structure and operation are given. Then, the performance of the proposed converter is tested on resistive and inductive loads, and compared with that of conventional buck-boost converters. The obtained results demonstrate the effectiveness of the proposed converter. They unveil that the proposed converter - compared to the conventional buck-boost converters – produces a higher and flexible rate of conversion without changing the operating ratio of the switches. Moreover, the proposed converter is able to change the voltage on double way on load for a constant operating ratio, while the traditional converters provide a one-way conversion.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zomorodi, Hossein, et Erfan Nazari. « Design and Simulation of Synchronous Buck Converter in Comparison with Regular Buck Converter ». International Journal of Robotics and Control Systems 2, no 1 (1 février 2022) : 79–86. http://dx.doi.org/10.31763/ijrcs.v2i1.538.

Texte intégral
Résumé :
In a variety of low-power applications, a step-down dc-dc converter is used to reduce the voltage from a higher level. The two types of dc-dc converters are a regular buck and synchronous buck. The synchronous buck utilizes two switches and one diode, whereas the regular buck uses one switch and one diode. Many converters rely on the power components' switching qualities to work. A second MOSFET is required due to the diode's higher conduction losses. Because of the diode's conduction losses, the converter's efficiency may be reduced. The use of a synchronous buck converter improves efficiency by reducing diode losses. The main goal of this study is to compare and contrast these two low-power step-down converters. The simulation in this work was performed using the LTSPICE program.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Mishra, Debani Prasad, Rudranarayan Senapati et Surender Reddy Salkuti. « Comparison of DC-DC converters for solar power conversion system ». Indonesian Journal of Electrical Engineering and Computer Science 26, no 2 (1 mai 2022) : 648. http://dx.doi.org/10.11591/ijeecs.v26.i2.pp648-655.

Texte intégral
Résumé :
This paper covers the comparison between four different DC-DC converters for solar power conversion. The four converters are buck converter, buck-boost converter, boost converter, and noninverting buck-boost converter. An MPPT algorithm is designed to calculate battery voltage, current of PV array, the voltage of PV array, power of PV array, output power. It is observed that the non-inverting buck-boost converter is the finest converter for solar power conversion. The final circuit design has the results of 12.2V battery voltage, 0.31A current of PV array, 34V voltage of PV array, 23mW power of PV panel, and 21.8mW of output power. The efficiency of this system is nearly 95%. All four circuits are simulated in MATLAB/Simulink R2020b.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hwu, K. I., et T. J. Peng. « A Novel Buck–Boost Converter Combining KY and Buck Converters ». IEEE Transactions on Power Electronics 27, no 5 (mai 2012) : 2236–41. http://dx.doi.org/10.1109/tpel.2011.2182208.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Begum, Shaik Gousia, Syed Sarfaraz Nawaz et G. Sai Anjaneyulu. « Implementation of Fuzzy Logic Controller for DC–DC step Down Converter ». Regular issue 10, no 8 (30 juin 2021) : 109–12. http://dx.doi.org/10.35940/ijitee.h9251.0610821.

Texte intégral
Résumé :
This paper presents the design of a Fuzzy logic controller for a DC-DC step-down converter. Buck converters are step-down regulated converters which convert the DC voltage into a lower level standardized DC voltage. The buck converters are used in solar chargers, battery chargers, quadcopters, industrial and traction motor controllers in automobile industries etc. The major drawback in buck converter is that when input voltage and load change, the output voltage also changes which reduces the overall efficiency of the Buck converter. So here we are using a fuzzy logic controller which responds quickly for perturbations, compared to a linear controllers like P, PI, PID controllers. The Fuzzy logic controllers have become popular in designing control application like washing machine, transmission control, because of their simplicity, low cost and adaptability to complex systems without mathematical modeling So we are implementing a fuzzy logic controller for buck converter which maintains fixed output voltage even when there are fluctuations in supply voltage and load. The fuzzy logic controller for the DC-DC Buck converter is simulated using MATLAB/SIMULINK. The proposed approach is implemented on DC-DC step down converter for an input of 230V and we get the desired output for variations in load or references. This proposed system increases the overall efficiency of the buck converter.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Upendar, Jalla, Sangem Ravi Kumar, Sapavath Sreenu et Bogimi Sirisha. « Implementation and study of fuzzy based KY boost converter for electric vehicle charging ». International Journal of Applied Power Engineering (IJAPE) 11, no 1 (1 mars 2022) : 98. http://dx.doi.org/10.11591/ijape.v11.i1.pp98-108.

