Thèses sur le sujet « Cellule souche neural »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Cellule souche neural.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Cellule souche neural ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.

1

Loison-Robert, Ludwig. « Cellule souche gingivale : origine et multipotence ». Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC0083/document.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
La gencive correspond à un modèle de régénération naturelle grâce notamment à sa capacité de cicatrisation « ad integrum ». Ce phénomène est permis par sa composition en fibroblastes gingivaux. Ces cellules, composante cellulaire principale du tissu conjonctif gingival, sont au cœur de la régulation des réponses inflammatoires et de la cicatrisation. Ce tissu contient, comme d’autres tissus mésenchymateux, des cellules souches ; qui expliquent en partie ces capacités de régénération. De plus, comme le tissu gingival est abondant et facilement accessible, l’utilisation de ces cellules souches pourraient être d’un intérêt prometteur en thérapie cellulaire ou pour de la modélisation in vitro. Au cours de cette thèse, nous avons pu montrer que les Cellules Souches dérivées de la Gencive Humaine (CSGH) possèdent des propriétés communes avec les cellules souches adultes dérivées des crêtes neurales. Ces cellules peuvent être qualifiées de « souche » par leur capacité d’auto-renouvèlement, d’adhésion au plastique et de multipotence. Premièrement, nous avons montré que la méthode ainsi que les produits de culture utilisés pour l’isolation des fibroblastes gingivaux in vitro à partir de biopsies de gencive avait une influence sur les cellules obtenues. Dans un second temps, une analyse clonale in vitro de populations de fibroblastes gingivaux a permis de montrer que les fibroblastes gingivaux sont composés de sous-populations qui expriment des marqueurs spécifiques des cellules souches et des crêtes neurales. Outre leur origine embryologique, l’étude de leur multipotence a aussi été caractérisée après expansion et en fonction des additifs utilisés. Pour finir, deux exemples d’utilisation de ces cellules comme modèle d’étude de la biocompatibilité de biomatériaux in vitro ont été développés; imitant la muqueuse buccale ainsi que les réactions dentaires (réparatrices et réactionnaire)
Gingiva is a natural regeneration model thanks to its "ad integrum" healing capability. Gingival fibroblasts are the main actors of this property. These cells, the main cellular component of the gingival connective tissue, regulate the inflammatory responses and healing process. This tissue contains, like many others, mesenchymal stem cells; which also partly explain these regenerative abilities. Moreover, as the gingiva is abundant and easily accessible, the use of these stem cells may interest cell therapy or in vitro model tissues responses. In this work, we demonstrated that Stem Cells Derived from Human Gingiva (SCHG) have common properties with neural crest adult stem cells. These cells can be called "stem cells" for their ability to self-renew, adhere to plastic and to differentiate. First, we have shown that the method and the culture products used for isolation of gingival fibroblasts from gingival biopsy had an influence on the obtained cells. Secondly, an analysis of in vitro clonal populations of gingival fibroblasts has shown that gingival fibroblasts are composed of subpopulations that express specific markers of stem cells and neural crests. In addition to their embryological origin, the study of their multipotency was also characterized after expansion and depending on the used additives. Finally, two examples of using these cells and dental pulp stem cells as a model to study the in vitro biocompatibility of biomaterials have been developed, mimicking oral mucosa or dentin reactions (reparative or reactional)
2

Katz, Shauna. « Rôle de microARN-9 dans la régulation de l'état cellule souche neural chez l'adulte ». Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS086.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Depuis la découverte fondatrice de la présence de cellules souches neurales (NSCs) multipotentes dans le cerveau des mammifères adultes, plusieurs études ont révélé l'importance de ces cellules pour le maintien de l'homéostasie du cerveau. Notamment, des perturbations dans l'équilibre des NSCs ont été associées au vieillissement et à diverses pathologies neurologiques, ce qui suscite un intérêt croissant pour ces cellules. Les NSCs résident dans des zones germinatives restreintes; dans le rongeur adulte les NSCs sont localisées principalement dans deux niches neurogéniques bien établies dans le télencéphale, ce qui contraste avec la situation chez le poisson