Littérature scientifique sur le sujet « Cavitating Flows »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Cavitating Flows ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Cavitating Flows"
Wang, Hao, Jian Feng, Keyang Liu, Xi Shen, Bin Xu, Desheng Zhang et Weibin Zhang. « Experimental Study on Unsteady Cavitating Flow and Its Instability in Liquid Rocket Engine Inducer ». Journal of Marine Science and Engineering 10, no 6 (12 juin 2022) : 806. http://dx.doi.org/10.3390/jmse10060806.
Texte intégralZHANG, YAO, XIANWU LUO, SHUHONG LIU et HONGYUAN XU. « A TRANSPORT EQUATION MODEL FOR SIMULATING CAVITATION FLOWS IN MINIATURE MACHINES ». Modern Physics Letters B 24, no 13 (30 mai 2010) : 1467–70. http://dx.doi.org/10.1142/s0217984910023888.
Texte intégralNg’aru, Joseph Mwangi, et Sunho Park. « CFD Simulations of the Effect of Equalizing Duct Configurations on Cavitating Flow around a Propeller ». Journal of Marine Science and Engineering 10, no 12 (2 décembre 2022) : 1865. http://dx.doi.org/10.3390/jmse10121865.
Texte intégralFalcucci, Giacomo, Stefano Ubertini, Gino Bella et Sauro Succi. « Lattice Boltzmann Simulation of Cavitating Flows ». Communications in Computational Physics 13, no 3 (mars 2013) : 685–95. http://dx.doi.org/10.4208/cicp.291011.270112s.
Texte intégralZhai, Zhangming, Tairan Chen et Haiyang Li. « Evaluation of mass transport cavitation models for unsteady cavitating flows ». Modern Physics Letters B 34, no 02 (6 décembre 2019) : 2050020. http://dx.doi.org/10.1142/s0217984920500207.
Texte intégralLiu, Qian Kun, et Ye Gao. « Numerical Simulation of Natural Cavitating Flow over Axisymmetric Bodies ». Applied Mechanics and Materials 226-228 (novembre 2012) : 825–30. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.825.
Texte intégralDELALE, C. F., G. H. SCHNERR et J. SAUER. « Quasi-one-dimensional steady-state cavitating nozzle flows ». Journal of Fluid Mechanics 427 (25 janvier 2001) : 167–204. http://dx.doi.org/10.1017/s0022112000002330.
Texte intégralLuo, Xianwu, Renfang Huang et Bin Ji. « Transient cavitating vortical flows around a hydrofoil using k-ω partially averaged Navier–Stokes model ». Modern Physics Letters B 30, no 01 (10 janvier 2016) : 1550262. http://dx.doi.org/10.1142/s0217984915502620.
Texte intégralGevari, Moein Talebian, Ayhan Parlar, Milad Torabfam, Ali Koşar, Meral Yüce et Morteza Ghorbani. « Influence of Fluid Properties on Intensity of Hydrodynamic Cavitation and Deactivation of Salmonella typhimurium ». Processes 8, no 3 (10 mars 2020) : 326. http://dx.doi.org/10.3390/pr8030326.
Texte intégralOrekhov, Genrikh. « Cavitation in swirling flows of hydraulic spillways ». E3S Web of Conferences 91 (2019) : 07022. http://dx.doi.org/10.1051/e3sconf/20199107022.
Texte intégralThèses sur le sujet "Cavitating Flows"
Wang, Yi-Chun Brennen Christopher E. « Shock waves in bubbly cavitating flows / ». Diss., Pasadena, Calif. : California Institute of Technology, 1996. http://resolver.caltech.edu/CaltechETD:etd-02282006-144334.
Texte intégralAhmed, Zayed. « Quantitative flow measurement and visualization of cavitation initiation and cavitating flows in a converging-diverging nozzle ». Thesis, Kansas State University, 2017. http://hdl.handle.net/2097/35522.