Texte intégral
Résumé :
Elecetric vehicle batteries require direct current (DC) current for charging; hence the circuit alternating current (AC) is converted to DC by a battery charger. Battery charger mostly consists of a rectifier and DC-DC converter with a controller built in to serve as a protective circuit. A harmonic source load is a type of electric car charger. During the AC-DC change over method, harmonic current is introduced into the power system, affecting power quality. In this study, a charging station consisting of buck boost and a charging station consisting a KY Boost converter were simulated. To maintain output voltage of DC-DC converters constant controller is used, the controller is either PI or fuzzy logic controller. So, four models are developed and simulated which are buck-boost converter controlled by proportional-integral (PI)-controller, KY-boost converter controlled by proportional integral-controller, buck boost converter controller fuzzy logic controller and KY boost-converter controlled by fuzzy logic controller. The total harmonic distortion (THD) of the four models is compared.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Cho, Younghoon, et Paul Jang. « Analysis and Design for Output Voltage Regulation in Constant-on-Time-Controlled Fly-Buck Converter ». Electronics 10, no 16 (6 août 2021) : 1886. http://dx.doi.org/10.3390/electronics10161886.

Texte intégral
Résumé :
Fly-buck converter is a multi-output converter with the structure of a synchronous buck converter structure on the primary side and a flyback converter structure on the secondary side, and can be utilized in various applications due to its many advantages. In terms of control, the primary side of the fly-buck converter has the same structure as a synchronous buck converter, allowing the constant-on-time (COT) control to be applied to the fly-buck converter. However, due to the inherent energy transfer principle, the primary-side output voltage regulation of COT controlled fly-buck converters may be poor, which can deteriorate the overall converter performance. Therefore, the primary output capacitor must be carefully designed to improve the voltage regulation characteristics. In this paper, a theoretical analysis of the output voltage regulation in COT controlled fly-buck converter is conducted, and based on this, a design guideline for the primary output capacitor considering the output voltage regulation is presented. The validity of the analysis and design guidelines was verified using a 5 W prototype of the COT controlled fly-buck converter for telecommunication auxiliary power supply.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Buck converter"

1

Rahman, Muhammad Saad. « Buck Converter Design Issues ». Thesis, Linköping University, Department of Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-9713.

Texte intégral
Résumé :

Switch Mode Power Supplies are very important components in present day electronics and have continued to thrive and grow over the past 25 years. This thesis looks inside how the SMPS have evolved over the passage of years with special emphasis to the Synchronous Buck Converter. It also discusses why there is a strong potential to further the study related to designs based around a Synchronous Buck Converter for portable applications. The main objective of the thesis is to look into the controller design for minimizing size, enhancing efficiency and reliability of power converters in portable electronic equipment such as mobile phones and PDAs. The thesis aims to achieve this using a 90 nm process with an input voltage of 1.55V and an output of 1V with a power dissipation of 200mW.

Styles APA, Harvard, Vancouver, ISO, etc.
2

Olivar, Gerard. « Chaos in the buck converter ». Doctoral thesis, Universitat Politècnica de Catalunya, 1997. http://hdl.handle.net/10803/5841.