zèbre adulte où des niches de NSCs actives ont été identifiées dans tout le cerveau, y compris dans le télencéphale dorsal (pallium). Aussi bien chez les rongeurs que le poisson zèbre, les NSCs adultes présentent les deux propriétés fondamentales des cellules souches: elles sont multipotentes, c’est-à-dire capables de générer de nouveaux neurones et cellules gliales, et ont la capacité d'auto-renouvellement à long terme, permettant leur maintien au long de la vie adulte. A la différence des progéniteurs neuronaux embryonnaires (NPCs), une caractéristique de ces NSCs adultes est qu’elles résident la plupart du temps dans un état d’arrêt réversible du cycle cellulaire appelé quiescence. Cet état, activement maintenu, est censé protéger la réserve de NSCs d’un épuisement prématuré, d’où l'importance de déchiffrer les mécanismes moléculaires de régulation de l’équilibre entre la quiescence et l’activation de ces cellules vers la neurogenèse.Les microARNs constituent une classe de petits ARN régulateurs, qui jouent un rôle crucial dans le contrôle d’états cellulaires et des transitions entre ces états. Ils sont capables de réagir rapidement à des signaux à la fois intra- et extracellulaires, qui peuvent moduler aussi bien leur niveau d’expression que leur impact fonctionnel, leur donnant ainsi la capacité de coordonner diverses signaux pour induire des transitions d'état cellulaire. Un microARN en particulier, miR-9, a été montré comme jouant un rôle clé et conservé au cours de la neurogenèse embryonnaire. L'objectif principal de cette étude était d'étudier, pour la première fois, un rôle potentiel de miR-9 dans le contrôle des NSCs, dans un contexte physiologique dans lequel la majorité des NSCs sont quiescentes - le pallium adulte du poisson zèbre. Nous avons constaté que miR-9 est exclusivement exprimé dans une sous-partie des NSCs, met vraisemblablement en évidence un « sous-état » de quiescence. De plus, nous avons pu montrer que miR-9 ancre les NSCs dans un état de quiescence, en partie via le maintien d’un niveau élevé d’activation de la voie de signalisation Notch. De façon surprenante, nous avons également identifié une modification de la localisation subcellulaire de miR-9 au cours du temps: alors que miR-9 est localisé dans le cytoplasme de tous les NPCs chez l’embryon ou le juvenile, chez le poisson adulte miR-9 est localisé dans le noyau des NSCs en quiescence. En outre, la localisation nucléaire de miR-9 dans ces NSCs quiescentes est fortement corrélée avec la localisation nucléaire des protéines effectrices des microARNs, les protéines Argonaute (Agos), ce qui suggère un rôle fonctionnel de miR-9 dans le noyau. De fait, l'élucidation du mécanisme de transport nucléo-cytoplasmique de miR-9/Agos nous a permis de manipuler leur localisation, et d’observer un impact de cette localisation sur l’état de quiescence vs activation des NSCs. L’ensemble des résultats de cette étude identifient ainsi miR-9 comme un régulateur essentiel de la quiescence des NSCs, fournissent pour la première fois un marqueur moléculaire d’un sous-état de quiescence spécifique du cerveau adulte et suggèrent l'implication d'un mécanisme inédit de régulation par les microARNs dans le maintien de l'homéostasie des réserves de NSCs
Since the seminal discovery of multipotent neural stem cells (NSCs) in the adult mammalian brain, multiple studies have unravelled the importance of these cells for maintaining brain homeostasis. Notably, disturbances in NSC equilibrium have been linked to physiological aging and various neurological pathologies thus sparkling interest in harnessing them for use in regenerative medicine. NSCs reside in distinct germinal zones; in the adult rodent brain NSCs are found mainly in two well-established neurogenic niches in the telencephalon which contrasts with the situation in the adult zebrafish where NSC niches are widespread throughout the brain, including in the dorsal telencephalon or pallium. In both the rodent and zebrafish brains, adult NSCs display fundamental stem cell properties: they are multipotent, e.g. capable of generating new neurons and glia throughout adult life, and have the capacity for long-term self-renewal. Similar to stem cells in other adult tissues, and in contrast to embryonic neural progenitors, a hallmark of these adult NSCs is their relative proliferative quiescence. Quiescence is an actively maintained, reversible state of cell-cycle arrest and generally thought to protect against exhaustion of the stem cell pool. In line with this, disrupting the balance between quiescent and activated NSCs leads to a premature depletion or permanent cell-cycle exit of these cells highlighting the importance of fully deciphering the mechanisms regulating this equilibrium. microRNAs, a major