Texte intégralDepartment of Mechanical and Nuclear Engineering
B. Terry Beck
Mohammad H. Hosni
Cavitation is the formation of vapor phase from the liquid phase by reduction in its absolute pressure below the saturation pressure. Unlike boiling, where the temperature of the liquid is increased to cause vaporization, the reduction in the pressure alone can cause the liquid to turn into vapor. Cavitation is undesirable in many engineering applications as it is associated with reduction in efficiency and is known to cause damage to pump and propeller components. However, the endothermic nature of cavitation could be utilized to create a region of low temperature that could be utilized to develop a new refrigeration cycle. The work presented in this thesis is part of ongoing research into the potential cooling capacity of cavitation phenomena, where the cavitation in a converging-diverging nozzle is being investigated. Due to the constricting nature of the throat of the converging-diverging nozzle, the liquid velocity at the throat is increased, obeying the continuity law. With an increase in velocity, a reduction in absolute pressure is accompanied at the throat of the nozzle according to the Bernoulli’s principle. The local absolute pressure at the throat can go lower than the saturation vapor pressure, thereby causing the fluid to cavitate. The effect of water temperature on the flowrates, the onset of cavitation within the nozzle, and the resulting length of the cavitation region within the nozzle are the subject of this thesis. Experimental results and analysis are presented which also show that near the onset of cavitation, the flowrate can go beyond the choked flowrate, causing the local pressure in the throat to go well below zero for an extended amount of time in the metastable state, before nucleating (cavitating) into a stable state. Flow visualization using a high speed digital camera under different operating conditions was aimed at investigating the region of cavitation onset, which appears to be associated with boundary layer separation just downstream of the nozzle throat. In order to delay the boundary layer separation point in the downstream section of the nozzle, the diffuser region of the nozzle was modified to enable two flow paths, where one path would suck the flow near the inner walls of the nozzle and the other would allow the bulk of the flow to pass through. This was achieved with the use of inserts. Various inserts were tested in an attempt to capture the effect of inserts on the cavitation phenomena. Their effect on the flowrates, length of two phase region, and cavitation onset are presented in this thesis.
Preston, Alastair Thomas Colonius Timothy E. « Modeling heat and mass transfer in bubbly cavitating flows and shock waves in cavitating nozzles / ». Diss., Pasadena, Calif. : California Institute of Technology, 2004. http://resolver.caltech.edu/CaltechETD:etd-12182003-150738.
Texte intégralSezal, İsmail Hakkı. « Compressible dynamics of cavitating 3-D multi-phase flows ». München Verl. Dr. Hut, 2009. http://mediatum2.ub.tum.de/node?id=684068.
Texte intégralŞenocak, Inanç. « Computational methodology for the simulation of turbulent cavitating flows ». [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE1001181.
Texte intégralJeshani, Mahesh. « Optical characterisation of cavitating flows in diesel fuel injection equipment ». Thesis, City University London, 2013. http://openaccess.city.ac.uk/3414/.
Texte intégralPodbevsek, Darjan. « Optical probing of thermodynamic parameters and radical production in cavitating micro-flows ». Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1210/document.
