Articles de revues sur le sujet « Cardiac hypoxia reoxygenation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Cardiac hypoxia reoxygenation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Zarndt, Rachel, Sarah Piloto, Frank L. Powell, Gabriel G. Haddad, Rolf Bodmer, and Karen Ocorr. "Cardiac responses to hypoxia and reoxygenation in Drosophila." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 309, no. 11 (2015): R1347—R1357. http://dx.doi.org/10.1152/ajpregu.00164.2015.
Texte intégralKehrer, J. P., Y. Park, and H. Sies. "Energy dependence of enzyme release from hypoxic isolated perfused rat heart tissue." Journal of Applied Physiology 65, no. 4 (1988): 1855–60. http://dx.doi.org/10.1152/jappl.1988.65.4.1855.
Texte intégralKapelko, Valery I., Vladimir L. Lakomkin, Alexander A. Abramov, et al. "Protective Effects of Dinitrosyl Iron Complexes under Oxidative Stress in the Heart." Oxidative Medicine and Cellular Longevity 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/9456163.
Texte intégralŞimşek, Gül, and Hilmi Burak Kandilci. "Hypoxia-Reoxygenation Induced Cardiac Mitochondrial Dysfunction." Journal of Ankara University Faculty of Medicine 71, no. 3 (2018): 139–44. http://dx.doi.org/10.4274/atfm.29863.
Texte intégralBoslett, James, Craig Hemann, Fedias L. Christofi, and Jay L. Zweier. "Characterization of CD38 in the major cell types of the heart: endothelial cells highly express CD38 with activation by hypoxia-reoxygenation triggering NAD(P)H depletion." American Journal of Physiology-Cell Physiology 314, no. 3 (2018): C297—C309. http://dx.doi.org/10.1152/ajpcell.00139.2017.
Texte intégralNing, Xue-Han, Shi-Han Chen, Cheng-Su Xu, et al. "Hypothermia preserves myocardial function and mitochondrial protein gene expression during hypoxia." American Journal of Physiology-Heart and Circulatory Physiology 285, no. 1 (2003): H212—H219. http://dx.doi.org/10.1152/ajpheart.01149.2002.
Texte intégralWagner, Kay-Dietrich, Vanja Essmann, Karsten Mydlak, et al. "Decreased susceptibility of cardiac function to hypoxia-reoxygenation in renin-angiotensinogen transgenic rats." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 283, no. 1 (2002): R153—R160. http://dx.doi.org/10.1152/ajpregu.00491.2001.
Texte intégralIlyas, Ermita I. Ibrahim, Busjra M. Nur, Sonny P. Laksono, et al. "Effects of Curcumin on Parameters of Myocardial Oxidative Stress and of Mitochondrial Glutathione Turnover in Reoxygenation after 60 Minutes of Hypoxia in Isolated Perfused Working Guinea Pig Hearts." Advances in Pharmacological Sciences 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/6173648.
Texte intégralBattiprolu, Pavan K., and Kenneth J. Rodnick. "Dichloroacetate selectively improves cardiac function and metabolism in female and male rainbow trout." American Journal of Physiology-Heart and Circulatory Physiology 307, no. 10 (2014): H1401—H1411. http://dx.doi.org/10.1152/ajpheart.00755.2013.
Texte intégralEndoh, Hiroshi, Takaho Kaneko, Hiro Nakamura, Katsuhiko Doi, and Eiji Takahashi. "Improved cardiac contractile functions in hypoxia-reoxygenation in rats treated with low concentration Co2+." American Journal of Physiology-Heart and Circulatory Physiology 279, no. 6 (2000): H2713—H2719. http://dx.doi.org/10.1152/ajpheart.2000.279.6.h2713.
Texte intégralSharikabad, Mohammad Nouri, Jan Magnus Aronsen, Espen Haugen, et al. "Cardiomyocytes from postinfarction failing rat hearts have improved ischemia tolerance." American Journal of Physiology-Heart and Circulatory Physiology 296, no. 3 (2009): H787—H795. http://dx.doi.org/10.1152/ajpheart.00796.2008.
Texte intégralBuerke, M., A. S. Weyrich, and A. M. Lefer. "Isolated cardiac myocytes are sensitized by hypoxia-reoxygenation to neutrophil-released mediators." American Journal of Physiology-Heart and Circulatory Physiology 266, no. 1 (1994): H128—H136. http://dx.doi.org/10.1152/ajpheart.1994.266.1.h128.
