Littérature scientifique sur le sujet « Cell Annotation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Cell Annotation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Cell Annotation"
Huang, Xiaoqian, Ruiqi Liu, Shiwei Yang, Xiaozhou Chen et Huamei Li. « scAnnoX : an R package integrating multiple public tools for single-cell annotation ». PeerJ 12 (28 mars 2024) : e17184. http://dx.doi.org/10.7717/peerj.17184.
Texte intégralVădineanu, Serban, Daniël M. Pelt, Oleh Dzyubachyk et Kees Joost Batenburg. « Reducing Manual Annotation Costs for Cell Segmentation by Upgrading Low-Quality Annotations ». Journal of Imaging 10, no 7 (17 juillet 2024) : 172. http://dx.doi.org/10.3390/jimaging10070172.
Texte intégralHia, Nazifa Tasnim, et Sumon Ahmed. « Automatic cell type annotation using supervised classification : A systematic literature review ». Systematic Literature Review and Meta-Analysis Journal 3, no 3 (21 octobre 2022) : 99–108. http://dx.doi.org/10.54480/slrm.v3i3.45.
Texte intégralXu, Yang, Simon J. Baumgart, Christian M. Stegmann et Sikander Hayat. « MACA : marker-based automatic cell-type annotation for single-cell expression data ». Bioinformatics 38, no 6 (22 décembre 2021) : 1756–60. http://dx.doi.org/10.1093/bioinformatics/btab840.
Texte intégralGill, Jaidip, Abhijit Dasgupta, Brychan Manry et Natasha Markuzon. « Abstract 4927 : Combining single-cell ATAC and RNA sequencing for supervised cell annotation ». Cancer Research 84, no 6_Supplement (22 mars 2024) : 4927. http://dx.doi.org/10.1158/1538-7445.am2024-4927.
Texte intégralZhou, Xiao, Miao Gu et Zhen Cheng. « Local Integral Regression Network for Cell Nuclei Detection ». Entropy 23, no 10 (14 octobre 2021) : 1336. http://dx.doi.org/10.3390/e23101336.
Texte intégralZhou, Xiao, Miao Gu et Zhen Cheng. « Local Integral Regression Network for Cell Nuclei Detection ». Entropy 23, no 10 (14 octobre 2021) : 1336. http://dx.doi.org/10.3390/e23101336.
Texte intégralCheng, Changde, Wenan Chen, Hongjian Jin et Xiang Chen. « A Review of Single-Cell RNA-Seq Annotation, Integration, and Cell–Cell Communication ». Cells 12, no 15 (30 juillet 2023) : 1970. http://dx.doi.org/10.3390/cells12151970.
Texte intégralLong, Helen, Richard Reeves et Michelle M. Simon. « Mouse genomic and cellular annotations ». Mammalian Genome 33, no 1 (5 février 2022) : 19–30. http://dx.doi.org/10.1007/s00335-021-09936-7.
Texte intégralWei, Ziyang, et Shuqin Zhang. « CALLR : a semi-supervised cell-type annotation method for single-cell RNA sequencing data ». Bioinformatics 37, Supplement_1 (1 juillet 2021) : i51—i58. http://dx.doi.org/10.1093/bioinformatics/btab286.
Texte intégralThèses sur le sujet "Cell Annotation"
Raoux, Corentin. « Review and Analysis of single-cell RNA sequencing cell-type identification and annotation tools ». Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297852.
Texte intégralEbenezer, ThankGod Echezona. « The genome of Euglena gracilis : annotation, function and expression ». Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275885.
Texte intégralAbbey, Simon. « Annotation of the human odontoblast cell layer and dental pulp proteomes and N-terminomes ». Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62403.
Texte intégralDentistry, Faculty of
Graduate
Hoffman, Matthew P. « The Cortical response to RhoA is regulated during mitosis. Annotation of cytoskeletal and motility proteins in the sea urchin genome assembly ». Thesis, Boston College, 2008. http://hdl.handle.net/2345/bc-ir:107671.