class of small pleiotropic regulatory RNAs, play crucial roles in reinforcing developmental and transitional states. They are capable of reacting to environmental cues, both cell-intrinsic and -extrinsic, with varying outputs such as changing their regulatory functions and expression levels, thus enabling them to coordinating diverse cues to induce cell-state transitions. One microRNA in particular, miR-9, is a highly conserved master regulator of embryonic neurogenesis and in the embryonic zebrafish brain, it establishes a primed neural progenitor state enabling them to quickly respond to cues to differentiate or proliferate. The primary goal of this study was to investigate, for the first time, a potential role for miR-9 in influencing NSC state in a physiological context in which the majority of NSCs are quiescent – the adult zebrafish pallium. We found that miR-9 is exclusively expressed in quiescent NSCs and highlights a “sub-state” within quiescence. In part by maintaining high levels of Notch signalling, a known quiescence promoting pathway, miR-9 anchors NSCs in the quiescent state. Strikingly, we identified a conserved age-associated change in the subcellular localization of the mature miR-9 from the cytoplasm of all embryonic/juvenile neural progenitors to the nucleus of a subset of quiescent NSCs in the adult brain. Moreover, the nuclear expression of miR-9 in these quiescent NSCs is highly correlated with nuclear localization of the microRNAs effector proteins Argonaute (Agos), suggestive of a functional role for nuclear miR-9. Indeed, the elucidation of the nuclear-cytoplasmic transport mechanism of miR-9/Agos enabled us to manipulate their nuclear to cytoplasmic ratios which directly impacted NSC state. Altogether, these results identify miR-9 as a crucial regulator of NSC quiescence, provide for the first time a molecular marker for an age-associated sub-state of quiescence and suggest the involvement of a novel and unconventional microRNA-mediated mechanism to maintain homeostasis of NSC pools
3

Clavairoly, Adrien. « Ascl1 and Olig2 transcriptional regulations of oligodendrogenesis ». Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066316/document.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Ce projet vise à fournir une nouvelle compréhension moléculaire du programme de transcription impliqué dans la différenciation des cellules souches neurales en oligodendrocytes myélinisant. La logique de ce travail repose sur des études antérieures ayant montré le rôle des facteurs de transcription bHLH Olig2 et Ascl1, opérant en synergie dans la spécification des OPCs, les cellules progénitrices d‘oligodendrocytes . L‘objectif central de ce travail était de comprendre au niveau génomique et transcriptomique les mécanismes par lesquels Ascl1 et Olig2 agissent pour spécifier les OPCs. Nous avons suivi une stratégie utilisant l'analyse du transcriptome et des profils de fixation des facteurs de transcription par immuno- précipitation de la chromatine. Nous avons pu identifier les cibles directes de Ascl1 et Olig2 dans les OPC et lors de la différenciation des oligodendrocytes. Nous avons également identifié de nouveaux marqueurs spécifiques des différents stades des lignées oligodendrocyte et nous sommes concentrés sur Chd7 et Tns3, deux gènes régulé par Ascl1 etOlig2 et enrichis dans la lignée oligodendrogliale à deux stades intéressants, la phase de spécification précoce et la transition entre la migration et la différenciation des oligodendrocytes, respectivement. De plus, nous avons porté notre attention sur le rôle spécifique des oligodendrocyte dans la synthèse de la créatine et son rôle possible de support métabolique dans la synthèse de myéline et de support axonal. Nous avons également initié une approche de repositionnement toxicogénomique pour identifier de nouvelles molécules à tester dans le cadre de maladie demyélinisantesLa plupart des traitements disponibles pour traiter les maladies démyélinisantes sont basées sur une approche immune modulatrice et anti-inflammatoire. A ce jour, aucun n'est en mesure de promouvoir directement la réparation de la myéline de manière efficace. Nous espérons que les gènes dont l'expression est régulée dans les lésions de démyélinisation identifiés lors de cette étude permettront de mieux comprendre le mécanisme de remyelinisation et le développement de nouvelles stratégies dans les maladies démyélinisantes telles que la sclérose en plaques ou dans les leucodystrophies
