Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Carbon cycle (Biogeochemistry).

Articles de revues sur le sujet « Carbon cycle (Biogeochemistry) »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Carbon cycle (Biogeochemistry) ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Mahowald, N., K. Lindsay, D. Rothenberg, S. C. Doney, J. K. Moore, P. Thornton, J. T. Randerson, and C. D. Jones. "Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model." Biogeosciences Discussions 7, no. 5 (September 1, 2010): 6617–73. http://dx.doi.org/10.5194/bgd-7-6617-2010.

Texte intégral
Résumé :
Abstract. Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries) and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mahowald, N., K. Lindsay, D. Rothenberg, S. C. Doney, J. K. Moore, P. Thornton, J. T. Randerson, and C. D. Jones. "Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model." Biogeosciences 8, no. 2 (February 15, 2011): 387–414. http://dx.doi.org/10.5194/bg-8-387-2011.

Texte intégral
Résumé :
Abstract. Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries) and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally
Styles APA, Harvard, Vancouver, ISO, etc.
3

Rodgers, K. B., O. Aumont, S. E. Mikaloff Fletcher, Y. Plancherel, L. Bopp, C. de Boyer Montégut, D. Iudicone, R. F. Keeling, G. Madec, and R. Wanninkhof. "Strong sensitivity of Southern Ocean carbon uptake and nutrient cycling to wind stirring." Biogeosciences Discussions 10, no. 9 (September 13, 2013): 15033–76. http://dx.doi.org/10.5194/bgd-10-15033-2013.

Texte intégral
Résumé :
Abstract. Here we test the hypothesis that winds have an important role in determining the rate of exchange of CO2 between the atmosphere and ocean through wind stirring over the Southern Ocean. This is tested with a sensitivity study using an ad hoc parameterization of wind stirring in an ocean carbon cycle model. The objective is to identify the way in which perturbations to the vertical density structure of the planetary boundary in the ocean impacts the carbon cycle and ocean biogeochemistry. Wind stirring leads to reduced uptake of CO2 by the Southern Ocean over the period 2000–2006, with
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hajima, Tomohiro, Michio Watanabe, Akitomo Yamamoto, Hiroaki Tatebe, Maki A. Noguchi, Manabu Abe, Rumi Ohgaito, et al. "Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks." Geoscientific Model Development 13, no. 5 (May 13, 2020): 2197–244. http://dx.doi.org/10.5194/gmd-13-2197-2020.

Texte intégral
Résumé :
Abstract. This article describes the new Earth system model (ESM), the Model for Interdisciplinary Research on Climate, Earth System version 2 for Long-term simulations (MIROC-ES2L), using a state-of-the-art climate model as the physical core. This model embeds a terrestrial biogeochemical component with explicit carbon–nitrogen interaction to account for soil nutrient control on plant growth and the land carbon sink. The model's ocean biogeochemical component is largely updated to simulate the biogeochemical cycles of carbon, nitrogen, phosphorus, iron, and oxygen such that oceanic primary pr
Styles APA, Harvard, Vancouver, ISO, etc.
5

Heinze, M., and T. Ilyina. "Ocean Biogeochemistry in the warm climate of the Late Paleocene." Climate of the Past Discussions 10, no. 2 (April 28, 2014): 1933–75. http://dx.doi.org/10.5194/cpd-10-1933-2014.

Texte intégral
Résumé :
Abstract. The Late Paleocene is characterized by warm and stable climatic conditions which served as the background climate for the Paleocene-Eocene Thermal Maximum (PETM, ~55 million years ago). With respect to feedback processes in the carbon cycle, the ocean biogeochemical background state is of major importance for projecting the climatic response to a carbon perturbation related to the PETM. Therefore we use the Hamburg Ocean Carbon Cycle model HAMOCC, embedded into the ocean general circulation model of the Max Planck Institute for Meteorology, MPIOM, to constrain the ocean biogeochemist
Styles APA, Harvard, Vancouver, ISO, etc.
6

Heinze, M., and T. Ilyina. "Ocean biogeochemistry in the warm climate of the late Paleocene." Climate of the Past 11, no. 1 (January 13, 2015): 63–79. http://dx.doi.org/10.5194/cp-11-63-2015.

Texte intégral
Résumé :
Abstract. The late Paleocene is characterized by warm and stable climatic conditions that served as the background climate for the Paleocene–Eocene Thermal Maximum (PETM, ~55 million years ago). With respect to feedback processes in the carbon cycle, the ocean biogeochemical background state is of major importance for projecting the climatic response to a carbon perturbation related to the PETM. Therefore, we use the Hamburg Ocean Carbon Cycle model (HAMOCC), embedded in the ocean general circulation model of the Max Planck Institute for Meteorology, MPIOM, to constrain the ocean biogeochemist
Styles APA, Harvard, Vancouver, ISO, etc.
7

Romanou, A., J. Romanski, and W. W. Gregg. "Natural ocean carbon cycle sensitivity to parameterizations of the recycling in a climate model." Biogeosciences Discussions 10, no. 7 (July 5, 2013): 11111–53. http://dx.doi.org/10.5194/bgd-10-11111-2013.

Texte intégral
Résumé :
Abstract. Sensitivities of the oceanic biological pump within the GISS climate modeling system are explored here. Results are presented from twin control simulations of the air-sea CO2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM) which compute
Styles APA, Harvard, Vancouver, ISO, etc.
8

Butzin, Martin, Ying Ye, Christoph Völker, Özgür Gürses, Judith Hauck, and Peter Köhler. "Carbon isotopes in the marine biogeochemistry model FESOM2.1-REcoM3." Geoscientific Model Development 17, no. 4 (February 26, 2024): 1709–27. http://dx.doi.org/10.5194/gmd-17-1709-2024.

