Littérature scientifique sur le sujet « Carbon cycle (Biogeochemistry) »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Carbon cycle (Biogeochemistry) ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Carbon cycle (Biogeochemistry)"

1

Mahowald, N., K. Lindsay, D. Rothenberg, S. C. Doney, J. K. Moore, P. Thornton, J. T. Randerson, and C. D. Jones. "Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model." Biogeosciences Discussions 7, no. 5 (September 1, 2010): 6617–73. http://dx.doi.org/10.5194/bgd-7-6617-2010.

Texte intégral
Résumé :
Abstract. Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries) and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mahowald, N., K. Lindsay, D. Rothenberg, S. C. Doney, J. K. Moore, P. Thornton, J. T. Randerson, and C. D. Jones. "Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model." Biogeosciences 8, no. 2 (February 15, 2011): 387–414. http://dx.doi.org/10.5194/bg-8-387-2011.

Texte intégral
Résumé :
Abstract. Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries) and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally
Styles APA, Harvard, Vancouver, ISO, etc.
3

Rodgers, K. B., O. Aumont, S. E. Mikaloff Fletcher, Y. Plancherel, L. Bopp, C. de Boyer Montégut, D. Iudicone, R. F. Keeling, G. Madec, and R. Wanninkhof. "Strong sensitivity of Southern Ocean carbon uptake and nutrient cycling to wind stirring." Biogeosciences Discussions 10, no. 9 (September 13, 2013): 15033–76. http://dx.doi.org/10.5194/bgd-10-15033-2013.

Texte intégral
Résumé :
Abstract. Here we test the hypothesis that winds have an important role in determining the rate of exchange of CO2 between the atmosphere and ocean through wind stirring over the Southern Ocean. This is tested with a sensitivity study using an ad hoc parameterization of wind stirring in an ocean carbon cycle model. The objective is to identify the way in which perturbations to the vertical density structure of the planetary boundary in the ocean impacts the carbon cycle and ocean biogeochemistry. Wind stirring leads to reduced uptake of CO2 by the Southern Ocean over the period 2000–2006, with
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hajima, Tomohiro, Michio Watanabe, Akitomo Yamamoto, Hiroaki Tatebe, Maki A. Noguchi, Manabu Abe, Rumi Ohgaito, et al. "Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks." Geoscientific Model Development 13, no. 5 (May 13, 2020): 2197–244. http://dx.doi.org/10.5194/gmd-13-2197-2020.

Texte intégral
Résumé :
Abstract. This article describes the new Earth system model (ESM), the Model for Interdisciplinary Research on Climate, Earth System version 2 for Long-term simulations (MIROC-ES2L), using a state-of-the-art climate model as the physical core. This model embeds a terrestrial biogeochemical component with explicit carbon–nitrogen interaction to account for soil nutrient control on plant growth and the land carbon sink. The model's ocean biogeochemical component is largely updated to simulate the biogeochemical cycles of carbon, nitrogen, phosphorus, iron, and oxygen such that oceanic primary pr
Styles APA, Harvard, Vancouver, ISO, etc.
5

Heinze, M., and T. Ilyina. "Ocean Biogeochemistry in the warm climate of the Late Paleocene." Climate of the Past Discussions 10, no. 2 (April 28, 2014): 1933–75. http://dx.doi.org/10.5194/cpd-10-1933-2014.

Texte intégral
Résumé :
Abstract. The Late Paleocene is characterized by warm and stable climatic conditions which served as the background climate for the Paleocene-Eocene Thermal Maximum (PETM, ~55 million years ago). With respect to feedback processes in the carbon cycle, the ocean biogeochemical background state is of major importance for projecting the climatic response to a carbon perturbation related to the PETM. Therefore we use the Hamburg Ocean Carbon Cycle model HAMOCC, embedded into the ocean general circulation model of the Max Planck Institute for Meteorology, MPIOM, to constrain the ocean biogeochemist
Styles APA, Harvard, Vancouver, ISO, etc.
6

Heinze, M., and T. Ilyina. "Ocean biogeochemistry in the warm climate of the late Paleocene." Climate of the Past 11, no. 1 (January 13, 2015): 63–79. http://dx.doi.org/10.5194/cp-11-63-2015.