Our project aims to provide a new molecular understanding of the transcription program involved in neural stem cells differentiation into oligodendrocytes. The rational of this work relies on previous studies demonstrating that the bHLH transcription factors Olig2 and Ascl1 work in synergy to specify OPCs, the oligodendrocyte progenitor cells. One central goal of this work was to understand at a genomic and transcriptomic level, how Ascl1 and Olig2 work together to specify OPCs. We followed a strategy using genome-wide transcriptome analysis and chromatin immuno-precipitation to characterize Ascl1 and Olig2 directly regulated genes in OPCs and during oligodendrocyte differentiation.We identified new specific markers of different stage of the neural lineages and new important genes correlated to OPCs differentiation. We focused on Chd7 and Tns3, two genes which expressions are driven by Ascl1 and Olig2 and enriched in the oligodendroglial lineage at two interesting stage, the early specification stage and the transition between migrating and differentiating oligodendrocytes, respectively. Moreover, we identified the myelinating oligodendrocyte as the cell in charge of the creatine synthesis in the brain and potentially driving axonal metabolic support. We also used an approach a toxicogenomic and drug repositioning approach to identify new molecules known to modify OPCs and myelin genes but untested in the context of demyelinating diseases. As currently, most of the available treatments for demyelinating diseases are based on immuno-modulatory and anti-inflammatory drugs but none are able to directly promote myelin repair, we expect that these identified genes involved in oligodendrogenesis and whose expression are regulated in demyelinated lesions will allow the development of new therapeutic strategies promoting an efficient remyelination in demyelinating diseases such as Multiple sclerosis or leukodystrophies
4

Flici, Hakima. « Différenciation et plasticité des cellules souches neurales ». Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-01070644.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
L'étude de la plasticité cellulaire est un puissant outil pour comprendre le choix du destin cellulaire pendant la différenciation et dans les processus cancéreux lors de la transformation d'une cellule normale en une cellule maligne. Chez la drosophile, le facteur de transcription Gcm contrôle la détermination du destin glial. Dans des mutants gcm, les cellules qui se développent normalement en glie entrent dans la voie de différenciation neuronale alors que l'expression ectopique de gcm dans des progéniteurs neuronaux induit de la glie. Ces données font de Gcm un outil important pour comprendre les bases de la plasticité cellulaire. Mon projet de thèse vise à comprendre les mécanismes contrôlant la plasticité des cellules souches neurales. Nous avons ainsi montré que la capacité des CSNs à se convertir en glie après expression forcée de Glide/Gcm décline avec l'âge et que lors de l'entrée en phase quiescente ou apoptotique, ils ne peuvent plus être convertis. Nous avons aussi découvert que le processus de conversion du destin ne se manifeste pas uniquement par l'expression de marqueurs gliaux mais aussi par des changements spécifiques au niveau de la chromatine. D'une manière intéressante, nous avons aussi montré que la stabilité de la protéine Glide/Gcm est contrôlée par deux voies opposées, où Repo et l'histone acetyltransférase CBP jouent un rôle majeur.
5

Terrie, Élodie. « Rôle de la signalisation calcique dépendante des Store-Operated Channels (SOC) dans les cellules souches neurales adultes et les cellules souches cancéreuses de glioblastomes ». Thesis, Poitiers, 2019. http://www.theses.fr/2019POIT2322.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Des cellules souches neurales (CSN) persistent dans le cerveau adulte et produisent des neurones et des cellules gliales tout au long de la vie de l’individu. Les CSN suscitent un intérêt considérable pour la médecine régénératrice mais leur utilisation thérapeutique potentielle nécessite au préalable d’approfondir les connaissances sur leurs mécanismes de régulation. Les glioblastomes, quant à eux, sont les tumeurs cérébrales les plus fréquentes chez l’adulte et les plus mortelles. Au sein de ces tumeurs, les cellules souches de glioblastomes (CSG) seraient issues de la transformation maligne des CSN et seraient responsable de l’initiation, de la propagation et de la résistance aux traitements des tumeurs. Des analyses transcriptomiques ont suggéré un rôle majeur de la signalisation calcique au sein des CSN et des CSG. Représentant une des voies principales d’entrée du calcium dans la cellule, les canaux calciques SOC (Store-Operated Channels) régulent de nombreux processus cellulaires, y compris la progression tumorale. L’objectif des travaux de cette thèse est d’évaluer le rôle des SOC dans les CSN et les CSG.Nous avons établi par des approches in vitro et in vivo, que les CSN de souris adulte expriment des SOC fonctionnels