Texte intégral
Résumé :
Abstract. In this paper we describe the implementation of the carbon isotopes 13C and 14C (radiocarbon) into the marine biogeochemistry model REcoM3. The implementation is tested in long-term equilibrium simulations where REcoM3 is coupled with the ocean general circulation model FESOM2.1, applying a low-resolution configuration and idealized climate forcing. Focusing on the carbon-isotopic composition of dissolved inorganic carbon (δ13CDIC and Δ14CDIC), our model results are largely consistent with reconstructions for the pre-anthropogenic period. Our simulations also exhibit discrepancies, e
Styles APA, Harvard, Vancouver, ISO, etc.
9

Keller, K. M., F. Joos, and C. C. Raible. "Time of emergence of trends in ocean biogeochemistry." Biogeosciences 11, no. 13 (July 9, 2014): 3647–59. http://dx.doi.org/10.5194/bg-11-3647-2014.

Texte intégral
Résumé :
Abstract. For the detection of climate change, not only the magnitude of a trend signal is of significance. An essential issue is the time period required by the trend to be detectable in the first place. An illustrative measure for this is time of emergence (ToE), that is, the point in time when a signal finally emerges from the background noise of natural variability. We investigate the ToE of trend signals in different biogeochemical and physical surface variables utilizing a multi-model ensemble comprising simulations of 17 Earth system models (ESMs). We find that signals in ocean biogeoch
Styles APA, Harvard, Vancouver, ISO, etc.
10

Rodgers, K. B., O. Aumont, S. E. Mikaloff Fletcher, Y. Plancherel, L. Bopp, C. de Boyer Montégut, D. Iudicone, R. F. Keeling, G. Madec, and R. Wanninkhof. "Strong sensitivity of Southern Ocean carbon uptake and nutrient cycling to wind stirring." Biogeosciences 11, no. 15 (August 1, 2014): 4077–98. http://dx.doi.org/10.5194/bg-11-4077-2014.

Texte intégral
Résumé :
Abstract. Here we test the hypothesis that winds have an important role in determining the rate of exchange of CO2 between the atmosphere and ocean through wind stirring over the Southern Ocean. This is tested with a sensitivity study using an ad hoc parameterization of wind stirring in an ocean carbon cycle model, where the objective is to identify the way in which perturbations to the vertical density structure of the planetary boundary in the ocean impacts the carbon cycle and ocean biogeochemistry. Wind stirring leads to reduced uptake of CO2 by the Southern Ocean over the period 2000–2006
Styles APA, Harvard, Vancouver, ISO, etc.
11

Pasquier, Benoît, Mark Holzer, and Matthew A. Chamberlain. "The biological and preformed carbon pumps in perpetually slower and warmer oceans." Biogeosciences 21, no. 14 (July 24, 2024): 3373–400. http://dx.doi.org/10.5194/bg-21-3373-2024.

Texte intégral
Résumé :
Abstract. The marine carbon cycle is vitally important for climate and the fertility of the oceans. However, predictions of future biogeochemistry are challenging because a myriad of processes need parameterization and the future evolution of the physical ocean state is uncertain. Here, we embed a data-constrained model of the carbon cycle in slower and warmer ocean states as simulated under the RCP4.5 and RCP8.5 (RCP: Representative Concentration Pathway) scenarios for the 2090s and frozen in time for perpetuity. Focusing on steady-state changes from preindustrial conditions allows us to capt
Styles APA, Harvard, Vancouver, ISO, etc.
12

Assmann, K. M., M. Bentsen, J. Segschneider, and C. Heinze. "An isopycnic ocean carbon cycle model." Geoscientific Model Development 3, no. 1 (February 16, 2010): 143–67. http://dx.doi.org/10.5194/gmd-3-143-2010.

Texte intégral
Résumé :
Abstract. The carbon cycle is a major forcing component in the global climate system. Modelling studies, aiming to explain recent and past climatic changes and to project future ones, increasingly include the interaction between the physical and biogeochemical systems. Their ocean components are generally z-coordinate models that are conceptually easy to use but that employ a vertical coordinate that is alien to the real ocean structure. Here, we present first results from a newly-developed isopycnic carbon cycle model and demonstrate the viability of using an isopycnic physical component for
Styles APA, Harvard, Vancouver, ISO, etc.
13

Ussher, Simon J., Eric P. Achterberg, and Paul J. Worsfold. "Marine Biogeochemistry of Iron." Environmental Chemistry 1, no. 2 (2004): 67. http://dx.doi.org/10.1071/en04053.

Texte intégral
Résumé :
Environmental Context. Several trace elements are essential to the growth of microorganisms, iron being arguably the most important. Marine microorganisms, which affect the global carbon cycle and consequently indirectly influence the world’s climate, are therefore sensitive to the presence of iron. This link means iron-related oceanic processes are a significant ecological and political issue. Abstract. The importance of the role of iron as a limiting micronutrient for primary production in the World Ocean has become increasingly clear following large-scale in situ iron fertilization experime
Styles APA, Harvard, Vancouver, ISO, etc.
14

Tagliabue, A., L. Bopp, D. M. Roche, N. Bouttes, J. C. Dutay, R. Alkama, M. Kageyama, E. Michel, and D. Paillard. "Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum." Climate of the Past 5, no. 4 (November 18, 2009): 695–706. http://dx.doi.org/10.5194/cp-5-695-2009.