Texte intégral
Résumé :
Abstract. The late Paleocene is characterized by warm and stable climatic conditions that served as the background climate for the Paleocene–Eocene Thermal Maximum (PETM, ~55 million years ago). With respect to feedback processes in the carbon cycle, the ocean biogeochemical background state is of major importance for projecting the climatic response to a carbon perturbation related to the PETM. Therefore, we use the Hamburg Ocean Carbon Cycle model (HAMOCC), embedded in the ocean general circulation model of the Max Planck Institute for Meteorology, MPIOM, to constrain the ocean biogeochemist
Styles APA, Harvard, Vancouver, ISO, etc.
7

Romanou, A., J. Romanski, and W. W. Gregg. "Natural ocean carbon cycle sensitivity to parameterizations of the recycling in a climate model." Biogeosciences Discussions 10, no. 7 (July 5, 2013): 11111–53. http://dx.doi.org/10.5194/bgd-10-11111-2013.

Texte intégral
Résumé :
Abstract. Sensitivities of the oceanic biological pump within the GISS climate modeling system are explored here. Results are presented from twin control simulations of the air-sea CO2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM) which compute
Styles APA, Harvard, Vancouver, ISO, etc.
8

Butzin, Martin, Ying Ye, Christoph Völker, Özgür Gürses, Judith Hauck, and Peter Köhler. "Carbon isotopes in the marine biogeochemistry model FESOM2.1-REcoM3." Geoscientific Model Development 17, no. 4 (February 26, 2024): 1709–27. http://dx.doi.org/10.5194/gmd-17-1709-2024.

Texte intégral
Résumé :
Abstract. In this paper we describe the implementation of the carbon isotopes 13C and 14C (radiocarbon) into the marine biogeochemistry model REcoM3. The implementation is tested in long-term equilibrium simulations where REcoM3 is coupled with the ocean general circulation model FESOM2.1, applying a low-resolution configuration and idealized climate forcing. Focusing on the carbon-isotopic composition of dissolved inorganic carbon (δ13CDIC and Δ14CDIC), our model results are largely consistent with reconstructions for the pre-anthropogenic period. Our simulations also exhibit discrepancies, e
Styles APA, Harvard, Vancouver, ISO, etc.
9

Keller, K. M., F. Joos, and C. C. Raible. "Time of emergence of trends in ocean biogeochemistry." Biogeosciences 11, no. 13 (July 9, 2014): 3647–59. http://dx.doi.org/10.5194/bg-11-3647-2014.

Texte intégral
Résumé :
Abstract. For the detection of climate change, not only the magnitude of a trend signal is of significance. An essential issue is the time period required by the trend to be detectable in the first place. An illustrative measure for this is time of emergence (ToE), that is, the point in time when a signal finally emerges from the background noise of natural variability. We investigate the ToE of trend signals in different biogeochemical and physical surface variables utilizing a multi-model ensemble comprising simulations of 17 Earth system models (ESMs). We find that signals in ocean biogeoch
Styles APA, Harvard, Vancouver, ISO, etc.
10

Rodgers, K. B., O. Aumont, S. E. Mikaloff Fletcher, Y. Plancherel, L. Bopp, C. de Boyer Montégut, D. Iudicone, R. F. Keeling, G. Madec, and R. Wanninkhof. "Strong sensitivity of Southern Ocean carbon uptake and nutrient cycling to wind stirring." Biogeosciences 11, no. 15 (August 1, 2014): 4077–98. http://dx.doi.org/10.5194/bg-11-4077-2014.

Texte intégral
Résumé :
Abstract. Here we test the hypothesis that winds have an important role in determining the rate of exchange of CO2 between the atmosphere and ocean through wind stirring over the Southern Ocean. This is tested with a sensitivity study using an ad hoc parameterization of wind stirring in an ocean carbon cycle model, where the objective is to identify the way in which perturbations to the vertical density structure of the planetary boundary in the ocean impacts the carbon cycle and ocean biogeochemistry. Wind stirring leads to reduced uptake of CO2 by the Southern Ocean over the period 2000–2006
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Carbon cycle (Biogeochemistry)"

1

Cordova, Vicente D. "Regional-scale carbon flux estimation using MODIS imagery." Virtual Press, 2005. http://liblink.bsu.edu/uhtbin/catkey/1325989.