Texte intégral
Résumé :
Esta tesis estudia el fenómeno del caos en las ecuaciones que modelan un convertidor buck con control PWM. Desde el punto de vista matemático, contribuye al estudio de los sistemas lineales a trozos tridimensionales, con émfasis en las perspectivas geométrica y de cálculo numérico. Se consiguen resultados analíticos pero, finalmente, deben emplearse métodos numéricos para calcular efectivamente las órbitas periódicas, bifurcaciones, variedades invariantes y cuencas de atracción. Desde el punto de vista de la ingeniería, esta tesis contribuye, por una parte, a dilucidar ciertas cuestiones acerca del comportamiento observado en el circuito electrónico experimental, y por otra parte, plantea nuevas preguntas que debe responder la comunidad científica dedicada a la ingeniería. Entre ellas, la búsqueda experimental de fenómenos secundarios detectados en las simulaciones numéricas y la posibilidad de implementar algunos de los métodos de control de caos deducidos en un prototipo experimental.
El capítulo 2 resume la información básica sobre convertidores conmutados de corriente contínua, y también sobre qué tipo de comportamiento cabe esperar de un sistema dinámico no lineal. Se discuten las referencias más relevantes sobre circuitos no lineales, y en concreto, las que atañen a circuitos caóticos en electrónica de potencia.
Los sistemas de ecuaciones diferenciales lineales a trozos con dos topologías se introducen en el capítulo 3. Como caso particular, se dan las ecuaciones que rigen la dinámica del convertidor buck con control PWM, y se establecen algunas propiedades básicas de las soluciones. La técnica general para obtener órbitas periódicas se particulariza para las soluciones T-periódicas y 2T-periódicas, y se establecen resultados para algunos tipos específicos de las nT-periódicas.
En el capítulo 4 se detalla el análisis de la aplicación estroboscópica. Este capítulo está orientado geométricamente, aunque el cálculo numérico es también imprescindible para obtener resultados específicos. Se halla también una región de atrapamiento para el sistema, en la cual se encuentra una aplicación de tipo horseshoe. La herramienta principal de este capítulo es la continuidad de la aplicación de Poincaré asociada, que permite deducir analíticamente como se transforman las diferentes regiones del espacio de fases.
El capítulo 5 está dedicado a las bifurcaciones secundarias halladas conjuntamente con el atractor principal. En este capítulo, el cálculo numérico es esencial para hallar los diagramas de bifurcaciones, las variedades invariantes y las cuencas de atracción. Como las soluciones son conocidas analíticamente a trozos, los algoritmos se benefician de ello en rapidez y sencillez. Se encuentran bifurcaciones suaves y no suaves. Se dan también expresiones exactas para los multiplicadores característicos, lo cual representa una gran ventaja cuando se calculan las bifurcaciones.
El capítulo 6 se aparta ligeramente del espíritu general de la tesis. En lugar de describir el comportamiento caótico del sistema, se sugieren algunos métodos de control de caos y se simulan éstos para comprobar si producen los efectos deseados. En concreto, se dan tres opciones: primero, se concreta el método OGY para las ecuaciones del convertidor buck ; segundo, se sugieren varios esquemas de control de realimentación con retardos, y tercero, se propone un método de control de lazo abierto. El control del comportamiento caótico en este circuito es importante, puesto que reduce el rizado de salida y por tanto, amplia el rango operacional del convertidor.
Algunas sugerencias para seguir el estudio de estos sistemas dinámicos se dan en el capítulo 7. Algunas simulaciones se han hecho con una versión suavizada del sistema de ecuaciones diferenciales con el software standard AUTO. También se proponen aproximaciones de la aplicación de Poincaré, que pueden proporcionar un tratamiento más analítico y simulaciones más rápidas.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Cazzell, Gregory A. « Output Impedance in PWM Buck Converter ». Wright State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=wright1247006982.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Chadha, Ankit. « Tapped-Inductor Buck DC-DC Converter ». Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1578488939749599.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Barbagallo, Mariano. « HV Interleaved Multiphase DcDc Buck-Boost Converter ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.