Texte intégral
Résumé :
Abstract. We use a state-of-the-art ocean general circulation and biogeochemistry model to examine the impact of changes in ocean circulation and biogeochemistry in governing the change in ocean carbon-13 and atmospheric CO2 at the last glacial maximum (LGM). We examine 5 different realisations of the ocean's overturning circulation produced by a fully coupled atmosphere-ocean model under LGM forcing and suggested changes in the atmospheric deposition of iron and phytoplankton physiology at the LGM. Measured changes in carbon-13 and carbon-14, as well as a qualitative reconstruction of the cha
Styles APA, Harvard, Vancouver, ISO, etc.
15

Tagliabue, A., L. Bopp, D. M. Roche, N. Bouttes, J. C. Dutay, R. Alkama, M. Kageyama, E. Michel, and D. Paillard. "Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum." Climate of the Past Discussions 5, no. 3 (May 20, 2009): 1463–91. http://dx.doi.org/10.5194/cpd-5-1463-2009.

Texte intégral
Résumé :
Abstract. We use a state-of-the-art ocean general circulation and biogeochemistry model to examine the impact of changes in ocean circulation and biogeochemistry in governing the change in ocean carbon-13 and atmospheric CO2 at the last glacial maximum (LGM). We examine 5 different realisations of the ocean's overturning circulation produced by a fully coupled atmosphere-ocean model under LGM forcing and suggested changes in the atmospheric deposition of iron and phytoplankton physiology at the LGM. Measured changes in carbon-13 and carbon-14, as well as a qualitative reconstruction of the cha
Styles APA, Harvard, Vancouver, ISO, etc.
16

Tjiputra, Jerry F., Jörg Schwinger, Mats Bentsen, Anne L. Morée, Shuang Gao, Ingo Bethke, Christoph Heinze, et al. "Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2)." Geoscientific Model Development 13, no. 5 (May 26, 2020): 2393–431. http://dx.doi.org/10.5194/gmd-13-2393-2020.

Texte intégral
Résumé :
Abstract. The ocean carbon cycle is a key player in the climate system through its role in regulating the atmospheric carbon dioxide concentration and other processes that alter the Earth's radiative balance. In the second version of the Norwegian Earth System Model (NorESM2), the oceanic carbon cycle component has gone through numerous updates that include, amongst others, improved process representations, increased interactions with the atmosphere, and additional new tracers. Oceanic dimethyl sulfide (DMS) is now prognostically simulated and its fluxes are directly coupled with the atmospher
Styles APA, Harvard, Vancouver, ISO, etc.
17

Qu, Yang, Shamil Maksyutov, and Qianlai Zhuang. "Technical Note: An efficient method for accelerating the spin-up process for process-based biogeochemistry models." Biogeosciences 15, no. 13 (July 3, 2018): 3967–73. http://dx.doi.org/10.5194/bg-15-3967-2018.

Texte intégral
Résumé :
Abstract. To better understand the role of terrestrial ecosystems in the global carbon cycle and their feedbacks to the global climate system, process-based biogeochemistry models need to be improved with respect to model parameterization and model structure. To achieve these improvements, the spin-up time for those differential equation-based models needs to be shortened. Here, an algorithm for a fast spin-up was developed by finding the exact solution of a linearized system representing the cyclo-stationary state of a model and implemented in a biogeochemistry model, the Terrestrial Ecosyste
Styles APA, Harvard, Vancouver, ISO, etc.
18

Henson, Stephanie A. "Slow science: the value of long ocean biogeochemistry records." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, no. 2025 (September 28, 2014): 20130334. http://dx.doi.org/10.1098/rsta.2013.0334.

Texte intégral
Résumé :
Sustained observations (SOs) have provided invaluable information on the ocean's biology and biogeochemistry for over 50 years. They continue to play a vital role in elucidating the functioning of the marine ecosystem, particularly in the light of ongoing climate change. Repeated, consistent observations have provided the opportunity to resolve temporal and/or spatial variability in ocean biogeochemistry, which has driven exploration of the factors controlling biological parameters and processes. Here, I highlight some of the key breakthroughs in biological oceanography that have been enabled
Styles APA, Harvard, Vancouver, ISO, etc.
19

Li, Tao, Laura F. Robinson, Tianyu Chen, Xingchen T. Wang, Andrea Burke, James W. B. Rae, Albertine Pegrum-Haram, et al. "Rapid shifts in circulation and biogeochemistry of the Southern Ocean during deglacial carbon cycle events." Science Advances 6, no. 42 (October 2020): eabb3807. http://dx.doi.org/10.1126/sciadv.abb3807.

Texte intégral
Résumé :
The Southern Ocean plays a crucial role in regulating atmospheric CO2 on centennial to millennial time scales. However, observations of sufficient resolution to explore this have been lacking. Here, we report high-resolution, multiproxy records based on precisely dated deep-sea corals from the Southern Ocean. Paired deep (∆14C and δ11B) and surface (δ15N) proxy data point to enhanced upwelling coupled with reduced efficiency of the biological pump at 14.6 and 11.7 thousand years (ka) ago, which would have facilitated rapid carbon release to the atmosphere. Transient periods of unusually well-v
Styles APA, Harvard, Vancouver, ISO, etc.
20

Zaehle, S. "Terrestrial nitrogen–carbon cycle interactions at the global scale." Philosophical Transactions of the Royal Society B: Biological Sciences 368, no. 1621 (July 5, 2013): 20130125. http://dx.doi.org/10.1098/rstb.2013.0125.