Texte intégralEigel, B. N., H. Gursahani, and R. W. Hadley. "ROS are required for rapid reactivation of Na+/Ca2+ exchanger in hypoxic reoxygenated guinea pig ventricular myocytes." American Journal of Physiology-Heart and Circulatory Physiology 286, no. 3 (2004): H955—H963. http://dx.doi.org/10.1152/ajpheart.00721.2003.
Texte intégralEigel, B. N., H. Gursahani, and R. W. Hadley. "Na+/Ca2+ exchanger plays a key role in inducing apoptosis after hypoxia in cultured guinea pig ventricular myocytes." American Journal of Physiology-Heart and Circulatory Physiology 287, no. 4 (2004): H1466—H1475. http://dx.doi.org/10.1152/ajpheart.00874.2003.
Texte intégralRuhr, Ilan M., Heather McCourty, Afaf Bajjig, Dane A. Crossley, Holly A. Shiels, and Gina L. J. Galli. "Developmental plasticity of cardiac anoxia-tolerance in juvenile common snapping turtles ( Chelydra serpentina )." Proceedings of the Royal Society B: Biological Sciences 286, no. 1905 (2019): 20191072. http://dx.doi.org/10.1098/rspb.2019.1072.
Texte intégralSeki, S., and K. T. MacLeod. "Effects of anoxia on intracellular Ca2+ and contraction in isolated guinea pig cardiac myocytes." American Journal of Physiology-Heart and Circulatory Physiology 268, no. 3 (1995): H1045—H1052. http://dx.doi.org/10.1152/ajpheart.1995.268.3.h1045.
Texte intégralMarsh, J. D., and K. A. Sweeney. "Beta-adrenergic receptor regulation during hypoxia in intact cultured heart cells." American Journal of Physiology-Heart and Circulatory Physiology 256, no. 1 (1989): H275—H281. http://dx.doi.org/10.1152/ajpheart.1989.256.1.h275.
Texte intégralFantini, Elisabeth, Pierre Athias, Martine Courtois, Shorheh Khatami, Alain Grynberg, and Annick Chevalier. "Oxygen and substrate deprivation on isolated rat cardiac myocytes: temporal relationship between electromechanical and biochemical consequences." Canadian Journal of Physiology and Pharmacology 68, no. 8 (1990): 1148–56. http://dx.doi.org/10.1139/y90-172.
Texte intégralHäkli, Martta, Joose Kreutzer, Antti-Juhana Mäki, et al. "Electrophysiological Changes of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes during Acute Hypoxia and Reoxygenation." Stem Cells International 2022 (December 19, 2022): 1–15. http://dx.doi.org/10.1155/2022/9438281.
Texte intégralYang, Zhao-Kang, Nick J. Draper, and Ajay M. Shah. "Ca2+-independent inhibition of myocardial contraction by coronary effluent of hypoxic rat hearts." American Journal of Physiology-Heart and Circulatory Physiology 276, no. 2 (1999): H623—H632. http://dx.doi.org/10.1152/ajpheart.1999.276.2.h623.
Texte intégralDOUGHERTY, Christopher J., Lori A. KUBASIAK, Howard PRENTICE, Peter ANDREKA, Nanette H. BISHOPRIC, and Keith A. WEBSTER. "Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress." Biochemical Journal 362, no. 3 (2002): 561–71. http://dx.doi.org/10.1042/bj3620561.
Texte intégralSedmera, David, Pavel Kucera, and Eric Raddatz. "Developmental changes in cardiac recovery from anoxia-reoxygenation." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 283, no. 2 (2002): R379—R388. http://dx.doi.org/10.1152/ajpregu.00534.2001.
Texte intégralMcKean, T., A. Scherzer, and H. Park. "Hypoxia and ischaemia in buffer-perfused toad hearts." Journal of Experimental Biology 200, no. 19 (1997): 2575–81. http://dx.doi.org/10.1242/jeb.200.19.2575.
Texte intégralSong, Jong Wook, Hyo Jung Kim, Hyelin Lee, Jae-woo Kim та Young-Lan Kwak. "Protective Effect of Peroxisome Proliferator-Activated ReceptorαActivation against Cardiac Ischemia-Reperfusion Injury Is Related to Upregulation of Uncoupling Protein-3". Oxidative Medicine and Cellular Longevity 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/3539649.
Texte intégralParente, Valeria, Serena Balasso, Giulio Pompilio, et al. "Hypoxia/Reoxygenation Cardiac Injury and Regeneration in Zebrafish Adult Heart." PLoS ONE 8, no. 1 (2013): e53748. http://dx.doi.org/10.1371/journal.pone.0053748.