Texte intégral
Résumé :
The National Aeronautics and Space Agency NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) platform carried by Terra and Aqua satellites, is providing systematic measurements summarized in high quality, consistent and well-calibrated satellite images and datasets ranging from reflectance in the visible and near infrared bands to estimates of leaf area index, vegetation indices and biome productivity. The objective of this research was to relate the spectral responses and derived MODIS products of ecosystems, to biogeochemical processes and trends in their physiological variables. W
Styles APA, Harvard, Vancouver, ISO, etc.
2

Halloran, Paul R. "Rapid changes in the global carbon cycle." Thesis, University of Oxford, 2008. http://ora.ox.ac.uk/objects/uuid:cfb93401-3313-4948-a74b-e7e44a068f15.

Texte intégral
Résumé :
The flux of carbon in to and out of the atmosphere exerts a fundamental control over the Earth's climate. The oceans contain almost two orders of magnitude more carbon than the atmosphere, and consequently, small fluctuations within the oceanic carbon reservoir can have very significant effects on air-sea CO<sub>2</sub> exchange, and the climate of the planet. Pelagic carbonates represent a major long-term flux of carbon from the surface ocean to deep-sea sediments. Within sediments, the biologically produced carbonates act as a longterm carbon store, but also as chemical recorders of past sur
Styles APA, Harvard, Vancouver, ISO, etc.
3

Holmes, Brett. "Mobilization of Metals and Phosphorous from Intact Forest Soil Cores by Dissolved Inorganic Carbon: A Laboratory Column Study." Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/HolmesB2007.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Trudinger, Catherine Mary. "The carbon cycle over the last 1000 years inferred from inversion of ice core data /." Full text, 2000. http://www.dar.csiro.au/publications/Trudinger_2001a0.htm.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ridgwell, Andy J. "Glacial-interglacial perturbations in the global carbon cycle." Thesis, University of East Anglia, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365134.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kambis, Alexis Demitrios. "A numerical model of the global carbon cycle to predict atmospheric carbon dioxide concentrations." W&M ScholarWorks, 1995. https://scholarworks.wm.edu/etd/1539616709.

Texte intégral
Résumé :
A numerical model of the global carbon cycle is presented which includes the effects of anthropogenic &CO\sb2& emissions &(CO\sb2& produced from fossil fuel combustion, biomass burning, and deforestation) on the global carbon cycle. The model is validated against measured atmospheric &CO\sb2& concentrations. Future levels of atmospheric &CO\sb2& are then predicted for the following scenarios: (1) Business as Usual (BaU) for the period 1990-2000; (2) Same as (1), but with no biomass burning; (3) Same as (1), but with no fossil fuel combustion; (4) Same as (1), but with a doubled atmospheric &CO
Styles APA, Harvard, Vancouver, ISO, etc.
7

Carozza, David. "Carbon cycle box modeling studies of the Paleocene-Eocene thermal maximum." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66818.

Texte intégral
Résumé :
Approximately 55 million years ago, an unprecedented amount of light carbon was abruptly released into the ocean and atmosphere. This event, known as the Paleocene-Eocene thermal maximum (PETM), is documented by large negative carbon isotope excursions in marine and soil carbonates and by global environmental changes. Models have been applied to constrain the amount of carbon released during the PETM. In this study, the Walker-Kasting carbon cycle box model is revisited and, after correcting its carbon isotope equations, it is used to resolve a discrepancy in previous emissio
Styles APA, Harvard, Vancouver, ISO, etc.
8

Smith, Joanne Caroline. "Particulate organic carbon mobilisation and export from temperate forested uplands." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648250.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ferretti, Dominic Francesco. "The development and application of a new high precision GC-IRMS technique for N₂O-free isotopic analysis of astmospheric CO₂." [Wellington, New Zealand] : Victoria University of Wellington, 1999. http://catalog.hathitrust.org/api/volumes/oclc/154329143.html.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bachman, Sarah. "Elevated atmospheric carbon dioxide and precipitation alter ecosystem carbon fluxes over northern mixed-grass prairie at the prairie heating and CO2 enrichment (PHACE) experiment in Cheyenne, Wyoming, USA." Laramie, Wyo. : University of Wyoming, 2007. http://proquest.umi.com/pqdweb?did=1445355711&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Livres sur le sujet "Carbon cycle (Biogeochemistry)"

1

R, Trabalka John, and United States. Dept. of Energy. Office of Basic Energy Sciences. Carbon Dioxide Research Division., eds. Atmospheric carbon dioxide and the global carbon cycle. Washington, D.C: U.S. Dept. of Energy, Office of Energy Research, Office of Basic Energy Sciences, Carbon Dioxide Research Division, 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