Texte intégral
Résumé :
Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen–carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Dall'Olmo, G., T. K. Westberry, M. J. Behrenfeld, E. Boss, C. Courties, L. Prieur, N. Hardman-Mountford, and T. Moutin. "Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient." Biogeosciences Discussions 8, no. 2 (March 21, 2011): 3009–50. http://dx.doi.org/10.5194/bgd-8-3009-2011.

Texte intégral
Résumé :
Abstract. The diurnal fluctuations in solar irradiance impose a fundamental frequency on ocean biogeochemistry. Observations of the ocean carbon cycle at these frequencies are rare, but could be considerably expanded by measuring and interpreting the inherent optical properties. A method is presented to analyze diel cycles in particulate beam-attenuation coefficient (cp) measured at multiple wavelengths. The method is based on fitting observations with a size-structured population and optical model to infer the particle size distribution and physiologically relevant parameters of the cells res
Styles APA, Harvard, Vancouver, ISO, etc.
22

Keller, K. M., F. Joos, and C. C. Raible. "Time of Emergence of trends in ocean biogeochemistry." Biogeosciences Discussions 10, no. 11 (November 20, 2013): 18065–92. http://dx.doi.org/10.5194/bgd-10-18065-2013.

Texte intégral
Résumé :
Abstract. For the detection of climate change, not only the magnitude of a trend signal is of significance. An essential issue is the time period required by the trend to be detectable in the first place. An illustrative measure for this is Time of Emergence (ToE), i.e., the point in time when a signal finally emerges from the background noise of natural variability. We investigate the ToE of trend signals in different biogeochemical and physical surface variables utilizing a multi-model ensemble comprising simulations of 17 ESMs. We find that signals in ocean biogeochemical variables emerge o
Styles APA, Harvard, Vancouver, ISO, etc.
23

Romanou, A., J. Romanski, and W. W. Gregg. "Natural ocean carbon cycle sensitivity to parameterizations of the recycling in a climate model." Biogeosciences 11, no. 4 (February 26, 2014): 1137–54. http://dx.doi.org/10.5194/bg-11-1137-2014.

Texte intégral
Résumé :
Abstract. Sensitivities of the oceanic biological pump within the GISS (Goddard Institute for Space Studies ) climate modeling system are explored here. Results are presented from twin control simulations of the air–sea CO2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Bio
Styles APA, Harvard, Vancouver, ISO, etc.
24

Jian, Jinshi, Rodrigo Vargas, Kristina Anderson-Teixeira, Emma Stell, Valentine Herrmann, Mercedes Horn, Nazar Kholod, et al. "A restructured and updated global soil respiration database (SRDB-V5)." Earth System Science Data 13, no. 2 (February 3, 2021): 255–67. http://dx.doi.org/10.5194/essd-13-255-2021.

Texte intégral
Résumé :
Abstract. Field-measured soil respiration (RS, the soil-to-atmosphere CO2 flux) observations were compiled into a global soil respiration database (SRDB) a decade ago, a resource that has been widely used by the biogeochemistry community to advance our understanding of RS dynamics. Novel carbon cycle science questions require updated and augmented global information with better interoperability among datasets. Here, we restructured and updated the global RS database to version SRDB-V5. The updated version has all previous fields revised for consistency and simplicity, and it has several new fi
Styles APA, Harvard, Vancouver, ISO, etc.
25

Wiltshire, Andrew J., Eleanor J. Burke, Sarah E. Chadburn, Chris D. Jones, Peter M. Cox, Taraka Davies-Barnard, Pierre Friedlingstein, et al. "JULES-CN: a coupled terrestrial carbon–nitrogen scheme (JULES vn5.1)." Geoscientific Model Development 14, no. 4 (April 27, 2021): 2161–86. http://dx.doi.org/10.5194/gmd-14-2161-2021.

Texte intégral
Résumé :
Abstract. Understanding future changes in the terrestrial carbon cycle is important for reliable projections of climate change and impacts on ecosystems. It is well known that nitrogen (N) could limit plants' response to increased atmospheric carbon dioxide and it is therefore important to include a representation of the N cycle in Earth system models. Here we present the implementation of the terrestrial nitrogen cycle in the Joint UK Land Environment Simulator (JULES) – the land surface scheme of the UK Earth System Model (UKESM). Two configurations are discussed – the first one (JULES-CN) h
Styles APA, Harvard, Vancouver, ISO, etc.
26

Christian, James R., Kenneth L. Denman, Hakase Hayashida, Amber M. Holdsworth, Warren G. Lee, Olivier G. J. Riche, Andrew E. Shao, Nadja Steiner, and Neil C. Swart. "Ocean biogeochemistry in the Canadian Earth System Model version 5.0.3: CanESM5 and CanESM5-CanOE." Geoscientific Model Development 15, no. 11 (June 9, 2022): 4393–424. http://dx.doi.org/10.5194/gmd-15-4393-2022.