et que leur inhibition pharmacologique diminue la prolifération et l’autorenouvellement des CSN, propriété indispensable au maintien de la population souche. La deuxième partie de nos travaux montre que les CSG issues de cultures primaires de patients expriment des SOC dont l’inhibition altère la prolifération et l’autorenouvellement de ces cellules.Ainsi, les résultats obtenus lors de cette thèse mettent en évidence un rôle essentiel des SOC dans la régulation de l’autorenouvellement des CSN et des CSG. Les CSG étant responsables de la résistance aux traitements dans le glioblastome, ces travaux ouvrent des perspectives thérapeutiques ciblant les canaux calciques pour contrer cette pathologie au pronostic sombre
Neural stem cells (NSC) persist in the brain of adult mammals and fuel the brain with new neurons and glial cells all lifelong. Recruited by brain injuries, NSC are considered with great interest by regenerative medicine. However, the development of new therapeutic approaches based on the use of NSC requires an in-depth knowledge of the mechanism regulating these cells. Glioblastomas are the most frequent and deadliest form of adult brain tumors. Within the tumor, glioblastoma stem cells (GSC) form a subpopulation of cells that is considered as responsible of tumor initiation, propagation and relapse, as these cells are particularly resistant to anti-tumoral treatments. GSC and NSC share key characteristics and numerous studies suggest that GSC arise from transformed NSC. Transcriptomic analysis of NSC and of GSC revealed an enrichment of calcium signaling transcripts in these two cell populations. Representing a major way of calcium influx into cells, Store-Operated Channels (SOC) are mobilized in response to a wide range of extracellular factors. SOC regulate many cellular processes and are often hijacked in cancer to promote tumor progression.The aim of this thesis is to evaluate potential SOC involvement in NSC and GSC regulation.The first part of this work, relying on in vitro and in vivo studies, demonstrates that NSC from adult mice express functional SOC whose inhibition by pharmacological agents reduces NSC proliferation and self-renewal. In the second part of this thesis, we demonstrate that GSC from primary cultures derived from patients express SOC, as do NSC, and that SOC inhibition reduces GSC ability to proliferate and self-renew.Accordingly, the results of this thesis demonstrate that SOC regulate NSC and GSC self-renewal, a property that is essential to maintain stem cells pool. As GSC are responsible for glioblastomas treatment resistance, our studies point to a potential new therapeutic way, via calcium channels, against this deadly pathology
6

Mancini, Laure. « Spatiotemporal control of Neural Stem Cell decisions in the adult zebrafish telencephalon ». Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS154.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Dans certaines régions du cerveau adulte des vertébrés, les cellules souches neurales (NSC) génèrent des neurones fonctionnels. Les NSC sont principalement en quiescence, mais peuvent passer de l’état quiescent à l’état activé (division). A l’échelle de la population, la proportion des NSCs activées reste constante pendant plusieurs années. Les changements du taux d'activation corrèlent avec le développement de pathologies. Aussi, la distribution spatio-temporelle des événements d'activation peut impacter le maintien homogène des NSCs ainsi que le positionnement des nouveaux neurones. Les mécanismes contrôlant le taux et la distribution spatio-temporelle des événements d'activation ne sont pas bien connus. Nous utilisons le télencéphale du poisson zèbre adulte pour répondre à ces questions. Le télencéphale héberge une grande quantité de NSCs et permet l'enregistrement de leurs comportements, sur plusieurs semaines, grâce à une procédure d'imagerie intra-vitale. Dans cette thèse, nous avons évalué l'existence de mécanismes non-cellulaires autonomes contrôlant l'équilibre activation/quiescence dans l'espace et au cours du temps. Nous avons aussi étudié la pertinence des hétérogénéités moléculaires et géométriques sur le comportement des NSCs. Ces travaux ont mis en évidence l'importance de la géométrie des NSCs lors de l'activation et le rôle des cellules progénitrices, produites par les NSCs, pour exercer une inhibition, via la signalisation Notch, empêchant l'activation des NSCs voisines. Grâce à un modèle analytique, nous montrons que cette inhibition maintient la distribution spatio-temporelle des NSCs et homogénéise spatialement la distribution des nouveaux neurones