Texte intégralSolevåg, A. L., G. M. Schmölzer, and P. Y. Cheung. "Hypoxia – Reoxygenation in neonatal cardiac arrest: Results from experimental models." Seminars in Fetal and Neonatal Medicine 25, no. 2 (2020): 101085. http://dx.doi.org/10.1016/j.siny.2020.101085.
Texte intégralBaccaro, Cecilia, F. Bennardini, Germana Dini, et al. "Cardiac hypoxia and subsequent reoxygenation: sensitivity to L-arginine methylester." British Journal of Pharmacology 87, no. 4 (1986): 649–56. http://dx.doi.org/10.1111/j.1476-5381.1986.tb14581.x.
Texte intégralHasinoff, Brian B. "Dexrazoxane (ICRF-187) Protects Cardiac Myocytes Against Hypoxia-Reoxygenation Damage." Cardiovascular Toxicology 2, no. 2 (2002): 111–18. http://dx.doi.org/10.1385/ct:2:2:111.
Texte intégralPrentice, H. M., I. A. Moench, Z. T. Rickaway, C. J. Dougherty, K. A. Webster, and H. Weissbach. "MsrA protects cardiac myocytes against hypoxia/reoxygenation induced cell death." Biochemical and Biophysical Research Communications 366, no. 3 (2008): 775–78. http://dx.doi.org/10.1016/j.bbrc.2007.12.043.
Texte intégralPearson, James T. "Cardiac responses to hypoxia and reoxygenation in Drosophila. New insights into evolutionarily conserved gene responses. Focus on “Cardiac responses to hypoxia and reoxygenation inDrosophila”." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 309, no. 11 (2015): R1344—R1346. http://dx.doi.org/10.1152/ajpregu.00419.2015.
Texte intégralCunningham, M. J., C. S. Apstein, E. O. Weinberg, and B. H. Lorell. "Deleterious effect of ouabain on myocardial function during hypoxia." American Journal of Physiology-Heart and Circulatory Physiology 256, no. 3 (1989): H681—H687. http://dx.doi.org/10.1152/ajpheart.1989.256.3.h681.
Texte intégralFuncke, Sandra, Tessa R. Werner, Marc Hein, et al. "Effects of the Delta Opioid Receptor Agonist DADLE in a Novel Hypoxia-Reoxygenation Model on Human and Rat-Engineered Heart Tissue: A Pilot Study." Biomolecules 10, no. 9 (2020): 1309. http://dx.doi.org/10.3390/biom10091309.
Texte intégralZeng, Chao, Hu Li, Zhiwen Fan, et al. "Crocin-Elicited Autophagy Rescues Myocardial Ischemia/Reperfusion Injury via Paradoxical Mechanisms." American Journal of Chinese Medicine 44, no. 03 (2016): 515–30. http://dx.doi.org/10.1142/s0192415x16500282.
Texte intégralThu, Vu Thi, Ngo Thi Hai Yen, and Nguyen Thi Ha Ly. "Liquiritin from Radix Glycyrrhizae Protects Cardiac Mitochondria from Hypoxia/Reoxygenation Damage." Journal of Analytical Methods in Chemistry 2021 (August 6, 2021): 1–11. http://dx.doi.org/10.1155/2021/1857464.
Texte intégralShanmuganathan, Selvaraj, Derek J. Hausenloy, Michael R. Duchen, and Derek M. Yellon. "Mitochondrial permeability transition pore as a target for cardioprotection in the human heart." American Journal of Physiology-Heart and Circulatory Physiology 289, no. 1 (2005): H237—H242. http://dx.doi.org/10.1152/ajpheart.01192.2004.
Texte intégralLiu, Yanan, Mark Paterson, Shelley L. Baumgardt, et al. "Vascular endothelial growth factor regulation of endothelial nitric oxide synthase phosphorylation is involved in isoflurane cardiac preconditioning." Cardiovascular Research 115, no. 1 (2018): 168–78. http://dx.doi.org/10.1093/cvr/cvy157.
Texte intégralKorge, Paavo, Peipei Ping, and James N. Weiss. "Reactive Oxygen Species Production in Energized Cardiac Mitochondria During Hypoxia/Reoxygenation." Circulation Research 103, no. 8 (2008): 873–80. http://dx.doi.org/10.1161/circresaha.108.180869.
Texte intégralBordoni, Alessandra, Silvana Hrelia, Cristina Angeloni, et al. "Green tea protection of hypoxia/reoxygenation injury in cultured cardiac cells." Journal of Nutritional Biochemistry 13, no. 2 (2002): 103–11. http://dx.doi.org/10.1016/s0955-2863(01)00203-0.