Texte intégral
Résumé :
Abstract. The ocean biogeochemistry components of two new versions of the Canadian Earth System Model (CanESM) are presented and compared to observations and other models. CanESM5 employs the same ocean biology model as CanESM2, whereas CanESM5-CanOE (Canadian Ocean Ecosystem model) is a new, more complex model developed for CMIP6, with multiple food chains, flexible phytoplankton elemental ratios, and a prognostic iron cycle. This new model is described in detail and the outputs (distributions of major tracers such as oxygen, dissolved inorganic carbon, and alkalinity, the iron and nitrogen c
Styles APA, Harvard, Vancouver, ISO, etc.
27

Tang, Jinyun, and William J. Riley. "On the modeling paradigm of plant root nutrient acquisition." Plant and Soil 459, no. 1-2 (January 14, 2021): 441–51. http://dx.doi.org/10.1007/s11104-020-04798-5.

Texte intégral
Résumé :
AbstractPlant root nutrient acquisition, and to a lesser extent foliar nutrient uptake, maintain plant metabolism and strongly regulate terrestrial biogeochemistry and carbon-climate feedbacks. However, terrestrial biogeochemical models differ in their representations of plant root nutrient acquisition, leading to significantly different, and uncertain, carbon cycle and future climate projections. Here we first review biogeochemical principles and observations relevant to three essential plant root nutrient acquisition mechanisms: activity of nutrient acquiring proteins, maintenance of nutrien
Styles APA, Harvard, Vancouver, ISO, etc.
28

Rantala, Marttiina V., Carsten Meyer-Jacob, E. Henriikka Kivilä, Tomi P. Luoto, Antti E. K. Ojala, John P. Smol, and Liisa Nevalainen. "Traces of sunlight in the organic matter biogeochemistry of two shallow subarctic lakes." Biogeochemistry 155, no. 2 (June 18, 2021): 169–88. http://dx.doi.org/10.1007/s10533-021-00820-9.

Texte intégral
Résumé :
AbstractGlobal environmental change alters the production, terrestrial export, and photodegradation of organic carbon in northern lakes. Sedimentary biogeochemical records can provide a unique means to understand the nature of these changes over long time scales, where observational data fall short. We deployed in situ experiments on two shallow subarctic lakes with contrasting light regimes; a clear tundra lake and a dark woodland lake, to first investigate the photochemical transformation of carbon and nitrogen elemental (C/N ratio) and isotope (δ13C, δ15N) composition in lake water particul
Styles APA, Harvard, Vancouver, ISO, etc.
29

Matsumoto, K., K. Tokos, A. Huston, and H. Joy-Warren. "MESMO 2: a mechanistic marine silica cycle and coupling to a simple terrestrial scheme." Geoscientific Model Development 6, no. 2 (April 12, 2013): 477–94. http://dx.doi.org/10.5194/gmd-6-477-2013.

Texte intégral
Résumé :
Abstract. Here we describe the second version of Minnesota Earth System Model for Ocean biogeochemistry (MESMO 2), an earth system model of intermediate complexity, which consists of a dynamical ocean, dynamic-thermodynamic sea ice, and energy moisture balanced atmosphere. The new version has more realistic land ice masks and is driven by seasonal winds. A major aim in version 2 is representing the marine silica cycle mechanistically in order to investigate climate-carbon feedbacks involving diatoms, a critically important class of phytoplankton in terms of carbon export production. This is ac
Styles APA, Harvard, Vancouver, ISO, etc.
30

Matsumoto, K., K. S. Tokos, A. Huston, and H. Joy-Warren. "MESMO 2: a mechanistic marine silica cycle and coupling to a simple terrestrial scheme." Geoscientific Model Development Discussions 5, no. 3 (September 24, 2012): 2999–3033. http://dx.doi.org/10.5194/gmdd-5-2999-2012.

Texte intégral
Résumé :
Abstract. Here we describe the second version of Minnesota Earth System Model for Ocean biogeochemistry (MESMO 2), an earth system model of intermediate complexity, which consists of a dynamical ocean, dynamic-thermodynamic sea ice, and energy moisture balanced atmosphere. The new version has more realistic land ice masks and is driven by seasonal winds. A major aim in version 2 is representing the marine silica cycle mechanistically in order to investigate climate-carbon feedbacks involving diatoms, a critically important class of phytoplankton in terms of carbon export production. This is ac
Styles APA, Harvard, Vancouver, ISO, etc.
31

Brault, M. O., L. A. Mysak, and H. D. Matthews. "Carbon cycle implications of terrestrial weathering changes since the last glacial maximum." FACETS 2, no. 1 (May 1, 2017): 267–85. http://dx.doi.org/10.1139/facets-2016-0040.

Texte intégral
Résumé :
We examine the importance of the rock weathering feedback mechanism during the last deglacial period (∼16 000–4000 BCE) using an Earth system model of intermediate complexity (the University of Victoria Earth System Climate Model (UVic ESCM)) with four box-model parameterizations of terrestrial weathering. The deglacial climate change is driven by changes in orbital parameters, ice core reconstructions of atmospheric CO2 variability, and prescribed removal of continental ice sheets. Over the course of the 12 000 year simulation period, increases in weathering provide a mechanism that slowly re
Styles APA, Harvard, Vancouver, ISO, etc.
32

Pinto Junior, Osvaldo Borges, Paula Valéria Carvalho, and Eduardo Guimarães Couto. "Study of CO2 flux and soil carbon in northern Pantanal, Brazil." Revista Ibero-Americana de Ciências Ambientais 9, no. 5 (September 24, 2018): 29–38. http://dx.doi.org/10.6008/cbpc2179-6858.2018.005.0004.

