Articles de revues sur le sujet « Cd40lg- »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Cd40lg- ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Hubbard, Nicholas, David Hagin, Karen Sommer, et al. "Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome." Blood 127, no. 21 (2016): 2513–22. http://dx.doi.org/10.1182/blood-2015-11-683235.
Texte intégralHubbard, Nicholas Wesley, David Hagin, Karen Sommer, et al. "Targeted Gene Editing Restores Regulated CD40L Expression and Function in X-HIGM T cells." Journal of Immunology 196, no. 1_Supplement (2016): 214.28. http://dx.doi.org/10.4049/jimmunol.196.supp.214.28.
Texte intégralKutukculer, Necil, Neslihan Edeer Karaca, Guzide Aksu, Ayca Aykut, Erhan Pariltay, and Ozgur Cogulu. "An X-Linked Hyper-IgM Patient Followed Successfully for 23 Years without Hematopoietic Stem Cell Transplantation." Case Reports in Immunology 2018 (October 14, 2018): 1–4. http://dx.doi.org/10.1155/2018/6897935.
Texte intégralKato, Kazunori, Yukari Masuta, Kei Tomihara, Katsunori Sasaki, and Hirofumi Hamada. "A Novel Non-Cleavable Cell Surface Mutant of CD40-Ligand Induces Anti-Leukemic Immune Response and Prevent Systemic Inflammatory Reaction." Blood 104, no. 11 (2004): 3174. http://dx.doi.org/10.1182/blood.v104.11.3174.3174.
Texte intégralYeh, Yu-Min, Peng-Chan Lin, Wu-Chou Su, and Meng-Ru Shen. "CD40 Pathway and IL-2 Expression Mediate the Differential Outcome of Colorectal Cancer Patients with Different CSF1R c.1085 Genotypes." International Journal of Molecular Sciences 22, no. 22 (2021): 12565. http://dx.doi.org/10.3390/ijms222212565.
Texte intégralDong, Qiuting, Jinxia Zhao, Zhongqiang Yao, Xiangyuan Liu, and Huiying He. "A Case Report of X-Linked Hyperimmunoglobulin M Syndrome with Lipoma Arborescens of Knees." Case Reports in Medicine 2016 (2016): 1–4. http://dx.doi.org/10.1155/2016/5797232.
Texte intégralRigaud, Stéphanie, Eduardo Lopez-Granados, Sophie Sibéril, et al. "Human X-linked variable immunodeficiency caused by a hypomorphic mutation in XIAP in association with a rare polymorphism in CD40LG." Blood 118, no. 2 (2011): 252–61. http://dx.doi.org/10.1182/blood-2011-01-328849.
Texte intégralBrune, Zarina, Bharati Matta, and Betsy Barnes. "IRF5 regulation of CD4+ T cell metabolism controls CD40L expression." Journal of Immunology 208, no. 1_Supplement (2022): 165.02. http://dx.doi.org/10.4049/jimmunol.208.supp.165.02.
Texte intégralHorrillo, Angélica, Tomás Fontela, Elena G. Arias-Salgado, et al. "Generation of mice with conditional ablation of the Cd40lg gene: new insights on the role of CD40L." Transgenic Research 23, no. 1 (2013): 53–66. http://dx.doi.org/10.1007/s11248-013-9743-2.
Texte intégralShimoda, Michiko, Anna Bolduc, Mayuko Takezaki, Takeshi Tsubata, and Pandelakis Koni. "Excess B cell CD40/CD40L signaling promotes CD4 T cell-mediated encephalomyelitis in mice (44.22)." Journal of Immunology 186, no. 1_Supplement (2011): 44.22. http://dx.doi.org/10.4049/jimmunol.186.supp.44.22.
Texte intégralSivagami, S., R. Rathna, S. Nagavignesh, N. V. Ghone, and M. Sivanandham. "In silico binding analysis of human CD40 ligand mimetic molecule, 3-(dimethylamino)-1-phenyl-1-propanone hydrochloride (3-DPH), with CD40 receptor molecules of various mammalian species." Journal of Environmental Biology 42, no. 2 (2021): 186–91. http://dx.doi.org/10.22438/jeb/42/2/mrn-1440.
Texte intégralLópez-Herrera, Gabriela, José Luis Maravillas-Montero, Alexander Vargas-Hernández, et al. "A novel CD40LG deletion causes the hyper-IgM syndrome with normal CD40L expression in a 6-month-old child." Immunologic Research 62, no. 1 (2015): 89–94. http://dx.doi.org/10.1007/s12026-015-8638-0.