In some regions of the adult vertebrate brain, Neural Stem Cells (NSCs) generate fully functional neurons. NSCs are found mostly in quiescence, but can shuttle from quiescence to activation (division). At the population level, the proportion of NSCs dividing at a given time remains constant throughout adulthood and perturbations of NSC activation rate correlate with pathological situations. Also, the spatiotemporal distribution of NSC activation events is expected to impact the homogeneous maintenance of the NSC pools and the locations of neuronal production. What controls the rate and spatiotemporal distribution of NSC activation events remain poorly understood. The adult zebrafish telencephalon is a good model to address these questions. The telencephalon hosts many NSCs and it allow the recording of their behaviors over weeks thanks to an intravital imaging procedure. In this thesis, we have used this model to study the regulation of adult NSCs behaviors from two perspectives. First, we assessed the existence of non-cell-autonomous mechanisms controlling the quiescence-activation balance of the NSC population in space and time. Second, we investigated the relevance of intrinsic heterogeneities on individual NSC behaviors. This work highlighted (i) the importance of NSC geometry for their fate decisions during activation and (ii) the role of their differentiated progeny to locally exert a delayed inhibition, via Notch signaling, to prevent neighboring NSC activation. Using modeling we also show how the lineage-related inhibition maintains NSCs with specific spatiotemporal correlations and can spatially homogenize the distribution of adult-born neurons
7

Jourdon, Alexandre. « Prss56Cre, un nouvel outil pour l'étude de la neurogenèse adulte chez la souris ». Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066082/document.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Le gène Prss56 code pour une sérine protéase impliquée dans le développement de l'oeil humain et certaines de ses pathologies. Le patron d'expression et la fonction de Prss56 dans le reste du système nerveux central sont cependant inconnus. Dans cette étude, j'utilise l'allèle murin Prss56Cre, comportant l'insertion de la recombinase Cre au sein du locus, pour établir le patron d'expression de ce gène et tracer le devenir des cellules exprimant Prss56. Je montre que Prss56 est spécifiquement exprimé dans trois niches neurogéniques : le gyrus dentelé (GD), la zone sous-ventriculaire (SVZ) et la zone ventriculaire de l'hypothalamus (ZVH). Dans le GD embryonnaire, Prss56 est exprimé par une sous-population de glie radiaire. La migration et la différenciation des cellules tracées récapitulent les étapes successives de la neurogenèse du GD et l'établissement d'une sous-population de cellules souches neurales adultes (CSNa). Dans la SVZ, Prss56 est exprimé après la naissance dans une sous-population de CSNa principalement localisée dans la partie médio-ventrale du mur latéral. Cette sous-population génère préférentiellement des cellules granulaires profondes et des cellules périglomérulaires Calbindin-positives du bulbe olfactif. Enfin, Prss56 est exprimé par une sous-population de tanycytes alpha-2, les potentielles cellules souches de la ZVH adulte. Je montre que certains tanycytes tracés déplacent leur soma vers le parenchyme et pourraient être à l'origine d'un nouveau type cellulaire de ce territoire. A travers ces diverses observations, ce travail établit que la lignée Prss56Cre constitue un outil idéal pour l'étude de nombreux aspects de la neurogenèse adulte
The Prss56 gene encodes a serine protease involved in eye pathologies and development in humans. Prss56 expression pattern and function in the rest of the central nervous system were however unknown. Here, I used a knock-in allele in the mouse, Prss56Cre, carrying a Cre recombinase insertion in the locus, to establish the pattern of expression of the gene and to trace the derivatives of Prss56-expressing cells. I found that, in the adult mouse, Prss56 is specifically expressed in three neurogenic niches: the dentate gyrus (DG), the subventricular zone (SVZ) and the hypothalamus ventricular zone (HVZ). In the prospective DG, Prss56 is expressed during embryogenesis in a subpopulation of radial glia. Consistently, the pattern of migration and differentiation of traced cells during development recapitulates the successive steps of DG neurogenesis, including the formation of a subpopulation of adult neural stem cells (aNSC). In the SVZ, Prss56 is expressed after birth in a subpopulation of aNSC mainly localized in the medial-ventral region of the lateral wall. This subpopulation preferentially gives rise to deep granule and calbindin-positive periglomerular cells in the olfactory bulb. Finally, Prss56 is also expressed in a subpopulation of alpha2-tanycytes, potential aNSC of the adult HVZ. My observations reveal that some traced tanycytes translocate their soma into the parenchyma and might give rise to a novel cell type in this territory. In conclusion, this study establishes the Prss56Cre line as a novel and efficient tool to study various aspects of adult neurogenesis in the mouse