Trouver le texte intégral
Résumé :
in electric vehicle (ev) systems, bi-directional dc-dc converters are used to interface the rechargeable energy storage system (ress) such as the battery bank with the high voltage dc-link of the inverter. currently multi-cell batteries used in automotive systems, such as ev or hev, are subject to a higher failure rate than single cell batteries. the more cells are used in series, the greater the opportunities to fail and the worse the reliability. when a cell has failed the entire string or even worse the battery must be replaced, which is extremely costly [1]. so, to have less cells in series increases the reliability of the system, which also leads to a lower voltage of the dc link. for this reason and many others, in a hybrid or electric vehicle powertrain, a boost dc-dc converter enables optimization of the battery system. this work aims to investigate all the benefits that come with interleaving technique in dc-dc converters for automotive systems. indeed, these kind of converters for use in high-performance and high-power applications have received increasing interest in recent years. in particular this research work, done with sevcon ltd focuses on the theory behind bi-directional multiphase interleaved (imc) converter and how it could be used to interface a rechargeable energy storage system (ress) to the powertrain of a hybrid or electric vehicle. more specifically, it was investigated if it is possible to use (after appropriate hardware and software amendments) a standard three phase ac motor inverter as a multiphase interleaved converter. for this purpose two motor controller, produced by sevcon have been analysed. both the gen4 size 10 and the hvlp inverters were considered for use as a dc-dc converter. the voltage can step up or down based on the power flow direction. each phase is indeed a bi-directional buck or boost converter, which is composed of a bridge of power switches and inductor.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yang, Shun. « Modelling and control of a Buck converter ». Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2207.

Texte intégral
Résumé :
DC/DC buck converters are cascaded in order to generate proper load voltages. Rectified line voltage is normally converted to 48V, which then, by a bus voltage regulating converter also called the line conditioner converter, is converted to the bus voltage, e.g. 12V. A polynomial controller converter transforms the 12V into to a suitable load voltage, a fraction of or some few voltages. All cascaded converters are individually controlled in order to keep the output voltage stable constant. In this presentation focusing on the polynomial controller converter implemented as Ericsson’s buck converter BMR450. In this paper modeling, discretization and control of a simple Buck converter is presented. For the given DC-DC-Converter-Ericsson BMR 450 series, analyzing the disturbance properties of a second order buck converter controllers by a polynomial controller. The project is performed in Matlab and Simulink. The controller properties are evaluated for measurement noise, EMC noise and for parameter changes.
+46-762795822
Styles APA, Harvard, Vancouver, ISO, etc.
7

DI, LORENZO ROBERTO. « DC-DC Buck Converter For Automotive Applications ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/301996.