Texte intégralMenéndez, Méndez, Almansa, et al. "Simultaneous Depression of Immunological Synapse and Endothelial Injury is Associated with Organ Dysfunction in Community-Acquired Pneumonia." Journal of Clinical Medicine 8, no. 9 (2019): 1404. http://dx.doi.org/10.3390/jcm8091404.
Texte intégralLi, Xuejing, Yungai Cheng, Dan Xu, et al. "A novel CD40LG mutation causing X‑linked hyper-IgM syndrome." Global Medical Genetics 12, no. 3 (2025): 100007. https://doi.org/10.1016/j.gmg.2024.100007.
Texte intégralRomán-Fernández, I. V., G. A. Sánchez-Zuno, J. R. Padilla-Gutiérrez, et al. "The 3′-UTR (CA)n microsatellite on CD40LG gene as a possible genetic marker for rheumatoid arthritis in Mexican population: impact on CD40LG mRNA expression." Clinical Rheumatology 37, no. 2 (2017): 345–53. http://dx.doi.org/10.1007/s10067-017-3853-9.
Texte intégralHong, Jian, Saber Y. Adam, Shiqi Wang, et al. "Melatonin Modulates ZAP70 and CD40 Transcripts via Histone Modifications in Canine Ileum Epithelial Cells." Veterinary Sciences 12, no. 2 (2025): 87. https://doi.org/10.3390/vetsci12020087.
Texte intégralPérez-Melgosa, Mercedes, Diane Hollenbaugh, and Christopher B. Wilson. "Cutting Edge: CD40 Ligand Is a Limiting Factor in the Humoral Response to T Cell-Dependent Antigens." Journal of Immunology 163, no. 3 (1999): 1123–27. http://dx.doi.org/10.4049/jimmunol.163.3.1123.
Texte intégralPark, Heiyoung, Theo Heller, and Barbara Rehermann. "Transcriptome analysis reveals distinct immune response profiles in HBeAg+ and HBeAg− HBV infection and in HBV/HDV co-infection." Journal of Immunology 198, no. 1_Supplement (2017): 158.18. http://dx.doi.org/10.4049/jimmunol.198.supp.158.18.
Texte intégralDe Maio, Diego Javier Prado, Bitha Narayanan, James La Porta, Usha Ganapathi, Ping Xie, and Lori R. Covey. "Activation-dependent post-transcriptional regulation of CD40L mediates B cell development and survival in germinal centers." Journal of Immunology 206, no. 1_Supplement (2021): 63.03. http://dx.doi.org/10.4049/jimmunol.206.supp.63.03.
Texte intégralLi, Jiayun, Zhikai Wang, and Douglas T. Fearon. "CD40 signaling induces type I interferon and immune control in mouse pancreatic cancer lacking the CXCL12-coat." Journal of Immunology 204, no. 1_Supplement (2020): 241.37. http://dx.doi.org/10.4049/jimmunol.204.supp.241.37.
Texte intégralHayashi, Tomoko, Savita P. Rao, Pascal R. Meylan, Richard S. Kornbluth, and Antonino Catanzaro. "Role of CD40 Ligand in Mycobacterium avium Infection." Infection and Immunity 67, no. 7 (1999): 3558–65. http://dx.doi.org/10.1128/iai.67.7.3558-3565.1999.
Texte intégralCuringa, Gabrielle, Sarah Leach, Swati Singh, et al. "316. Successful Editing of the CD40LG Locus in Human Hematopoietic Stem Cells." Molecular Therapy 24 (May 2016): S127. http://dx.doi.org/10.1016/s1525-0016(16)33125-2.
Texte intégralLe Coz, Carole, Melissa Trofa, Camille M. Syrett, et al. "CD40LG duplication-associated autoimmune disease is silenced by nonrandom X-chromosome inactivation." Journal of Allergy and Clinical Immunology 141, no. 6 (2018): 2308–11. http://dx.doi.org/10.1016/j.jaci.2018.02.010.
Texte intégralKim, Hyung Young, Tae Min Um, and Hee Ju Park. "A Novel Mutation in CD40LG Gene Causing X-Linked Hyper IgM Syndrome." Indian Journal of Pediatrics 85, no. 9 (2017): 788–89. http://dx.doi.org/10.1007/s12098-017-2526-7.
Texte intégralImai, Kohsuke, Mitsunobu Shimadzu, Takeo Kubota, et al. "Female hyper IgM syndrome type 1 with a chromosomal translocation disrupting CD40LG." Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1762, no. 3 (2006): 335–40. http://dx.doi.org/10.1016/j.bbadis.2005.10.003.
Texte intégralQian, Zuanhao, Zhenglei Zhang, and Yingying Wang. "T cell receptor signaling pathway and cytokine-cytokine receptor interaction affect the rehabilitation process after respiratory syncytial virus infection." PeerJ 7 (June 12, 2019): e7089. http://dx.doi.org/10.7717/peerj.7089.
Texte intégralChoudhry, Hani, Ashwag Albukhari, Mohammad Mobashir, and Wesam H. Abdulaal. "Study of APOBEC3B focused breast cancer pathways and the clinical relevance." Journal of Basic Science 1, no. 1 (2024): 1–12. https://doi.org/10.63454/jbs20000002.
Texte intégralCoit, Patrick, Lindsey B. De Lott, Bin Nan, Victor M. Elner, and Amr H. Sawalha. "DNA methylation analysis of the temporal artery microenvironment in giant cell arteritis." Annals of the Rheumatic Diseases 75, no. 6 (2015): 1196–202. http://dx.doi.org/10.1136/annrheumdis-2014-207116.
Texte intégralPazhanisamy, Amudha, Salomao Doria Jorge, Michael T. Zimmermann, et al. "Advanced computational analysis of CD40LG variants in atypical X-linked hyper-IgM syndrome." Clinical Immunology 253 (August 2023): 109692. http://dx.doi.org/10.1016/j.clim.2023.109692.
Texte intégralReckamp, Karen L., Jasmine A. McQuerry, Isa Mambetsariev, et al. "Co-stimulatory and co-inhibitory immune markers in solid tumors with MET alterations." Future Science OA 7, no. 2 (2021): FSO662. http://dx.doi.org/10.2144/fsoa-2020-0159.
Texte intégralLu, Qianjin, Ailing Wu, Laura Tesmer, Donna Ray, Neda Yousif, and Bruce Richardson. "Demethylation of CD40LG on the Inactive X in T Cells from Women with Lupus." Journal of Immunology 179, no. 9 (2007): 6352–58. http://dx.doi.org/10.4049/jimmunol.179.9.6352.
Texte intégralTrivellin, Giampaolo, and Constantine A. Stratakis. "CD40LG duplications in patients with X-LAG syndrome commonly undergo random X-chromosome inactivation." Journal of Allergy and Clinical Immunology 143, no. 4 (2019): 1659. http://dx.doi.org/10.1016/j.jaci.2018.12.1017.
Texte intégralGall, Tina, Hans Ochs, and M. Teresa de la Morena. "CD40LG genotype does not correlate with clinical phenotype in X-linked hyper-IgM syndrome." Clinical Immunology 250 (May 2023): 109462. http://dx.doi.org/10.1016/j.clim.2023.109462.
Texte intégralMcDyer, John F., Mark Dybul, Theresa J. Goletz, et al. "Differential Effects of CD40 Ligand/Trimer Stimulation on the Ability of Dendritic Cells to Replicate and Transmit HIV Infection: Evidence for CC-Chemokine-Dependent and -Independent Mechanisms." Journal of Immunology 162, no. 6 (1999): 3711–17. http://dx.doi.org/10.4049/jimmunol.162.6.3711.
Texte intégralKim, Jae Heon, Hee Jo Yang, Sung Sik Choi, Hong J. Lee, and Yun Seob Song. "Changes of proapoptotic and antiapoptotic genes affect sensitivity to apoptotic stimuli in impaired contractility due to long term bladder outlet obstruction." PLOS ONE 17, no. 12 (2022): e0279503. http://dx.doi.org/10.1371/journal.pone.0279503.
Texte intégralYuan, Manqiu, Jianying Pei, Ruihao Li, Lirong Tian, Xin He, and Yanping Li. "CD40LG as a Prognostic Molecular Marker Regulates Tumor Microenvironment Through Immune Process in Breast Cancer." International Journal of General Medicine Volume 14 (November 2021): 8833–46. http://dx.doi.org/10.2147/ijgm.s336813.
Texte intégralCampos-Neto, Antonio, Pamela Ovendale, Teresa Bement, et al. "Cutting Edge: CD40 Ligand Is Not Essential for the Development of Cell-Mediated Immunity and Resistance to Mycobacterium tuberculosis." Journal of Immunology 160, no. 5 (1998): 2037–41. http://dx.doi.org/10.4049/jimmunol.160.5.2037.
Texte intégralApoil, P. A., E. Kuhlein, A. Robert, H. Rubie, and A. Blancher. "HIGM syndrome caused by insertion of an AluYb8 element in exon 1 of the CD40LG gene." Immunogenetics 59, no. 1 (2006): 17–23. http://dx.doi.org/10.1007/s00251-006-0175-5.
Texte intégralShimoda, Michiko, Anna Bolduc, Domonica Powell, et al. "A critical role of dendritic cells in CD8 T cell IL-10 expression during inflammatory response triggered by CD40-activated B cells (159.16)." Journal of Immunology 188, no. 1_Supplement (2012): 159.16. http://dx.doi.org/10.4049/jimmunol.188.supp.159.16.
Texte intégralFujisawa, Manabu, Tran B. Nguyen, Yoshiaki Abe, et al. "Germinal Center B Cells Derived from TET2-Mutated Clonal Hematopoiesis Provide a Microenviromental Niche for Tumor Cells in Angioimmunoblastic T-Cell Lymphoma." Blood 138, Supplement 1 (2021): 445. http://dx.doi.org/10.1182/blood-2021-149983.
Texte intégralNimri, S., D. Atkinson, and S. Stutes. "M199 X- LINKED HYPER-IGM SYNDROME WITH CD40LG MUTATION IN A FEMALE PATIENT AND HER MALE SIBLING." Annals of Allergy, Asthma & Immunology 127, no. 5 (2021): S108. http://dx.doi.org/10.1016/j.anai.2021.08.340.
Texte intégralChen, Yixiang, Chloé Peubez, Sandrine Jayne, Gabriella Kocsis-Fodor, Martin J. S. Dyer, and Salvador Macip. "Differential activation of pro-survival pathways in response to CD40LG/IL4 stimulation in chronic lymphocytic leukaemia cells." British Journal of Haematology 184, no. 5 (2018): 867–69. http://dx.doi.org/10.1111/bjh.15197.
Texte intégralTsai, Hu-Yuan, Hsin-Hui Yu, Yin-Hsiu Chien, et al. "X-linked hyper-IgM syndrome with CD40LG mutation: Two case reports and literature review in Taiwanese patients." Journal of Microbiology, Immunology and Infection 48, no. 1 (2015): 113–18. http://dx.doi.org/10.1016/j.jmii.2012.07.004.
Texte intégralZhang, Hui, Fanbing Meng, Jinxuan Tang, et al. "Lactate inhibits T-cell activation in sepsis through CD40LG downregulation and SOCS3-mediated JAK1/STAT3 pathway suppression." Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1871, no. 7 (2025): 167923. https://doi.org/10.1016/j.bbadis.2025.167923.
Texte intégralLeal-Calvo, Thyago, Charlotte Avanzi, Mayara Abud Mendes, et al. "A new paradigm for leprosy diagnosis based on host gene expression." PLOS Pathogens 17, no. 10 (2021): e1009972. http://dx.doi.org/10.1371/journal.ppat.1009972.
Texte intégralWang, Yingying, Yu Xu, Qingquan Hua, et al. "Novel Prognostic Model Based on Immune Signature for Head and Neck Squamous Cell Carcinoma." BioMed Research International 2020 (October 19, 2020): 1–9. http://dx.doi.org/10.1155/2020/4725314.
Texte intégralSun, Liping, Dandan Wang, Yan Xu, Wenxiu Qi, and Yanbo Wang. "Evidence of TCM Theory in Treating the Same Disease with Different Methods: Treatment of Pneumonia with Ephedra sinica and Scutellariae Radix as an Example." Evidence-Based Complementary and Alternative Medicine 2020 (November 28, 2020): 1–23. http://dx.doi.org/10.1155/2020/8873371.
Texte intégralTsuchiya, Yukako, Taku Naito, Mari Tenno, et al. "ThPOK represses CXXC5, which induces methylation of histone H3 lysine 9 in Cd40lg promoter by association with SUV39H1: implications in repression of CD40L expression in CD8+ cytotoxic T cells." Journal of Leukocyte Biology 100, no. 2 (2016): 327–38. http://dx.doi.org/10.1189/jlb.1a0915-396rr.
Texte intégralLin, S. C., and J. Stavnezer. "Activation of NF-kappaB/Rel by CD40 engagement induces the mouse germ line immunoglobulin Cgamma1 promoter." Molecular and Cellular Biology 16, no. 9 (1996): 4591–603. http://dx.doi.org/10.1128/mcb.16.9.4591.
Texte intégralZhou, Ying, Jun Yuan, Yujun Pan, et al. "T cell CD40LG gene expression and the production of IgG by autologous B cells in systemic lupus erythematosus." Clinical Immunology 132, no. 3 (2009): 362–70. http://dx.doi.org/10.1016/j.clim.2009.05.011.
Texte intégral