1965-, McPherson Brian J., and Sundquist E. T, eds. Carbon sequestration and its role in the global carbon cycle. Washington, DC: American Geophysical Union, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Josef, Cihlar, Heimann Martin 1949-, Olson Richard K, and Food and Agriculture Organization of the United Nations., eds. Terrestrial carbon observation: The Frascati report on in situ carbon data and information : 5-8 June 2001, Frastcati, Italy. Rome: Food and Agriculture Organization of the United Nations, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

A, Davidson Eric, and United States. National Aeronautics and Space Administration., eds. Effect of land use change on the carbon cycle in Amazon soils: Final technical report. [Washington, DC: National Aeronautics and Space Administration, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kokuritsu Kankyō Kenkyūjo. Chikyū Kankyō Kenkyū Sentā. Chikyū kankyō kansoku dēta to moderu tōgoka ni yoru tanso junkan hendō haaku no tame no kenkyū rōdo mappu. Ibaraki-ken Tsukuba-shi: Kokuritsu Kankyō Kenkyūjo Chikyū Kankyō Kenkyū Sentā, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

National Agroforestry Center (U.S.), ed. Working trees for carbon cycle balance. [Lincoln, Neb.]: USDA, National Agroforestry Center, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

National Agroforestry Center (U.S.), ed. Working trees for carbon cycle balance. [Lincoln, Neb.]: USDA, National Agroforestry Center, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ridzon, Leonard. The carbon connection. Kansas City, Mo: Acres U.S.A., 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Natural Sinks of CO2 (1992 Palmas Del Mar, Puerto Rico). Natural sinks of CO2: Palmas Del Mar, Puerto Rico, 24-27 February 1992. Dordrecht: Kluwer Academic, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Stanley, Dagley, Hagedorn Scott R. 1951-, Hanson Richard S. 1935-, and Kunz Daniel A. 1949-, eds. Microbial metabolism and the carbon cycle: A symposium in honor of Stanley Dagley ; edited by Scott R. Hagedorn, Richard S. Hanson, Daniel A. Kunz. Chur, Switzerland: Harwood Academic Publishers, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Carbon cycle (Biogeochemistry)"

1

Doney, Scott C., Keith Lindsay, and J. Keith Moore. "Global Ocean Carbon Cycle Modeling." In Ocean Biogeochemistry, 217–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55844-3_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Boyd, Philip W., and Scott C. Doney. "The Impact of Climate Change and Feedback Processes on the Ocean Carbon Cycle." In Ocean Biogeochemistry, 157–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55844-3_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

ACHTERBERG, ERIC P. "chapter 1 Grand Challenges in Marine Biogeochemistry." In Climate Change and the Oceanic Carbon Cycle, 1–14. 3333 Mistwell Crescent, Oakville, ON L6L 0A2, Canada: Apple Academic Press, 2017. http://dx.doi.org/10.1201/9781315207490-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Simoneit, B. R. T. "Hydrothermal Petroleum Generation from Immature Organic Matter-Implications to the Oceanic Carbon Cycle." In Facets of Modern Biogeochemistry, 365–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-73978-1_28.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Fung, Inez. "Models of Oceanic and Terrestrial Sinks of Anthropogenic CO2: A Review of the Contemporary Carbon Cycle." In Biogeochemistry of Global Change, 166–89. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2812-8_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Skjelvan, Ingunn, Are Olsen, Leif G. Anderson, Richard G. J. Bellerby, Eva Falck, Yoshie Kasajima, Caroline Kivimäe, et al. "A review of the inorganic carbon cycle of the Nordic Seas and Barents Sea." In The Nordic Seas: An Integrated Perspective Oceanography, Climatology, Biogeochemistry, and Modeling, 157–75. Washington, D. C.: American Geophysical Union, 2005. http://dx.doi.org/10.1029/158gm11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Walker, James C. G. "Biogeochemical Cycles of Carbon on a Hierarchy of Time Scales." In Biogeochemistry of Global Change, 3–28. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2812-8_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bianchi, Thomas S. "Carbon Cycle." In Biogeochemistry of Estuaries. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195160826.003.0023.