Texte intégral
Résumé :
The determination of greenhouse gas emissions from wetlands are of great interest given the biogeochemistry these areas exhibit. We measure soil CO2 concentration and monthly fluxes on a tree island of the Northern Pantanal of Mato Grosso, Brazil, and estimate the role of soil as a carbon source or sink during high tide, low tide, flooding, and drought seasons. The average value of the CO2 fluxes in the wetland soil was 0.54 ± 0.30 g (CO2)·m- 2·h- 1 with the soil acting as a carbon source at -9.11 ton.·ha-1 over the one year cycle. Soil CO2 fluxes were significantly correlated with soil moistu
Styles APA, Harvard, Vancouver, ISO, etc.
33

Arnosti, C., M. Wietz, T. Brinkhoff, J. H. Hehemann, D. Probandt, L. Zeugner, and R. Amann. "The Biogeochemistry of Marine Polysaccharides: Sources, Inventories, and Bacterial Drivers of the Carbohydrate Cycle." Annual Review of Marine Science 13, no. 1 (January 3, 2021): 81–108. http://dx.doi.org/10.1146/annurev-marine-032020-012810.

Texte intégral
Résumé :
Polysaccharides are major components of macroalgal and phytoplankton biomass and constitute a large fraction of the organic matter produced and degraded in the ocean. Until recently, however, our knowledge of marine polysaccharides was limited due to their great structural complexity, the correspondingly complicated enzymatic machinery used by microbial communities to degrade them, and a lack of readily applied means to isolate andcharacterize polysaccharides in detail. Advances in carbohydrate chemistry, bioinformatics, molecular ecology, and microbiology have led to new insights into the str
Styles APA, Harvard, Vancouver, ISO, etc.
34

Dall'Olmo, G., E. Boss, M. J. Behrenfeld, T. K. Westberry, C. Courties, L. Prieur, M. Pujo-Pay, N. Hardman-Mountford, and T. Moutin. "Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient." Biogeosciences 8, no. 11 (November 28, 2011): 3423–39. http://dx.doi.org/10.5194/bg-8-3423-2011.

Texte intégral
Résumé :
Abstract. The diurnal fluctuations in solar irradiance impose a fundamental frequency on ocean biogeochemistry. Observations of the ocean carbon cycle at these frequencies are rare, but could be considerably expanded by measuring and interpreting the inherent optical properties. A method is presented to analyze diel cycles in particulate beam-attenuation coefficient (cp) measured at multiple wavelengths. The method is based on fitting observations with a size-structured population model coupled to an optical model to infer the particle size distribution and physiologically relevant parameters
Styles APA, Harvard, Vancouver, ISO, etc.
35

Fang, Y., C. Liu, and L. R. Leung. "Accelerating the spin-up of the coupled carbon and nitrogen cycle model in CLM4." Geoscientific Model Development Discussions 7, no. 6 (December 20, 2014): 9109–32. http://dx.doi.org/10.5194/gmdd-7-9109-2014.

Texte intégral
Résumé :
Abstract. The commonly adopted biogeochemistry spin-up process in earth system model is to run the model for hundreds to thousands of years subject to periodic atmospheric forcing to reach dynamic steady state of the carbon-nitrogen (CN) models. A variety of approaches have been proposed to reduce the computation time of the spin-up process. Significant improvement in computational efficiency has been made recently. However, a long simulation time is still required to reach the common convergence criteria of the coupled carbon/nitrogen model. A gradient projection method was proposed and used
Styles APA, Harvard, Vancouver, ISO, etc.
36

Zhang, ChuanLun. "Untangling the role that microbes play in ocean carbon cycle─A new paradigm in marine biogeochemistry." Science China Earth Sciences 60, no. 2 (December 23, 2016): 409–12. http://dx.doi.org/10.1007/s11430-016-0217-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Beaupré, Steven R., David J. Kieber, William C. Keene, Michael S. Long, John R. Maben, Xi Lu, Yuting Zhu, et al. "Oceanic efflux of ancient marine dissolved organic carbon in primary marine aerosol." Science Advances 5, no. 10 (October 2019): eaax6535. http://dx.doi.org/10.1126/sciadv.aax6535.

Texte intégral
Résumé :
Breaking waves produce bubble plumes that burst at the sea surface, injecting primary marine aerosol (PMA) highly enriched with marine organic carbon (OC) into the atmosphere. It is widely assumed that this OC is modern, produced by present-day biological activity, even though nearly all marine OC is thousands of years old, produced by biological activity long ago. We used natural abundance radiocarbon (14C) measurements to show that 19 to 40% of the OC associated with freshly produced PMA was refractory dissolved OC (RDOC). Globally, this process removes 2 to 20 Tg of RDOC from the oceans ann
Styles APA, Harvard, Vancouver, ISO, etc.
38

Matsumoto, George I., Kenneth S. Johnson, Steve Riser, Lynne Talley, Susan Wijffels, and Roberta Hotinski. "The Global Ocean Biogeochemistry (GO-BGC) Array of Profiling Floats to Observe Changing Ocean Chemistry and Biology." Marine Technology Society Journal 56, no. 3 (June 8, 2022): 122–23. http://dx.doi.org/10.4031/mtsj.56.3.25.