Texte intégral
Résumé :
L'avvento del MOSFET di potenza è uno degli sviluppi più significativi nell'elettronica di potenza negli ultimi anni. Mentre i dispositivi verticali apparsi alla fine degli anni settanta sembravano destinati a trovare un posto importante nel mercato, in particolare nell'area della conversione di potenza ad alta frequenza, il predominio generale del transistor bipolare di potenza non sembrava seriamente minacciato. Tuttavia, quando i dispositivi DMOS verticali più facilmente fabbricabili apparvero in volume nel 1978, la scena era pronta per una rivoluzione. Il MOSFET di potenza ha rapidamente raggiunto la reputazione di essere tollerante e facile da progettare, ma l'accettazione universale è stata ritardata dal suo costo relativamente alto. L'elettronica automobilistica che funziona dalla batteria dell'auto subisce tensioni transitorie come l'avviamento a freddo e lo scarico del carico che possono variare da 4,5 V a> 30 V. Inoltre, le nuove tecnologie come start-stop aumentano la frequenza di tali transitori e i requisiti operativi dei dispositivi elettronici. Ciò richiede circuiti integrati di alimentazione o batteria per resistere a condizioni operative difficili e fornire alimentazione affidabile all'intero veicolo. Ad esempio, l'aria condizionata, le luci anteriori / posteriori dell'auto dovrebbero mantenere la loro funzionalità durante le condizioni di avviamento indotte da start-stop. Questo requisito può essere soddisfatto in modo efficiente e affidabile dai convertitori DC-DC. L'industria automobilistica sta rapidamente passando dalle lampade a filamento ai nuovi sistemi (LED) per l'illuminazione anteriore / posteriore in quanto offrono prestazioni migliori in termini di efficienza energetica rispetto a quelli convenzionali. Tuttavia, a causa delle caratteristiche elettriche di questi sistemi presenti in un'auto non può essere alimentato direttamente dalla batteria dell'auto. Richiedono circuiti di pilotaggio specializzati in grado di rispondere alle mutevoli esigenze dei carichi al variare delle loro proprietà elettriche mantenendo la corrente uniforme. I convertitori DC-DC sono il modo più semplice per alimentare tale carico con una corrente costante. Di conseguenza, i convertitori Buck, Boost e Buck-Boost DC-DC per applicazioni automobilistiche sono di grande interesse per l'industria automobilistica. In particolare, non affrontato finora sono soluzioni monolitiche nelle tecnologie Smart Power. Le tecnologie Smart Power consentono di integrare transistor di potenza, logica di controllo e diagnostica su un unico chip (SOC - System On Chip). Poiché i requisiti di resa elevata implicano solo fasi di lavorazione altamente mature e con esperienza. A causa dei requisiti di basso costo, viene utilizzata una sequenza di maschere ridotta, che porta normalmente a due livelli di interconnessione (polisilicio e metallo). In questa tesi è stato progettato un convertitore DC-DC per applicazioni automotive. Il primo capitolo di questo documento ha lo scopo di servire da introduzione al lettore per tutte le descrizioni del lavoro insieme al rapporto. Abbiamo bisogno di una tecnologia ad alta tensione per progettare un convertitore DC-DC integrato. Qui, userò la tecnologia smart power, questa tecnologia permette di creare interruttori di potenza high side con bassa resistenza.
The advent of the power MOSFET ranks as one of the most significant developments in power electronics in recent years. While the vertical devices which appeared in the late seventies looked set to find an important place in the market, particularly in the area of high-frequency power conversion, the overall dominance of the power bipolar transistor did not seem seriously threatened. However, when the more easily manufacturable vertical DMOS devices appeared in volume in 1978, the scene was set for a revolution. The power MOSFET rapidly achieved a reputation for being forgiving and easy to design with, but universal acceptance was delayed by its relatively high cost. The automotive electronics operating from car battery experiences transient voltages such as cold-cranking and load dump which can range from 4.5V to >30V. In addition, the new technologies such as start-stop, increase the frequency of such transients and operational requirements of electronic devices. This requires o-battery power ICs to withstand harsh operating conditions and reliably provide power to the whole vehicle. As an example, the air condition, front/back car lights are supposed to keep their functionality during start-stop induced cranking conditions. This requirement can be efficiently and reliably fulfilled from DC-DC converters. The automotive industry is rapidly switching from filament lamps to new systems (LED) for front/back lighting as they perform better in terms of energy efficiency than the conventional ones. However, due to the electrical characteristics of these systems present in a car cannot be powered directly from the automotive battery. They require specialized driving circuits which can respond to the changing needs of the loads as their electrical properties change while maintaining the uniform current. DC-DC converters other the easiest way to power such the load with a constant current. As result Buck, Boost, Buck-Boost DC-DC converters for automotive applications are of great interest for the automotive industry. In particular, not addressed so far are monolithic solutions in Smart Power technologies. Smart Power technologies allow integrating power transistor, control logic and diagnostic on a single chip (SOC – System On Chip). Because high yield requirements they involve only highly mature, well-experienced processing steps. Because of low-cost requirements, a reduced mask sequence is used, leading normally to two interconnecting levels (polysilicon and metal). In this thesis, it has been designed a DC-DC converter for automotive applications. The first chapter of this document is aimed to serve as an introduction to the reader for all the work descriptions along with the report. We need a high voltage technology to design an integrated DC-DC converter. Here, I will use smart power technology, this technology permits to create high side power switch with low resistance.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Pierleoni, Enrico. « Analisi e progetto del Z-Source Buck Converter ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16305/.