Texte intégralA constriction in the microchannel can be used to establish a two-phase flow, when a sufficient liquid flux is introduced. This is known as hydrodynamic cavitation. The latent heat resulting from the growing and collapsing vapor bubbles makes it interesting to observe the temperature conditions in the flow downstream of the constriction. Using fluorescence microscopy, with the addition of temperature sensitive nano probes into the working fluid, we can determine the temperature at a single point, averaged over the integration time. Coupled with a confocal microscope, we were able to produce two and three dimensional temperature maps of the steady state flow in the microchannel by the use of ratiometric intensity measurements. This technic allows us to observe temperature gradients in two-phase flow as well yielding the void fraction information. Areas of substantial cooling are observed downstream the constriction in the two-phase flow, linked to the bubble growth, while heating regions due to condensations are missing. A complementary, yet less sensitive probe-less technique using the inherent Raman scattering signal of the liquid, was used to confirm the findings. A separate study evaluating a new group of luminescent materials for optical temperature and pressure probes is performed and discussed herein. Finally, the luminol chemiluminescent reaction with radicals produced by the cavitating flow, is used to obtain a corresponding photon yield. By counting the photons produced, an estimate on the radical yield can be obtained. Additionally, rudimentary mapping of the chemiluminescence signal allows the localization of the bubble collapse regions
Gaschler, Maria [Verfasser], et Moustafa [Akademischer Betreuer] Abdel-Maksoud. « Numerical modelling and simulation of cavitating marine propeller flows / Maria Gaschler ; Betreuer : Moustafa Abdel-Maksoud ». Hamburg : Universitätsbibliothek der Technischen Universität Hamburg-Harburg, 2017. http://d-nb.info/1136955143/34.
Texte intégralEgerer, Christian [Verfasser], Nikolaus A. [Akademischer Betreuer] [Gutachter] Adams et Stefan [Gutachter] Hickel. « Large-Eddy Simulation of Turbulent Cavitating Flows / Christian Egerer ; Gutachter : Stefan Hickel, Nikolaus A. Adams ; Betreuer : Nikolaus A. Adams ». München : Universitätsbibliothek der TU München, 2016. http://d-nb.info/1124154744/34.
Texte intégralBeban, Bruno [Verfasser], Nikolaus A. [Akademischer Betreuer] Adams, Romuald [Gutachter] Skoda et Nikolaus A. [Gutachter] Adams. « Numerical Simulation of Submerged Cavitating Throttle Flows / Bruno Beban ; Gutachter : Romuald Skoda, Nikolaus A. Adams ; Betreuer : Nikolaus A. Adams ». München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1187443921/34.
Texte intégralLivres sur le sujet "Cavitating Flows"
author, Kirschner Ivan N., et Uhlman James S. author, dir. The hydrodynamics of cavitating flows. Fair Lawn, NJ : Backbone Publishing Company, 2011.
Trouver le texte intégralCavitation and bubble dynamics. New York : Oxford University Press, 1995.
Trouver le texte intégralC, Humphrey J. A., American Society of Mechanical Engineers. Winter Meeting et American Society of Mechanical Engineers. Heat Transfer Division., dir. Significant questions in buoyancy affected enclosure or cavity flows. New York, N.Y. (345 E. 47th St., New York 10017) : American Society of Mechanical Engineers, 1986.
Trouver le texte intégralLeighton, T. G. The cavitation of bubbles containing mon-, di-. and tri-atomic gases : Discussion through modelling of dynamics using the Gilmore equation. Southampton, U.K : University of Southampton, Institute of Sound and Vibration Research, Fluid Dynamics and Acoustics Group, 1995.
Trouver le texte intégralLeighton, T. G. Sonoluminescence from flow over a hydrofoil in a cavitation tunnel. Southampton, England : University of Southampton, Institute of Sound and Vibration Research, 1993.
Trouver le texte intégralGreenspan, Donald. Molecular cavity flow. Arlington : Dept. of Mathematics, University of Texas at Arlington, 1998.
Trouver le texte intégralInternational Symposium on Cavitation and Multiphase Flow Noise (1986 Anaheim, Calif.). International Symposium on Cavitation and Multiphase Flow Noise--1986 : Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Anaheim, California, December 7-12, 1986. New York, N.Y. (345 E. 47th St., New York 10017) : ASME, 1986.
Trouver le texte intégralUnited States. National Aeronautics and Space Administration. et U.S. Army Research Laboratory., dir. An efficient numerical procedure for thermodydrodynamic [sic] analysis of cavitating bearings. [Washington, D.C.] : National Aeronautics and Space Administration, 1995.