Texte intégral
Résumé :
Abstract The Global Ocean Biogeochemistry (GO-BGC) Array is a project funded by the US National Science Foundation to build a global network of chemical and biological sensors on Argo profiling floats. The network will monitor biogeochemical cycles and ocean health. The floats will collect from a depth of 2,000 meters to the surface, augmenting the existing <ext-link ext-link-type="uri" xlink:href="https://argo.ucsd.edu/">Argo array</ext-link> that monitors ocean temperature and salinity. Data will be made freely available within a day of being collected via the Argo data system. T
Styles APA, Harvard, Vancouver, ISO, etc.
39

Zhang, Chuanlun, Hongyue Dang, Farooq Azam, Ronald Benner, Louis Legendre, Uta Passow, Luca Polimene, Carol Robinson, Curtis A. Suttle, and Nianzhi Jiao. "Evolving paradigms in biological carbon cycling in the ocean." National Science Review 5, no. 4 (July 1, 2018): 481–99. http://dx.doi.org/10.1093/nsr/nwy074.

Texte intégral
Résumé :
ABSTRACT Carbon is a keystone element in global biogeochemical cycles. It plays a fundamental role in biotic and abiotic processes in the ocean, which intertwine to mediate the chemistry and redox status of carbon in the ocean and the atmosphere. The interactions between abiotic and biogenic carbon (e.g. CO2, CaCO3, organic matter) in the ocean are complex, and there is a half-century-old enigma about the existence of a huge reservoir of recalcitrant dissolved organic carbon (RDOC) that equates to the magnitude of the pool of atmospheric CO2. The concepts of the biological carbon pump (BCP) an
Styles APA, Harvard, Vancouver, ISO, etc.
40

Willeit, Matteo, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, et al. "The Earth system model CLIMBER-X v1.0 – Part 2: The global carbon cycle." Geoscientific Model Development 16, no. 12 (June 27, 2023): 3501–34. http://dx.doi.org/10.5194/gmd-16-3501-2023.

Texte intégral
Résumé :
Abstract. The carbon cycle component of the newly developed Earth system model of intermediate complexity CLIMBER-X is presented. The model represents the cycling of carbon through the atmosphere, vegetation, soils, seawater and marine sediments. Exchanges of carbon with geological reservoirs occur through sediment burial, rock weathering and volcanic degassing. The state-of-the-art HAMOCC6 model is employed to simulate ocean biogeochemistry and marine sediment processes. The land model PALADYN simulates the processes related to vegetation and soil carbon dynamics, including permafrost and pea
Styles APA, Harvard, Vancouver, ISO, etc.
41

Chien, Chia-Te, Jonathan V. Durgadoo, Dana Ehlert, Ivy Frenger, David P. Keller, Wolfgang Koeve, Iris Kriest, et al. "FOCI-MOPS v1 – integration of marine biogeochemistry within the Flexible Ocean and Climate Infrastructure version 1 (FOCI 1) Earth system model." Geoscientific Model Development 15, no. 15 (August 2, 2022): 5987–6024. http://dx.doi.org/10.5194/gmd-15-5987-2022.

Texte intégral
Résumé :
Abstract. The consideration of marine biogeochemistry is essential for simulating the carbon cycle in an Earth system model. Here we present the implementation and evaluation of a marine biogeochemical model, the Model of Oceanic Pelagic Stoichiometry (MOPS) in the Flexible Ocean and Climate Infrastructure (FOCI) climate model. FOCI-MOPS enables the simulation of marine biological processes, i.e. the marine carbon, nitrogen, and oxygen cycles with prescribed or prognostic atmospheric CO2 concentration. A series of experiments covering the historical period (1850–2014) were performed following
Styles APA, Harvard, Vancouver, ISO, etc.
42

Fang, Y., C. Liu, and L. R. Leung. "Accelerating the spin-up of the coupled carbon and nitrogen cycle model in CLM4." Geoscientific Model Development 8, no. 3 (March 24, 2015): 781–89. http://dx.doi.org/10.5194/gmd-8-781-2015.

Texte intégral
Résumé :
Abstract. The commonly adopted biogeochemistry spin-up process in an Earth system model (ESM) is to run the model for hundreds to thousands of years subject to periodic atmospheric forcing to reach dynamic steady state of the carbon–nitrogen (CN) models. A variety of approaches have been proposed to reduce the computation time of the spin-up process. Significant improvement in computational efficiency has been made recently. However, a long simulation time is still required to reach the common convergence criteria of the coupled carbon–nitrogen model. A gradient projection method was proposed
Styles APA, Harvard, Vancouver, ISO, etc.
43

Matsumoto, K., K. S. Tokos, A. R. Price, and S. J. Cox. "First description of the Minnesota Earth System Model for Ocean biogeochemistry (MESMO 1.0)." Geoscientific Model Development 1, no. 1 (August 4, 2008): 1–15. http://dx.doi.org/10.5194/gmd-1-1-2008.

Texte intégral
Résumé :
Abstract. Here we describe the first version of the Minnesota Earth System Model for Ocean biogeochemistry (MESMO 1.0), an intermediate complexity model based on the Grid ENabled Integrated Earth system model (GENIE-1). As with GENIE-1, MESMO has a 3D dynamical ocean, energy-moisture balance atmosphere, dynamic and thermodynamic sea ice, and marine biogeochemistry. Main development goals of MESMO were to: (1) bring oceanic uptake of anthropogenic transient tracers within data constraints; (2) increase vertical resolution in the upper ocean to better represent near-surface biogeochemical proces
Styles APA, Harvard, Vancouver, ISO, etc.
44

Leloup, Gaëlle, та Didier Paillard. "Multi-million-year cycles in modelled δ13C as a response to astronomical forcing of organic matter fluxes". Earth System Dynamics 14, № 2 (21 березня 2023): 291–307. http://dx.doi.org/10.5194/esd-14-291-2023.