Texte intégral
Résumé :
I convertitori elettronici di potenza operanti in commutazione generalmente operano a partire da sorgenti o di tensione o di corrente. Recentemente si sono studiati convertitori che all’ingresso includono una rete puramente reattiva e priva di perdite (un filtro) in grado di modificare l’impedenza di uscita della sorgente di potenza. L’introduzione di questa rete amplia il numero di configurazioni possibili per gli interruttori del convertitore, dato che l’impedenza di sorgente impedisce le distruttive sovracorrenti legate ai possibili stati di Shoot-Through che, anzi, diventano utili per generare il boost della tensione in ingresso. Poiché le forme d’onda e il modo di funzionamento subiscono drastici cambiamenti, a questo tipo di conversione ci si riferisce con il termine Z-Source. In questa tesi prenderemo in considerazione la forma più elementare di convertitore dc-dc (il leg commutatore del Chopper‑Buck) e vedremo come l’applicazione della Z-Source consenta una conversione di tensione di tipo salita/discesa, a patto di modificare opportunamente la generazione dei comandi agli interruttori. Si è potuto verificare a simulazione che il convertitore è effettivamente in grado di operare sia in salita che in discesa. La complessità delle forme d’onda generate però è tale che è quasi impossibile evitare la comparsa di stati indesiderati non appena si esce dal funzionamento nominale di corrente sul carico o per variazioni dei Duty-cycle dei comandi. In particolare, si sono riscontrate possibili instabilità che possono far aumentare indefinitamente la tensione sui condensatori del Z‑Source portandola a livelli pericolosamente alti. Inoltre, la presenza del diodo di free-wheeling sull’interruttore low-side può provocare imprevisti stati di Shoot-Through che modificano il Duty‑cycle effettivo in uscita, rendendo di non facile predicibilità il guadagno di tensione del convertitore.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kilic, Umit Erdem. « Design Of Buck Converter For Educational Test Bench ». Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/2/12608153/index.pdf.

Texte intégral
Résumé :
In this thesis a buck converter has been developed to be used as a test bench in power electronics laboratory. For this purpose, first, steady-state and small-signal analyses of a buck converter is carried out, then open-loop and closed-loop control of the converter are developed and simulated. Then, the circuit is manufactured and tested. The test results are compared with the simulation results. Finally, an experimantal procedure is prepared to enable the students to perform the experiment in the laboratory with the test bench developed.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Whitney, Jonas Alan. « Alternative topologies for the low-voltage buck converter ». Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119559.

Texte intégral
Résumé :
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 145-146).
In this thesis, investigative work on and development of alternative topologies for the buck converter for low voltage dc dc conversion was performed. The three level buck, Resonant Switch Capacitor (ResSC), and Cuk-Buck2 were selected to be studied further based on the fact that they contain few components and were discovered in this work to have the possibility of operating at fixed frequency while smoothly regulating output voltage over the entire conversion ratio of 0 to 1. All three use a capacitive storage element in addition to a small inductance/s, so it was believed this may allow for efficiency or density improvements due to the excellent energy storage capability of MLCCs. New control methods were developed in order to operate the ResSC and Cuk-Buck2 at fixed frequency over the entire output range. New work was done to in order to achieve flying capacitor balancing in the ResSC and Cuk-Buck2, practical for future implementation in a monolithic converter. Simulated efficiency and other characteristics of the three converters are compared. Prototypes were built and used to confirm functionality of the new control schemes and balancing methods..
by Jonas Alan Whitney.
M. Eng.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Livres sur le sujet "Buck converter"

1

Biswajit, Ray, et United States. National Aeronautics and Space Administration., dir. Low-temperature operation of a Buck DC/DC converter. [Washington, D.C.] : National Aeronautics and Space Administration, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Biswajit, Ray, et United States. National Aeronautics and Space Administration., dir. Low-temperature operation of a Buck DC/DC converter. [Washington, D.C.] : National Aeronautics and Space Administration, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Biswajit, Ray, et United States. National Aeronautics and Space Administration., dir. Low-temperature operation of a Buck DC/DC converter. [Washington, D.C.] : National Aeronautics and Space Administration, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Moore, Jonathan E. Frequency-based load sharing in current-mode-controlled buck converters. Monterey, Calif : Naval Postgraduate School, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