Texte intégralDUAN, J., and M. KARMAZYN. "Comparative responses of interfibrillar and subsarcolemmal cardiac mitochondria to hypoxia/reoxygenation*." Journal of Molecular and Cellular Cardiology 18 (1986): 23. http://dx.doi.org/10.1016/s0022-2828(86)80098-0.
Texte intégralKIRSHENBAUM, L., M. HILL, and P. SINGAL. "Endogenous antioxidants in isolated hypertrophied cardiac myocytes and hypoxia-reoxygenation injury." Journal of Molecular and Cellular Cardiology 27, no. 1 (1995): 263–72. http://dx.doi.org/10.1016/s0022-2828(08)80025-9.
Texte intégralLodovici, Maura, Piero Dolara, Sandra Amerini, et al. "Effects of GM1 ganglioside on cardiac function following experimental hypoxia-reoxygenation." European Journal of Pharmacology 243, no. 3 (1993): 255–63. http://dx.doi.org/10.1016/0014-2999(93)90183-i.
Texte intégralHernandez, Olga M., Daryl J. Discher, Nanette H. Bishopric, and Keith A. Webster. "Rapid Activation of Neutral Sphingomyelinase by Hypoxia-Reoxygenation of Cardiac Myocytes." Circulation Research 86, no. 2 (2000): 198–204. http://dx.doi.org/10.1161/01.res.86.2.198.
Texte intégralDong, Ying-Ying, Min Wu, Anthony P. C. Yim, and Guo-Wei He. "Effect of Hypoxia-Reoxygenation on Endothelial Function in Porcine Cardiac Microveins." Annals of Thoracic Surgery 81, no. 5 (2006): 1708–14. http://dx.doi.org/10.1016/j.athoracsur.2005.12.002.
Texte intégralSeko, Yoshinori, Kazuyuki Tobe, Naoyuki Takahashi, Yasushi Kaburagi, Takashi Kadowaki, and Yoshio Yazaki. "Hypoxia and Hypoxia/Reoxygenation Activate Src Family Tyrosine Kinases and p21rasin Cultured Rat Cardiac Myocytes." Biochemical and Biophysical Research Communications 226, no. 2 (1996): 530–35. http://dx.doi.org/10.1006/bbrc.1996.1389.
Texte intégralZhou, Yanqiong, Ganggang Shi, Jinhong Zheng, et al. "The protective effects of Egr-1 antisense oligodeoxyribonucleotide on cardiac microvascular endothelial injury induced by hypoxia–reoxygenationThis paper is one of a selection of papers published in this special issue entitled “Second International Symposium on Recent Advances in Basic, Clinical, and Social Medicine” and has undergone the Journal's usual peer review process." Biochemistry and Cell Biology 88, no. 4 (2010): 687–95. http://dx.doi.org/10.1139/o10-021.
Texte intégralShah, A. M., H. S. Silverman, E. J. Griffiths, H. A. Spurgeon, and E. G. Lakatta. "cGMP prevents delayed relaxation at reoxygenation after brief hypoxia in isolated cardiac myocytes." American Journal of Physiology-Heart and Circulatory Physiology 268, no. 6 (1995): H2396—H2204. http://dx.doi.org/10.1152/ajpheart.1995.268.6.h2396.
Texte intégralRobin, Elodie, Fabrice Marcillac, and Eric Raddatz. "A hypoxic episode during cardiogenesis downregulates the adenosinergic system and alters the myocardial anoxic tolerance." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 308, no. 7 (2015): R614—R626. http://dx.doi.org/10.1152/ajpregu.00423.2014.
Texte intégralYamashita, N., M. Nishida, S. Hoshida, et al. "Alpha 1-adrenergic stimulation induces cardiac tolerance to hypoxia via induction and activation of Mn-SOD." American Journal of Physiology-Heart and Circulatory Physiology 271, no. 4 (1996): H1356—H1362. http://dx.doi.org/10.1152/ajpheart.1996.271.4.h1356.
Texte intégralStice, James P., Le Chen, Se-Chan Kim та ін. "17β-Estradiol, Aging, Inflammation, and the Stress Response in the Female Heart". Endocrinology 152, № 4 (2011): 1589–98. http://dx.doi.org/10.1210/en.2010-0627.
Texte intégralMacCormack, Tyson J., and William R. Driedzic. "Mitochondrial ATP-sensitive K+ channels influence force development and anoxic contractility in a flatfish, yellowtail flounderLimanda ferruginea, but not Atlantic codGadus morhuaheart." Journal of Experimental Biology 205, no. 10 (2002): 1411–18. http://dx.doi.org/10.1242/jeb.205.10.1411.
Texte intégral