Texte intégral
Résumé :
Abstract. Along with 400 kyr periodicities, multi-million-year cycles have been found in δ13C records over different time periods. An ∼ 8–9 Myr periodicity is found throughout the Cenozoic and part of the Mesozoic. The robust presence of this periodicity in δ13C records suggests an astronomical origin. However, this periodicity is barely visible in the astronomical forcing. Due to the large fractionation factor of organic matter, its burial or oxidation produces large δ13C variations for moderate carbon variations. Therefore, astronomical forcing of organic matter fluxes is a plausible candida
Styles APA, Harvard, Vancouver, ISO, etc.
45

Nickelsen, L., D. P. Keller, and A. Oschlies. "A dynamic marine iron cycle module coupled to the University of Victoria Earth System Model: the Kiel Marine Biogeochemical Model 2 (KMBM2) for UVic 2.9." Geoscientific Model Development Discussions 7, no. 6 (December 5, 2014): 8505–63. http://dx.doi.org/10.5194/gmdd-7-8505-2014.

Texte intégral
Résumé :
Abstract. Marine biological production and the associated biotic uptake of carbon in many ocean regions depend on the availability of nutrients in the euphotic zone. While large areas are limited by nitrogen and/or phosphorus, the micronutrient iron is considered the main limiting nutrient in the North Pacific, equatorial Pacific and Southern Ocean. Changes in iron availability via changes in atmospheric dust input are discussed to play an important role in glacial/interglacial cycles via climate feedbacks caused by changes in biological ocean carbon sequestration. Although many aspects of the
Styles APA, Harvard, Vancouver, ISO, etc.
46

Burke, Eleanor, Sarah Chadburn, and Chris Huntingford. "Thawing Permafrost as a Nitrogen Fertiliser: Implications for Climate Feedbacks." Nitrogen 3, no. 2 (June 3, 2022): 353–75. http://dx.doi.org/10.3390/nitrogen3020023.

Texte intégral
Résumé :
Studies for the northern high latitudes suggest that, in the near term, increased vegetation uptake may offset permafrost carbon losses, but over longer time periods, permafrost carbon decomposition causes a net loss of carbon. Here, we assess the impact of a coupled carbon and nitrogen cycle on the simulations of these carbon fluxes. We present results from JULES-IMOGEN—a global land surface model coupled to an intermediate complexity climate model with vertically resolved soil biogeochemistry. We quantify the impact of nitrogen fertilisation from thawing permafrost on the carbon cycle and co
Styles APA, Harvard, Vancouver, ISO, etc.
47

Buesseler, Ken. "Ocean Biogeochemistry and the Global Carbon Cycle: An Introduction to the U.S. Joint Global Ocean Flux Study." Oceanography 14, no. 4 (2001): 5. http://dx.doi.org/10.5670/oceanog.2001.01.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Moutin, T., F. Van Wambeke, and L. Prieur. "Introduction to the Biogeochemistry from the Oligotrophic to the Ultraoligotrophic Mediterranean (BOUM) experiment." Biogeosciences 9, no. 10 (October 8, 2012): 3817–25. http://dx.doi.org/10.5194/bg-9-3817-2012.

Texte intégral
Résumé :
Abstract. The overall goal of the BOUM (Biogeochemistry from the Oligotrophic to the Ultraoligotrophic Mediterranean) experiment was to obtain a better representation of the interactions between planktonic organisms and the cycle of biogenic elements in the Mediterranean Sea (MS), in the context of global climate change and, more particularly, on the role of the ocean in carbon sequestration through biological processes. The BOUM experiment was organized around three main objectives: (1) to give a longitudinal description of the biogeochemistry and the biological diversity of the MS during the
Styles APA, Harvard, Vancouver, ISO, etc.
49

Doney, Scott C., Keith Lindsay, Inez Fung, and Jasmin John. "Natural Variability in a Stable, 1000-Yr Global Coupled Climate–Carbon Cycle Simulation." Journal of Climate 19, no. 13 (July 1, 2006): 3033–54. http://dx.doi.org/10.1175/jcli3783.1.

Texte intégral
Résumé :
Abstract A new 3D global coupled carbon–climate model is presented in the framework of the Community Climate System Model (CSM-1.4). The biogeochemical module includes explicit land water–carbon coupling, dynamic carbon allocation to leaf, root, and wood, prognostic leaf phenology, multiple soil and detrital carbon pools, oceanic iron limitation, a full ocean iron cycle, and 3D atmospheric CO2 transport. A sequential spinup strategy is utilized to minimize the coupling shock and drifts in land and ocean carbon inventories. A stable, 1000-yr control simulation [global annual mean surface temper
Styles APA, Harvard, Vancouver, ISO, etc.
50

Brovkin, V., A. Ganopolski, D. Archer, and G. Munhoven. "Glacial CO<sub>2</sub> cycle as a succession of key physical and biogeochemical processes." Climate of the Past 8, no. 1 (February 9, 2012): 251–64. http://dx.doi.org/10.5194/cp-8-251-2012.

Texte intégral
Résumé :
Abstract. During glacial-interglacial cycles, atmospheric CO2 concentration varied by about 100 ppmv in amplitude. While testing mechanisms that have led to the low glacial CO2 level could be done in equilibrium model experiments, an ultimate goal is to explain CO2 changes in transient simulations through the complete glacial-interglacial cycle. The computationally efficient Earth System model of intermediate complexity CLIMBER-2 is used to simulate global biogeochemistry over the last glacial cycle (126 kyr). The physical core of the model (atmosphere, ocean, land and ice sheets) is driven by
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!