K, Kokula Krishna Hari, dir. Variable Frequency Digital PWM Control for Low-Power Buck Converters. Chennai, India : Association of Scientists, Developers and Faculties, 2016.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lee, Jade. Buck Converter Using the PIC16F753 Analog Features. Microchip Technology Incorporated, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Huang, Apple. TB3103 - Buck Converter Using the PIC16F753 Analog Features. Microchip Technology Incorporated, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Takenaka, Norio. TB3103 - Buck Converter Using the PIC16F753 Analog Features. Microchip Technology Incorporated, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Takenaka, Norio. TB3097 - Buck Converter Using the PIC12F1501 NCO Peripheral. Microchip Technology Incorporated, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Natarajan, Shantha. MIC2204 - High-Efficiency 2 MHz Synchronous Buck Converter. Microchip Technology Incorporated, 2020.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Buck converter"

1

Severns, Rudolf P., et Gordon Ed Bloom. « The Buck Converter ». Dans Modern DC-to-DC Switchmode Power Converter Circuits, 11–50. Dordrecht : Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-011-8085-6_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Patil, Mahesh, et Pankaj Rodey. « Buck Converter in Open Loop ». Dans Control Systems for Power Electronics, 21–27. New Delhi : Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2328-3_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Patil, Mahesh, et Pankaj Rodey. « Buck Converter in Closed Loop ». Dans Control Systems for Power Electronics, 29–37. New Delhi : Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2328-3_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Severns, Rudolf P., et Gordon Ed Bloom. « Buck-Derived Circuits ». Dans Modern DC-to-DC Switchmode Power Converter Circuits, 112–35. Dordrecht : Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-011-8085-6_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Brahim, Lagssiyer, Aziz Abdelhak et Mohamed El Hafyani. « Interleaved Positive Buck-Boost Converter (I.P.B.B) ». Dans Lecture Notes in Electrical Engineering, 461–69. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1405-6_55.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Villar Piqué, Gerard, et Eduard Alarcón. « 3-Level Buck Converter Microelectronic Implementation ». Dans CMOS Integrated Switching Power Converters, 197–255. New York, NY : Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8843-0_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Asadi, Farzin, Sawai Pongswatd, Kei Eguchi et Ngo Lam Trung. « Modeling Uncertainties for a Buck Converter ». Dans Modeling Uncertainties in DC-DC Converters, 1–62. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-031-02020-9_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wens, Mike, et Michiel Steyaert. « A Mathematical Model : Boost and Buck Converter ». Dans Design and Implementation of Fully-Integrated Inductive DC-DC Converters in Standard CMOS, 123–68. Dordrecht : Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1436-6_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Karthikeyan, P., et V. Siva Chidambaranathan. « Bidirectional Buck–Boost Converter-Fed DC Drive ». Dans Advances in Intelligent Systems and Computing, 1195–203. New Delhi : Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2656-7_109.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Rodríguez Vilamitjana, Enric, Abdelali El Aroudi et Eduard Alarcón. « Complex Behavior of VMC Buck Converter : Characterization ». Dans Chaos in Switching Converters for Power Management, 25–38. New York, NY : Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2128-3_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Buck converter"

1

Scheidl, Rudolf, Philipp Zagar et Helmut Kogler. « A Hydraulically Controlled Multiple Buck Converter System ». Dans BATH/ASME 2022 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/fpmc2022-88957.

Texte intégral
Résumé :
Abstract The hydraulic buck converter with a pipe as inertance element is mostly considered with magnetically actuated fast switching valves. These valves are hardly available on the market and are costly. A further burden of most buck converters are the high hydraulic capacitances added on load side to flatten pulsation. They lead to a softness which requires sophisticated control. A previous study on a phase shifted operation of several buck converters showed a low pulsation which may make an extra pulsation attenuation device obsolete. Another study suggested a hydraulic actuation of the switching valves. In this paper a combination of these concepts is analyzed. It realizes a constant switching frequency with a variable duty cycle and a phase shifted switching of the several converter units. The performance is compared to control by a single servo valve and a multiple converter system using electrically actuated valves.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Jose, Jim Harley, et K. Pramelakumari. « A positive output buck boost converter combining KY and SR-buck converters ». Dans 2015 International Conference on Power, Instrumentation, Control and Computing (PICC). IEEE, 2015. http://dx.doi.org/10.1109/picc.2015.7455775.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Veerachary, Mummadi, et Shrikanth Mohan Misal. « Drooping gain buck converter ». Dans 2016 Biennial International Conference on Power and Energy Systems : Towards Sustainable Energy (PESTSE). IEEE, 2016. http://dx.doi.org/10.1109/pestse.2016.7516434.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