Trouver le texte intégralD, Vijayaraghavan, United States. National Aeronautics and Space Administration. et U.S. Army Research Laboratory., dir. Film temperatures in the presence of cavitation. [Washington, D.C.] : National Aeronautics and Space Administration, 1995.
Trouver le texte intégralD, Vijayaraghavan, United States. National Aeronautics and Space Administration. et U.S. Army Research Laboratory., dir. Film temperatures in the presence of cavitation. [Washington, D.C.] : National Aeronautics and Space Administration, 1995.
Trouver le texte intégralChapitres de livres sur le sujet "Cavitating Flows"
Adams, Nikolaus A., et Steffen J. Schmidt. « Shocks in Cavitating Flows ». Dans Bubble Dynamics and Shock Waves, 235–56. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34297-4_8.
Texte intégralTsujimoto, Yoshinobu. « Stability Analysis of Cavitating Flows Through Inducers ». Dans Fluid Dynamics of Cavitation and Cavitating Turbopumps, 191–210. Vienna : Springer Vienna, 2007. http://dx.doi.org/10.1007/978-3-211-76669-9_4.
Texte intégralSaurel, Richard, et Fabien Petitpas. « A hyperbolic non equilibrium model for cavitating flows ». Dans Fluid Dynamics of Cavitation and Cavitating Turbopumps, 279–316. Vienna : Springer Vienna, 2007. http://dx.doi.org/10.1007/978-3-211-76669-9_8.
Texte intégralSalvetti, Maria-Vittoria, E. Sinibaldi et F. Beux. « Towards the simulation of cavitating flows in inducers through a homogeneous barotropic flow model ». Dans Fluid Dynamics of Cavitation and Cavitating Turbopumps, 317–51. Vienna : Springer Vienna, 2007. http://dx.doi.org/10.1007/978-3-211-76669-9_9.
Texte intégralSaurel, Richard, Olivier Le Métayer et Pierre Boivin. « From Cavitating to Boiling Flows ». Dans Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines, 259–82. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49719-8_10.
Texte intégralLu, C. J., Y. S. He, X. Chen et Y. Chen. « Numerical and Experimental Research on Cavitating Flows ». Dans New Trends in Fluid Mechanics Research, 45–52. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75995-9_8.
Texte intégralAbbassi, Aicha, Rabeb Badoui, Lassaad Sahli et Ridha Zgolli. « Numerical Modelling of Cavitating Flows in Venturi ». Dans Advances in Mechanical Engineering and Mechanics, 231–38. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19781-0_28.
Texte intégralGoncalves, E., J. Decaix et B. Charriere. « Numerical Study of 3D Turbulent Cavitating Flows ». Dans Progress in Hybrid RANS-LES Modelling, 455–64. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70031-1_38.
Texte intégralÖrley, F., T. Trummler, M. S. Mihatsch, S. J. Schmidt et S. Hickel. « LES of Cavitating Nozzle and Jet Flows ». Dans Direct and Large-Eddy Simulation X, 133–39. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63212-4_16.
Texte intégralGoncalves, Eric. « Numerical Simulation of Cavitating Flows with Different Cavitation and Turbulence Models ». Dans Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines, 179–233. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49719-8_8.
Texte intégralActes de conférences sur le sujet "Cavitating Flows"
Xu, Changhai, Stephen D. Heister, Stephen H. Collicott et Che-Ping Yeh. « Modeling Cavitating Venturi Flows ». Dans 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-3699.
Texte intégralPeles, Yoav, et Brandon Schneider. « Hydrodynamic Cavitation and Boiling in Refrigerant (R-123) Flow Inside Microchannels ». Dans ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2006. http://dx.doi.org/10.1115/icnmm2006-96030.
Texte intégralAhuja, Vineet, Ronald Ungewitter et Ashvin Hosangadi. « Simulation of Cavitating Flows in Turbopumps ». Dans 41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-1261.
Texte intégralKinzel, Michael, Jules Lindau, Leonard Peltier, Robert Kunz et Venkateswaran Sankaran. « Detached-Eddy Simulations for Cavitating Flows ». Dans 18th AIAA Computational Fluid Dynamics Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-4098.
Texte intégralYamanishi, Nobuhiro, Chisachi Kato et Yoichiro Matsumoto. « LES Analysis of a Rocket Turbopump Inducer in Non-Cavitating and Cavitating Flows ». Dans ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45406.
Texte intégralDe Giorgi, Maria Grazia, Pietro Marco Congedo, Maria Giovanna Rodio et Antonio Ficarella. « Shape Optimization for Cryogenic Cavitating Flows Past an Isolated Hydrofoil ». Dans ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55119.
Texte intégralDe Giorgi, Maria Grazia, Antonio Ficarella et Donato Fontanarosa. « Active Control of Unsteady Cavitating Flows in Turbomachinery ». Dans ASME Turbo Expo 2019 : Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-92041.
Texte intégralZeidan, D., E. Goncalves et A. Slaouti. « Computer simulations of cavitating two-phase flows ». Dans 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013 : ICNAAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4825457.
Texte intégralBagaev, D., S. Yegorov, M. Lobachev, A. Rudnichenko et A. Taranov. « Numerical simulation of cavitating flows in shipbuilding ». Dans THE EIGHTH POLYAKHOV’S READING : Proceedings of the International Scientific Conference on Mechanics. Author(s), 2018. http://dx.doi.org/10.1063/1.5034631.
Texte intégralGoncalvès, Eric, Maxime Champagnac et Regiane Fortes Patella. « Numerical Simulations of Cavitating Flows in Venturi ». Dans NUMERICAL ANALYSIS AND APPLIED MATHEMATICS : International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2991047.
Texte intégralRapports d'organisations sur le sujet "Cavitating Flows"
Lindau, Jules W. Modeling of Cavitating Flow through Waterjet Propulsors. Fort Belvoir, VA : Defense Technical Information Center, février 2015. http://dx.doi.org/10.21236/ada621898.
Texte intégralChahine, G. L., K. Sarkar et R. Duraiswami. Strong Bubble/Flow Interactions and Cavitation Inception. Fort Belvoir, VA : Defense Technical Information Center, mars 1997. http://dx.doi.org/10.21236/ada324534.
Texte intégralBastawissi, Hagar Alm El-Din, et Medhat Elkelawy. JAECFD Simulation Analysis of Cavitating Flow in a Real Size Diesel Engine Injector Nozzle. Warrendale, PA : SAE International, octobre 2012. http://dx.doi.org/10.4271/2012-32-0033.
Texte intégralBastawissi, Hagar, et Medhat Elkelawy. CFD Simulation Analysis of Cavitating Flow in a Real Size Diesel Engine Injector Nozzle. Warrendale, PA : SAE International, septembre 2010. http://dx.doi.org/10.4271/2010-32-0111.
Texte intégralSharpe, D. R., G. Leduc, C. S. Smart et J. Shaw. Georgian Bay bedrock erosion : evidence for regional floods, Ontario. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331409.
Texte intégralKamiya, Akira. Prediction of the Cavitation Effect on the Flow Around the Outboard Motor Propeller Blade Hydrofoil Section Using CFD. Warrendale, PA : SAE International, octobre 2013. http://dx.doi.org/10.4271/2013-32-9157.
Texte intégralCohen, Shabtai, Melvin Tyree, Amos Naor, Alan N. Lakso, Terence L. Robinson et Yehezkiel Cohen. Influence of hydraulic properties of rootstocks and the rootstock-scion graft on water use and productivity of apple trees. United States Department of Agriculture, 2001. http://dx.doi.org/10.32747/2001.7587219.bard.
Texte intégralCavitation and two-phase flow characteristics of SRPR (Savannah River Plant Reactor) pump. Final report. Office of Scientific and Technical Information (OSTI), juillet 1991. http://dx.doi.org/10.2172/10103973.
Texte intégral