Texte intégral
Résumé :
Carbon is the key element of life on Earth and exists in more than a million compounds (Holmén, 2000; Berner, 2004). The unique covalent long-chained and aromatic carbon compounds form the basis of organic chemistry and the “roadmap” for understanding life from the cellular to the ecosystem level. The oxidation states of C atoms range from +IV to −IV; methane (CH4) is the most reduced form of C (−IV), with CO2 and other carbonate forms existing in the most oxidized state (+IV). The major reservoirs of C are stored in the Earth’s crust, with much of it as inorganic carbonate and the remaining as organic C (e.g., kerogen) (figure 13.1; Sundquist, 1993). The global C cycle can be divided into short- and long-term cycles based on the vast differences in the turnover times of different C pools (Berner, 2004). The carbonate reservoir can be divided into two primary subreservoirs: (1) dissolved inorganic carbon (DIC) in the ocean (H2CO3, HCO3−, and CO32−), and (2) solid carbonate minerals [CaCO3, CaMg(CO3)2, and FeCO3] (Holmén, 2000). While the global C cycle is quite complex, it is perhaps the best understood of all the bioactive element cycles. In fact, there have been numerous review papers on this cycle (e.g., Keeling, 1973; Degens et al., 1984; Siegenthaler and Sarmiento, 1993; Sundquist, 1993; Schimel et al., 1995; Holmén, 2000). Much of the interest in the global C cycle in recent years stems from linkages with environmental issues concerning carbon-based greenhouse gases (e.g., CO2 and CH4) and their role in global climate change (Dickinson and Cicerone, 1986). As described in chapter 8, short-term controls on the C cycle are largely a function of the uptake of inorganic C by autotrophs to fuel fixation in photosynthesis, and the utilization of organic carbon as a food resource by heterotrophs recycling inorganic C back into the system. This short-term cycle, which allows for the transfer of C between the lithosphere, hydrosphere, biosphere, and atmosphere over periods of days to thousands of years, is relatively short in comparison to the more than 4 billion year age of the Earth.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Schlesinger, William H., and Emily S. Bernhardt. "The Global Carbon Cycle." In Biogeochemistry, 419–44. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-385874-0.00011-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Schlesinger, William H. "The Global Carbon Cycle." In Biogeochemistry, 308–21. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-12-625156-2.50016-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Carbon cycle (Biogeochemistry)"

1

Covey, C., K. Caldeira, T. Guilderson, P. Cameron-Smith, B. Govindasamy, C. Swanston, M. Wickett, A. Mirin, and D. Bader. Global Biogeochemistry Models and Global Carbon Cycle Research at Lawrence Livermore National Laboratory. Office of Scientific and Technical Information (OSTI), May 2005. http://dx.doi.org/10.2172/15016353.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Twining, Benjamin S., Mak A. Saito, Alyson E. Santoro, Adrian Marchetti, and Naomi M. Levine. US National BioGeoSCAPES Workshop Report. Woods Hole Oceangraphic Institution, January 2023. http://dx.doi.org/10.1575/1912/29604.

Texte intégral
Résumé :
BioGeoSCAPES (BGS) is an international program being developed to understand controls on ocean productivity and metabolism by integrating systems biology (‘omics) and biogeochemistry (Figure 1). To ensure global input into the design of the BGS Program, countries interested in participating were tasked with holding an organizing meeting to discuss the country-specific research priorities. A United States BGS planning meeting, sponsored by the Ocean Carbon &amp; Biogeochemistry (OCB) Project Office, was convened virtually November 10-12, 2021. The objectives of the meeting were to communicate t
Styles APA, Harvard, Vancouver, ISO, etc.
3

Stanley, Rachel H. R., Thomas Thomas, Yuan Gao, Cassandra Gaston, David Ho, David Kieber, Kate Mackey, et al. US SOLAS Science Report. Woods Hole Oceanographic Institution, December 2021. http://dx.doi.org/10.1575/1912/27821.

Texte intégral
Résumé :
The Surface Ocean – Lower Atmosphere Study (SOLAS) (http://www.solas-int.org/) is an international research initiative focused on understanding the key biogeochemical-physical interactions and feedbacks between the ocean and atmosphere that are critical elements of climate and global biogeochemical cycles. Following the release of the SOLAS Decadal Science Plan (2015-2025) (Brévière et al., 2016), the Ocean-Atmosphere Interaction Committee (OAIC) was formed as a subcommittee of the Ocean Carbon and Biogeochemistry (OCB) Scientific Steering Committee to coordinate US SOLAS efforts and activitie
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!