de Sa, Francieli L., Caio V. B. Eiterer, Domingo Ruiz-Caballero et Samir A. Mussa. « Double Quadratic Buck Converter ». Dans 2013 Brazilian Power Electronics Conference (COBEP 2013). IEEE, 2013. http://dx.doi.org/10.1109/cobep.2013.6785092.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ghavaminejad, Mahdi, Ebrahim Afjei et Masoud Meghdadi. « Integrated Buck-Zeta Converter ». Dans 2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC). IEEE, 2022. http://dx.doi.org/10.1109/pedstc53976.2022.9767504.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rodrigues, J. P., I. Barbi et A. J. Perin. « Buck converter with ZVS three level buck clamping ». Dans 2008 IEEE Power Electronics Specialists Conference - PESC 2008. IEEE, 2008. http://dx.doi.org/10.1109/pesc.2008.4592266.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Iqbal, Zafar, Usman Nasir, Muhammad Tahir Rasheed et Kashif Munir. « A comparative analysis of synchronous buck, isolated buck and buck converter ». Dans 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC). IEEE, 2015. http://dx.doi.org/10.1109/eeeic.2015.7165299.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Joseph, Greeshma, et V. Renjini. « Analysis and comparison of inductor coupled buck-boost converter combining KY converter and SR buck converter ». Dans 2014 International Conference on Circuit, Power and Computing Technologies (ICCPCT). IEEE, 2014. http://dx.doi.org/10.1109/iccpct.2014.7054941.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Myneni, Sukesh Babu, et Susovon Samanta. « Time Domain Analysis of Isolated Buck (F1y-Buck) Converter ». Dans 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE, 2018. http://dx.doi.org/10.1109/pedes.2018.8707573.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Boora, Arash A., Firuz Zare, Gerard Ledwich et Arindam Ghosh. « Bidirectional positive buck-boost converter ». Dans 2008 13th International Power Electronics and Motion Control Conference (EPE/PEMC 2008). IEEE, 2008. http://dx.doi.org/10.1109/epepemc.2008.4635351.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Buck converter"

1

Ciezki, John G., et Robert W. Ashton. Analysis of a PWM Resonant Buck Chopper for Use as a Ship Service Converter Module. Fort Belvoir, VA : Defense Technical Information Center, janvier 1999. http://dx.doi.org/10.21236/ada361136.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Watson, Mark, Martyn Wilmott et Brian Erno. GRI-96-0452_2 Stress Corrosion Cracking Under Field Simulated Conditions II. Chantilly, Virginia : Pipeline Research Council International, Inc. (PRCI), novembre 1997. http://dx.doi.org/10.55274/r0011974.

Texte intégral
Résumé :
The pH of solutions found under disbonded polyethylene tape coatings in the field is generally in the range of 6.5 to 7.5. Electrochemically determining corrosion rates for pipeline steels exposed to neutral pH solutions in this pH range indicate that corrosion rates are too low to account for the observed crack growth rates from field excavation programs. This suggests that for the SCC process to be based on a simple dissolution mechanism then the pH at the crack tip would have to be lower than the bulk solution pH. A computer model was developed to determine solution chemistry changes within an SCC crack under anaerobic conditions as a function of time The numerical simulation model showed that the pH at a crack tip is lower by at least one pH unit than the trapped electrolyte outside the crack. A second thermodynamic model was used to show that under appropriate conditions dilute groundwater can be converted to a concentrated carl ornately bicarbonate solution. High temperatures were not required to concentrate on this solution. The concentration of this electrolyte under coal tar or asphalt coatings can occur by a cyclical process in which groundwater levels fluctuate and in tum influence the ability of cathodic protection to reach the steel surface. The high pH is generated by effective cathodic protection and the carbonate concentration is developed by absorption of CO2 from soil gases.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie