Articles de revues sur le sujet « Carbon microfibrils »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Carbon microfibrils ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Thomas, Lynne, and Michael Jarvis. "Unravelling the nanostructure of cellulose microfibrils." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C1321. http://dx.doi.org/10.1107/s2053273314086781.
Texte intégralFestucci-Buselli, Reginaldo A., Wagner C. Otoni, and Chandrashekhar P. Joshi. "Structure, organization, and functions of cellulose synthase complexes in higher plants." Brazilian Journal of Plant Physiology 19, no. 1 (2007): 1–13. http://dx.doi.org/10.1590/s1677-04202007000100001.
Texte intégralLIN, R. J. T., D. BHATTACHARYYA, and S. FAKIROV. "INNOVATIVE MANUFACTURING OF CARBON NANOTUBE-LOADED FIBRILLAR POLYMER COMPOSITES." International Journal of Modern Physics B 24, no. 15n16 (2010): 2459–65. http://dx.doi.org/10.1142/s021797921006509x.
Texte intégralWang, Yu, Song Liu, Huihao Zhu, et al. "The Entangled Conductive Structure of CB/PA6/PP MFCs and Their Electromechanical Properties." Polymers 13, no. 6 (2021): 961. http://dx.doi.org/10.3390/polym13060961.
Texte intégralZheng, Yunzhen, Daniel J. Cosgrove, and Gang Ning. "High-Resolution Field Emission Scanning Electron Microscopy (FESEM) Imaging of Cellulose Microfibril Organization in Plant Primary Cell Walls." Microscopy and Microanalysis 23, no. 5 (2017): 1048–54. http://dx.doi.org/10.1017/s143192761701251x.
Texte intégralSun, Hui, Haijuan Kong, Haiquan Ding, et al. "Improving UV Resistance of Aramid Fibers by Simultaneously Synthesizing TiO2 on Their Surfaces and in the Interfaces Between Fibrils/Microfibrils Using Supercritical Carbon Dioxide." Polymers 12, no. 1 (2020): 147. http://dx.doi.org/10.3390/polym12010147.
Texte intégralChen, Qian-ying, Jing Gao, Kun Dai, et al. "Nonlinear current-voltage characteristics of conductive polyethylene composites with carbon black filled pet microfibrils." Chinese Journal of Polymer Science 31, no. 2 (2012): 211–17. http://dx.doi.org/10.1007/s10118-013-1203-1.
Texte intégralBolgova, A. L., A. A. Shevtsov, N. A. Arkharova, et al. "MICROSTRUCTURE OF GEL FILMS OF BACTERIAL CELLULOSE SYNTHESIZED UNDER STATIC CONDITIONS OF CULTIVATION OF THE GLUCONACETOBACTER HANSENII GH-1/2008 STRAIN ON NUTRIENT MEDIA WITH DIFFERENT CARBON SOURCES." Кристаллография 68, no. 4 (2023): 607–14. http://dx.doi.org/10.31857/s002347612370025x.
Texte intégralCarvelli, Valter, Toru Fujii, and Kazuya Okubo. "The effect of microfibrils cellulose modified epoxy on the quasi-static and fatigue behaviour of open hole carbon textile composites." Journal of Composite Materials 52, no. 24 (2018): 3365–80. http://dx.doi.org/10.1177/0021998318765623.
Texte intégralRuben, George C., and Gordon H. Bokelman. "Freeze-dried and platinum-carbon replicated 35Å cellulose microfibrils are triple-stranded and left-hand twisted." Proceedings, annual meeting, Electron Microscopy Society of America 44 (August 1986): 58–61. http://dx.doi.org/10.1017/s0424820100142013.
Texte intégralChen, Meiling, Chengguo Wang, Quan Gao, Yanxiang Wang, Min Jing, and Wenli Wang. "Research on the multi-scale microstructure of polyacrylonitrile precursors prepared by a dry-jet wet spinning process." High Performance Polymers 31, no. 6 (2018): 662–70. http://dx.doi.org/10.1177/0954008318782731.
Texte intégralYousefi, Neptun, Benjamin Wilson, and Eero Kontturi. "Electromediated Oxidation of Hydrolysed Bacterial Cellulose." ECS Meeting Abstracts MA2023-02, no. 27 (2023): 1432. http://dx.doi.org/10.1149/ma2023-02271432mtgabs.
Texte intégralCarvelli, Valter, Andrea Betti, and Toru Fujii. "Fatigue and Izod impact performance of carbon plain weave textile reinforced epoxy modified with cellulose microfibrils and rubber nanoparticles." Composites Part A: Applied Science and Manufacturing 84 (May 2016): 26–35. http://dx.doi.org/10.1016/j.compositesa.2016.01.005.
Texte intégralFakirov, Stoyko, M. Zillur Rahman, Petra Pötschke, and Debes Bhattacharyya. "Single Polymer Composites of Poly(Butylene Terephthalate) Microfibrils Loaded with Carbon Nanotubes Exhibiting Electrical Conductivity and Improved Mechanical Properties." Macromolecular Materials and Engineering 299, no. 7 (2013): 799–806. http://dx.doi.org/10.1002/mame.201300322.
Texte intégralRazaina, Mat Taib, Dody Ariawan, and Zainal Arifin Mohd Ishak. "Surface Characterization of Alkali Treated Kenaf Fibers by XPS and AFM." Key Engineering Materials 694 (May 2016): 29–33. http://dx.doi.org/10.4028/www.scientific.net/kem.694.29.
Texte intégralWang, Shan-Shan, Yong-He Han, Jia-Lian Chen, et al. "Insights into Bacterial Cellulose Biosynthesis from Different Carbon Sources and the Associated Biochemical Transformation Pathways in Komagataeibacter sp. W1." Polymers 10, no. 9 (2018): 963. http://dx.doi.org/10.3390/polym10090963.
Texte intégralDi Giacomo, Raffaele, Chiara Daraio, and Bruno Maresca. "Plant nanobionic materials with a giant temperature response mediated by pectin-Ca2+." Proceedings of the National Academy of Sciences 112, no. 15 (2015): 4541–45. http://dx.doi.org/10.1073/pnas.1421020112.
Texte intégralPinto, Fátima, Ana Filipa Lourenço, Jorge F. S. Pedrosa, et al. "Analysis of the In Vitro Toxicity of Nanocelluloses in Human Lung Cells as Compared to Multi-Walled Carbon Nanotubes." Nanomaterials 12, no. 9 (2022): 1432. http://dx.doi.org/10.3390/nano12091432.
Texte intégralXu, Xiang-Bin, Zhong-Ming Li, Ming-Bo Yang, Shu Jiang, and Rui Huang. "The role of the surface microstructure of the microfibrils in an electrically conductive microfibrillar carbon black/poly(ethylene terephthalate)/polyethylene composite." Carbon 43, no. 7 (2005): 1479–87. http://dx.doi.org/10.1016/j.carbon.2005.01.039.
Texte intégralXu, Xiang-Bin, Zhong-Ming Li, Kun Dai, and Ming-Bo Yang. "Anomalous attenuation of the positive temperature coefficient of resistivity in a carbon-black-filled polymer composite with electrically conductive in situ microfibrils." Applied Physics Letters 89, no. 3 (2006): 032105. http://dx.doi.org/10.1063/1.2222339.
Texte intégralVashukova, Кsenia S., Konstantin Y. Terentyev, Dmitry G. Chukhchin, Artem D. Ivakhnov, and Daria N. Poshina. "Effect of Topological Structure of Cellulose on the Processes of Acetylation and Nitration." Lesnoy Zhurnal (Forestry Journal), no. 6 (December 10, 2023): 176–89. http://dx.doi.org/10.37482/0536-1036-2023-6-176-189.
Texte intégralWestbye, Peter, Christer Svanberg, and Paul Gatenholm. "The effect of molecular composition of xylan extracted from birch on its assembly onto bleached softwood kraft pulp." Holzforschung 60, no. 2 (2006): 143–48. http://dx.doi.org/10.1515/hf.2006.023.
Texte intégralAdnan, Azila, Giridhar Nair, Mark Lay, and Janis Swan. "Bacterial Cellulose Synthesis by Gluconacetobacter xylinus: Enhancement via Fed-batch Fermentation Strategies in Glycerol Media." Trends in Sciences 18, no. 22 (2021): 453. http://dx.doi.org/10.48048/tis.2021.453.
Texte intégralSulaeman, Allyn P., Yang Gao, Tom Dugmore, Javier Remón, and Avtar S. Matharu. "From unavoidable food waste to advanced biomaterials: microfibrilated lignocellulose production by microwave-assisted hydrothermal treatment of cassava peel and almond hull." Cellulose 28, no. 12 (2021): 7687–705. http://dx.doi.org/10.1007/s10570-021-03986-5.
Texte intégralSutthikitivorakul, Rawinun, Pranee Phinyocheep, and Wasan Tessanan. "Enhancing Mechanical and Thermal Properties of Recycled Poly(Lactic Acid) with Multi-Branched Polyethyleneimine for Sustainable Recycling Applications." Trends in Sciences 22, no. 5 (2025): 9459. https://doi.org/10.48048/tis.2025.9459.
Texte intégralMissagia, Zélia Maria Velloso, Júlio Cesar dos Santos, Leandro José da Silva, Túlio Hallak Panzera, Juan Carlos Campos Rubio, and Carlos Thomas. "Assessment of compacted-cementitious composites as porous restrictors for aerostatic bearings." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 234, no. 1 (2019): 76–89. http://dx.doi.org/10.1177/1464420719874434.
Texte intégralZhang, Huiping, Lianlian Gao, and Xijun Hu. "Preparation of microfibrous entrapped activated carbon composite." Separation and Purification Technology 67, no. 2 (2009): 149–51. http://dx.doi.org/10.1016/j.seppur.2009.03.023.
Texte intégralKrasnikova, Irina V., Ilya V. Mishakov, Aleksey A. Vedyagin, Yury I. Bauman, and Denis V. Korneev. "Surface modification of microfibrous materials with nanostructured carbon." Materials Chemistry and Physics 186 (January 2017): 220–27. http://dx.doi.org/10.1016/j.matchemphys.2016.10.047.
Texte intégralKarwa, Amogh N., Virginia A. Davis, and Bruce J. Tatarchuk. "Carbon Nanofiber Synthesis within 3-Dimensional Sintered Nickel Microfibrous Matrices: Optimization of Synthesis Conditions." Journal of Nanotechnology 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/396269.
Texte intégralXu, Wei, Lei Xia, Xing‐hai Zhou, Peng Xi, Bo‐wen Cheng, and Yu‐xia Liang. "Hollow carbon microfibres fabricated using coaxial centrifugal spinning." Micro & Nano Letters 11, no. 2 (2016): 74–76. http://dx.doi.org/10.1049/mnl.2015.0346.
Texte intégralBordjiba, Tarik, Mohamed Mohamedi, Lê H. Dao, Brahim Aissa, and My Ali El Khakani. "Enhanced physical and electrochemical properties of nanostructured carbon nanotubes coated microfibrous carbon paper." Chemical Physics Letters 441, no. 1-3 (2007): 88–93. http://dx.doi.org/10.1016/j.cplett.2007.04.072.
Texte intégralCabuy, Reinardus Liborius, Descarlo Worabai, Dony Aristone Djitmau, and Sophan Chhin. "Relationships Among Biomass, Carbon, and Microfibril Angle in Young <i>Shorea</i> spp. (Dipterocarpaceae) in Indonesia." Journal of Tropical Biodiversity and Biotechnology 8, no. 1 (2023): 73864. http://dx.doi.org/10.22146/jtbb.73864.
Texte intégralCzarnecki, Jarema S., Simon Jolivet, Mary E. Blackmore, Khalid Lafdi, and Panagiotis A. Tsonis. "Cellular Automata Simulation of Osteoblast Growth on Microfibrous-Carbon-Based Scaffolds." Tissue Engineering Part A 20, no. 23-24 (2014): 3176–88. http://dx.doi.org/10.1089/ten.tea.2013.0387.
Texte intégralCarvalho, Beatriz Marques, Gabriel da Cruz Dias, Luz Marina Andrade Maruoka, Rosane Freire Boina, and Deuber Lincon da Silva Agostini. "CARACTERIZAÇÃO MORFOLÓGICA DE MICROFIBRAS ELETROFIADAS DE POLIESTIRENO." COLLOQUIUM EXACTARUM 15, no. 1 (2023): 1–7. http://dx.doi.org/10.5747/ce.2023.v15.e401.
Texte intégralLu, Hailong, Lili Zhang, Jinxia Ma, Nur Alam, Xiaofan Zhou, and Yonghao Ni. "Nano-Cellulose/MOF Derived Carbon Doped CuO/Fe3O4 Nanocomposite as High Efficient Catalyst for Organic Pollutant Remedy." Nanomaterials 9, no. 2 (2019): 277. http://dx.doi.org/10.3390/nano9020277.
Texte intégralMartínez, J. D. Ruiz, J. D. Ríos, H. Cifuentes, and C. Leiva. "Multi-Scale Toughening of UHPC: Synergistic Effects of Carbon Microfibers and Nanotubes." Fibers 13, no. 4 (2025): 49. https://doi.org/10.3390/fib13040049.
Texte intégralLiu, Jian, Ying Yan, and Huiping Zhang. "Adsorption dynamics of toluene in composite bed with microfibrous entrapped activated carbon." Chemical Engineering Journal 173, no. 2 (2011): 456–62. http://dx.doi.org/10.1016/j.cej.2011.08.004.
Texte intégralKurniawan, Moh Iqbal, Rena Roy Zulkarnaen, and Hasan Basri. "Alat Pengendali Temperatur dan pH Untuk Optimalisasi Pembuatan Nata De Coco." JEECOM Journal of Electrical Engineering and Computer 5, no. 1 (2023): 42–48. http://dx.doi.org/10.33650/jeecom.v5i1.4609.
Texte intégralFabia, Janusz, Jarosław Janicki, Czesław Ślusarczyk, Monika Rom, Tadeusz Graczyk, and Andrzej Gawłowski. "Study of Structure of Polypropylene Microfibres Modified with Multi-Walled Carbon Nanotubes." Fibres and Textiles in Eastern Europe 23, no. 3(111) (2015): 38–44. http://dx.doi.org/10.5604/12303666.1151773.
Texte intégralSmirnov, Maksim M., and Andrey R. Korabelnikov. "OBTAINING COMPOSITE FIBROUS MATERIALS BY ELECTROSPINNING FROM SOLUTIONS OF POLYMETHYL METHACRYLATE WITH THE ADDITION OF CARBON NANOTUBES." Technologies & Quality 52, no. 2 (2021): 56–61. http://dx.doi.org/10.34216/2587-6147-2021-2-52-56-61.
Texte intégralLiu, Jian, Ying Yan, and Huiping Zhang. "Preparation of Microfibrous Entrapped Activated Carbon Composites and its Application for Benzene Adsorption." Separation Science and Technology 49, no. 13 (2014): 2016–24. http://dx.doi.org/10.1080/01496395.2014.907318.
Texte intégralKarwa, Amogh N., and Bruce J. Tatarchuk. "Aerosol filtration enhancement using carbon nanostructures synthesized within a sintered nickel microfibrous matrix." Separation and Purification Technology 87 (March 2012): 84–94. http://dx.doi.org/10.1016/j.seppur.2011.11.026.
Texte intégralRibeiro Junior, Aluizio H., Sergio Luiz M. Ribeiro Filho, Filipe José V. Ribeiro, et al. "Statistical and numerical approaches of particulate reinforced polymers and their effect on the interlocking effect of hybrid composite joints." Journal of Composite Materials 56, no. 8 (2022): 1267–85. http://dx.doi.org/10.1177/00219983211073511.
Texte intégralCard, Matthew, Devleena Chowdhury, Aceer Nadeem, and Daniel Roxbury. "(Invited) Carbon Nanotube-Containing Textiles As Wearable Fluorescence Biosensors." ECS Meeting Abstracts MA2023-01, no. 9 (2023): 1147. http://dx.doi.org/10.1149/ma2023-0191147mtgabs.
Texte intégralGuomin Xu, Wenjian Guan, and Xueni Sun. "Filtration Performance and Application of Activated Carbon Fiber Enhanced Microfibrous Entrapped Sorbent (ACF-MFES)." Russian Journal of Physical Chemistry A 94, no. 1 (2020): 182–88. http://dx.doi.org/10.1134/s0036024420010070.
Texte intégralShao, Yan, Huiping Zhang, and Ying Yan. "Adsorption dynamics of p-nitrophenol in structured fixed bed with microfibrous entrapped activated carbon." Chemical Engineering Journal 225 (June 2013): 481–88. http://dx.doi.org/10.1016/j.cej.2013.03.133.
Texte intégralXie, Yucong, Chao Zheng, Liang Lan, et al. "The Application of Microfibrous Entrapped Activated Carbon Composite Material for the Sarin Simulant Dimethyl Methylphosphonate Adsorption." Nanomaterials 13, no. 19 (2023): 2661. http://dx.doi.org/10.3390/nano13192661.
Texte intégralTao, Jingyuan, Biao Gao, Xuming Zhang, Jijiang Fu, Changjian Peng, and Kaifu Huo. "Porous N-doped carbon microfibres derived from cattail as high-performance electrodes for supercapacitors." International Journal of Nanomanufacturing 12, no. 3/4 (2016): 225. http://dx.doi.org/10.1504/ijnm.2016.079220.
Texte intégralDrew, David M., E. Detlef Schulze та Geoffrey M. Downes. "Temporal variation in δ13C, wood density and microfibril angle in variously irrigated Eucalyptus nitens". Functional Plant Biology 36, № 1 (2009): 1. http://dx.doi.org/10.1071/fp08180.
Texte intégralWang, Youling, and Mohamed Mohamedi. "Hierarchically organized nanostructured TiO2/Pt on microfibrous carbon paper substrate for ethanol fuel cell reaction." International Journal of Hydrogen Energy 42, no. 36 (2017): 22796–804. http://dx.doi.org/10.1016/j.ijhydene.2017.07.138.
Texte intégral