Texte intégralThis doctoral thesis addresses two central topics divided into separate chapters. In Chapter 1: The cortical response to RhoA is regulated during mitosis, experimental findings using sea urchin embryos are presented that demonstrate that the small GTPase RhoA participates in positive signaling for cell division and that this activity is negatively regulated prior to anaphase. In a second series of experiments, myosin phosphatase is shown to be a central negative regulator of myosin activity during the cell cycle through metaphase of mitosis and experimental findings support the conclusion that myosin phosphatase opposes RhoA signaling until anaphase onset. These experiments also reveal that myosin activation alone is insufficient to stimulate cortical contractions during S phase and during metaphase arrest following activation of the spindle checkpoint. In Chapter 2: Annotation of cytoskeletal and motility proteins in the sea urchin genome assembly, as part of a collaborative project, homologs of cytoskeletal genes and gene families were derived and annotated from the sea urchin genome assembly. In addition, phylogenetic analysis of multiple gene families is presented based on these findings
Thesis (PhD) — Boston College, 2008
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Biology
Collin, Antoine. « Annotation cellulaire automatique pour la construction d'un atlas cellulaire ». Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ6039.
Texte intégralSingle-cell gene expression analysis technologies, which have emerged over the last ten years, are profoundly changing approaches to cell biology. The analysis of single-cell data is a complex process involving many steps. A key step is cell annotation, which involves assigning the most relevant cell type to the different cells analysed. Correct cell annotation determines the quality of subsequent analyses. This complex task requires biological expertise of the tissue of interest and computational expertise to carry out data analysis. Initiatives such as the HCA provide large reference atlases with curated annotation. As such, they represent an opportunity to develop deep learning models capable of automating the annotation process.The aim of this thesis was to set up automatic annotation tools that could operate on large datasets. To achieve this, two lines of work were developed: first, I created an atlas of the human airways comprising more than 400,000 cells based on several dozen biopsies obtained from patients with early forms of chronic obstructive pulmonary disease (COPD), which were compared with as many biopsies from healthy volunteers of the same age. I then developed an automatic annotation method after reviewing the state of the art existing tools.In the first part, I was able to characterise the central role played by cigarette smoke, mainly in the epithelial cells located on the surface of the tracheobronchial airways, and thus directly exposed to cigarette smoke. The populations affected are characterised by the expression of genes coding for detoxification enzymes or enzymes involved in xenobiotic metabolism. None of these genes were affected in either ex-smokers or healthy patients. There appears to be a reversibility of the pathology following cessation of smoking, despite the molecular changes induced during initial exposure to cigarette smoke. My work is now currently extended by spatial transcriptomic approaches and analysis of the expression of different transcript isoforms.In the second part, I explored existing automatic annotation methods in the light of the knowledge acquired when annotating the COPD atlas. I began with an extensive review of the literature, with a particular interest in methods using deep learning models. I then developed an automatic annotation tool, scMusketeers, whose architecture favours the construction of a latent space reinforcing cell type while minimising experimental inter-batch effects. It compared favorably to 7 currently available tools on 12 different datasets, particularly in the task of detecting rare cell types
Lehmann, Nathalie. « Development of bioinformatics tools for single-cell transcriptomics applied to the search for signatures of symmetric versus asymmetric division mode in neural progenitors ». Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLE070.
Texte intégralIn recent years, single-cell RNA-seq (scRNA-seq) has fostered the characterization of cell heterogeneity at a remarkable high resolution. Despite their democratization, the analysis of scRNA-seq remains a challenge, particularly for organisms whose genomic annotations are partial. During my PhD, I observed that the chick genomic annotations are often incomplete, thus resulting in a loss of a large number of sequencing reads. I investigated how an enriched annotation affects the biological results and conclusions from these analyses. We developed a novel approach based on the re-annotation of the genome with scRNA-seq data and long reads bulk RNA-seq. This computational biology project capitalises on a tight collaboration with the experimental team of Xavier Morin (IBENS). The main biological focus is the search for signatures of symmetric versus asymmetric division mode in neural progenitors. In order to identify the key transcriptional switches that occur during the neurogenic transition, I have implemented bioanalysis approaches dedicated to the search for gene signatures from scRNA-seq data
Planas, Iglesias Joan 1980. « On the study of 3D structure of proteins for developing new algorithms to complete the interactome and cell signalling networks ». Doctoral thesis, Universitat Pompeu Fabra, 2013. http://hdl.handle.net/10803/104152.
Texte intégralLes proteïnes tenen un paper indispensable en virtualment qualsevol procés biològic. Les funcions de les proteïnes estan determinades per la seva estructura tridimensional (3D) i són coordinades per mitjà d’una complexa xarxa d’interaccions protiques (en anglès, protein-protein interactions, PPIs). Axí doncs, una comprensió en profunditat d’aquestes xarxes és fonamental per entendre la biologia cel•lular. Per a l’anàlisi de les xarxes d’interacció de proteïnes, l’ús de tècniques computacionals ha esdevingut fonamental als darrers temps. Els mètodes in silico aprofiten el coneixement actual sobre les interaccions proteiques per fer prediccions de noves interaccions o de les funcions de les proteïnes. Actualment existeixen diferents mètodes per a la predicció de noves interaccions de proteines. De tota manera, resultats recents demostren que aquests mètodes poden beneficiar-se del coneixement sobre parelles de proteïnes no interaccionants (en anglès, non-interacting pairs, NIPs). Per a la tasca de predir la funció de les proteïnes, el principi de “culpable per associació” (en anglès, guilt by association, GBA) és usat per extendre l’anotació de proteïnes de funció coneguda a través de xarxes d’interacció de proteïnes. En aquesta tesi es presenta un nou mètode pre a la predicció d’interaccions proteiques i un nou protocol basat per a completar xarxes de senyalització cel•lular. iLoops és un mètode que utilitza dades de parells no interaccionants i coneixement de l’estructura 3D de les proteïnes per a predir interaccions de proteïnes. També s’ha desenvolupat un nou protocol per a completar xarxes de senyalització cel•lular, una tasca relacionada amb la predicció de les funcions de les proteïnes. Aquest protocol es basa en aplicar el principi GBA a xarxes d’interaccions proteiques.
Ghadie, Mohamed A. « Analysis and Reconstruction of the Hematopoietic Stem Cell Differentiation Tree : A Linear Programming Approach for Gene Selection ». Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32048.
Texte intégralKhattra, Jaswinder. « Cloning and annotation of novel transcripts from human embryonic stem cells ». Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/343.
Texte intégralLux, Markus [Verfasser], et Barbara [Akademischer Betreuer] Hammer. « Efficient Grouping Methods for the Annotation and Sorting of Single Cells / Markus Lux ; Betreuer : Barbara Hammer ». Bielefeld : Universitätsbibliothek Bielefeld, 2018. http://d-nb.info/1160033226/34.
Texte intégralChapitres de livres sur le sujet "Cell Annotation"
Wang, Zuhui, et Zhaozheng Yin. « Annotation-Efficient Cell Counting ». Dans Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, 405–14. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87237-3_39.
Texte intégralO’Connor, Maria F., Arthur Hughes, Chaoxin Zheng, Anthony Davies, Dermot Kelleher et Khurshid Ahmad. « Annotation and Retrieval of Cell Images ». Dans Intelligent Data Engineering and Automated Learning – IDEAL 2010, 218–25. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15381-5_27.
Texte intégralLi, Dongshunyi, Jun Ding et Ziv Bar-Joseph. « Unsupervised Cell Functional Annotation for Single-Cell RNA-Seq ». Dans Lecture Notes in Computer Science, 349–52. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04749-7_24.
Texte intégralVădineanu, Şerban, Daniël M. Pelt, Oleh Dzyubachyk et K. Joost Batenburg. « Reducing Manual Annotation Costs for Cell Segmentation by Upgrading Low-Quality Annotations ». Dans Medical Image Learning with Limited and Noisy Data, 3–13. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44917-8_1.
Texte intégralValkiers, Sebastiaan, Sofie Gielis, Vincent M. L. Van Deuren, Kris Laukens et Pieter Meysman. « Clustering and Annotation of T Cell Receptor Repertoires ». Dans Computational Vaccine Design, 33–51. New York, NY : Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3239-0_3.
Texte intégralShui, Zhongyi, Shichuan Zhang, Chenglu Zhu, Bingchuan Wang, Pingyi Chen, Sunyi Zheng et Lin Yang. « End-to-End Cell Recognition by Point Annotation ». Dans Lecture Notes in Computer Science, 109–18. Cham : Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-16440-8_11.
Texte intégralLi, Chao-Ting, Hung-Wen Tsai, Tseng-Lung Yang, Jung-Chi Lin, Nan-Haw Chow, Yu Hen Hu, Kuo-Sheng Cheng et Pau-Choo Chung. « Imbalance-Effective Active Learning in Nucleus, Lymphocyte and Plasma Cell Detection ». Dans Interpretable and Annotation-Efficient Learning for Medical Image Computing, 223–32. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61166-8_24.
Texte intégralÇiçek, Özgün, Yassine Marrakchi, Enoch Boasiako Antwi, Barbara Di Ventura et Thomas Brox. « Recovering the Imperfect : Cell Segmentation in the Presence of Dynamically Localized Proteins ». Dans Interpretable and Annotation-Efficient Learning for Medical Image Computing, 85–93. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61166-8_9.
Texte intégralBashir, Raja Muhammad Saad, Talha Qaiser, Shan E. Ahmed Raza et Nasir M. Rajpoot. « HydraMix-Net : A Deep Multi-task Semi-supervised Learning Approach for Cell Detection and Classification ». Dans Interpretable and Annotation-Efficient Learning for Medical Image Computing, 164–71. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61166-8_18.
Texte intégralKhalid, Nabeel, Tiago Comassetto Froes, Maria Caroprese, Gillian Lovell, Johan Trygg, Andreas Dengel et Sheraz Ahmed. « PACE : Point Annotation-Based Cell Segmentation for Efficient Microscopic Image Analysis ». Dans Artificial Neural Networks and Machine Learning – ICANN 2023, 545–57. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44210-0_44.
Texte intégralActes de conférences sur le sujet "Cell Annotation"
Li, Tianhao, Yugui Xu, Sihan He, Yuhang Liu, Zixuan Wang, Zhigan Zhou, Yongqing Zhang et Quan Zou. « Cell-Specific Highly Correlated Network for Self-Supervised Distillation in Cell Type Annotation ». Dans 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 988–93. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822095.
Texte intégralTang, Binhua, et Guowei Cheng. « A Novel GCN-Based Cell Annotation Method for Single-Cell RNA Sequencing Data ». Dans 2024 17th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 1–5. IEEE, 2024. https://doi.org/10.1109/cisp-bmei64163.2024.10906231.
Texte intégralLi, Jiawei, Shizhan Chen, Zongbo Han, Wei Li, Jijun Tang et Fei Guo. « Multi-Task Driven Multi-Level Dynamical Fusion for Single-Cell Multi-Omics Cell Type Annotation ». Dans 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1009–14. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822524.
Texte intégralZhu, Chi, Fengcui Qian, Yongbin Liu, Ying Yu, Chunquan Li et Chunping Ouyang. « PEGCN : A Single-Cell Type Annotation model based on GCN with Pseudo Labels and Ensemble Learning ». Dans 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1414–21. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822733.
Texte intégralNeelapala, Satya Deepika, Soumya Jana et Lopamudra Giri. « U-Net-Based HeLa Cell Segmentation with Zero Manual Labeling Using DBSCAN-Generated Annotations ». Dans 2024 IEEE International Conference on E-health Networking, Application & ; Services (HealthCom), 1–3. IEEE, 2024. https://doi.org/10.1109/healthcom60970.2024.10880723.
Texte intégralChen, Jian, Chengliang Wang, Xing Wu, Longrong Ran, Zailin Yang et Yao Liu. « Weakly Supervised Segmentation of Plasma Cells in Bone Marrow via Scribble Annotations ». Dans 2024 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10651396.
Texte intégralZhai, Yuyao, Liang Chen et Minghua Deng. « Realistic Cell Type Annotation and Discovery for Single-cell RNA-seq Data ». Dans Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California : International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/552.
Texte intégralZhai, Yuyao, Liang Chen et Minghua Deng. « Distribution-Independent Cell Type Identification for Single-Cell RNA-seq Data ». Dans Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California : International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/679.
Texte intégralJiang, Yangbo, Shuting Zhang, Jinggen Wu, Xumei Zhu, Xiao Liu et Nenggan Zheng. « AL-Annotator : An Active Learning-based Cervical Cell Annotation System ». Dans 2023 IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2023. http://dx.doi.org/10.1109/icpads60453.2023.00079.
Texte intégralLin, Lu, Wen Xue, Xindian Wei, Wenjun Shen, Cheng Liu, Si Wu et Hau San Wong. « SCTrans : Multi-scale scRNA-seq Sub-vector Completion Transformer for Gene-selective Cell Type Annotation ». Dans Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California : International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/658.
Texte intégralRapports d'organisations sur le sujet "Cell Annotation"
Blumwald, Eduardo, et Avi Sadka. Sugar and Acid Homeostasis in Citrus Fruit. United States Department of Agriculture, janvier 2012. http://dx.doi.org/10.32747/2012.7697109.bard.
Texte intégralRabethge, Nico, et Kurt-Georg Ciesinger. KI in der Schmutzwäsche-Sortierung. Kompetenzzentrum Arbeitswelt.Plus, janvier 2023. http://dx.doi.org/10.55594/wgct6835.
Texte intégral