8

Daynac, Mathieu. « Caractérisation des facteurs de régulation de la prolifération des cellules souches neurales dans le cerveau adulte ». Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00968161.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Les cellules souches neurales quiescentes (CSN) sont le réservoir de la neurogenèse adulte, permettant de produire des nouveaux neurones tout au long de la vie. Cependant, la neurogenèse décroit au cours du vieillissement, provoquant des déclins cognitifs incurables. Afin de mieux comprendre les mécanismes qui contrôlent la prolifération des CSN, nous avons mis en place une méthode de tri par cytométrie en flux qui permet pour la première fois d'isoler les CSN quiescentes et leurs cellules filles dans la ZSV adulte murine. Cette technique nous a permis de prouver que le blocage de la voie GABAAR in vivo provoque l'entrée en cycle des CSN quiescentes. Ainsi, les signaux GABA produits par les neuroblastes dans la ZSV permettent de maintenir les CSN dans leur état de quiescence. Au cours du vieillissement, nous montrons que la production progressive de TGFβ1 par les cellules endothéliales de la niche allonge la phase G1 des CSN activées, diminuant sensiblement la production de nouveaux neurones, sans toutefois diminuer le stock de CSN. Nous mettons ainsi en évidence deux voies majeures contrôlant la prolifération des CSN in vivo, la voie du GABAAR et la voie TGF-β/Smad-3. En vue d'une application thérapeutique, nous prouvons que leur blocage pharmacologique permet de stimuler efficacement la neurogenèse in vivo.
9

Angonin, Diane. « Lineage-specific manipulation of subventricular zone germinal activity for neonatal cortical repair ». Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1175/document.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
L'hypoxie périnatale entraîne une dégénérescence et un délai de maturation des oligodendrocytes et des neurones corticaux du cortex cerebral. Mon projet de thèse a d'abord consisté à étudier la contribution des cellules souche neurales de la zone sous-ventriculaire dorsale (dSVZ) à la tentative de régénération spontanée observée après la lésion. Dans un second temps, j'ai étudié la capacité de ces cellules souches à être manipulée en utilisant une approche pharmacologique.Mes résultats mettent en évidence une réponse spontanée et dynamique de la dSVZ qui produit des neurones et des oligodendrocytes corticaux en réponse à l'hypoxie. L'administration par voie intranasale d'un inhibiteur de Gsk3b, qui active la voie Wnt/b-caténine, petite molécule identifiée à l'aide d'une étude bio-informatique comme « dorsalisante », juste après la période d'hypoxie, potentialise cette réponse spontanée. En effet, mes résultats montrent que certains neurones corticaux issus de la dSVZ survivent avec le traitement alors qu'aucun ne semblent persister après 1 mois suivant l'hypoxie. De plus, le traitement accélère la maturation des oligodendrocytes corticaux et augmentent leur production et intégration à long terme. Enfin, le traitement a un effet à long terme sur les cellules souches de la dSVZ en augmentant la proportion de ces cellules qui sont actives. Pour conclure, la dSVZ participe à la récupération corticale spontanée qui suit l'hypoxie périnatale et cette réponse peut être potentialisée par l'administration d'une petite molécule identifiée par notre analyse bio-informatique, un inhibiteur de GSK3b
Perinatal hypoxia leads to degeneration and delayed maturation of oligodendrocytes and cortical glutamatergic neurons. My PhD project consists in assessing the contribution of neural stem cells (NSCs) of the dorsal subventricular zone (dSVZ, i.e. the largest germinal zone of the postnatal brain) to the spontaneous regenerative attempt observed following such injury as well as its amenability to pharmacological manipulation.The results I have obtained highlight a dynamic and lineage-specific response of NSCs of the dSVZ to hypoxia that results in de novo oligodendrogenesis and cortical neurogenesis. Newborn cortical neurons express appropriate cortical layer markers, supporting their appropriate specification. A pharmacogenomics analysis allowed us to identify small molecules boosting specificly dSVZ NSCs. Pharmacological activation of Wnt/ß-catenin signalling by intranasal GSK3ß inhibitor administration during the recovery period following hypoxia indeed potentiates dorsal SVZ participation to post-hypoxia repair. Gsk3b inhibitor CHIR99021 seems to promote survival of cortical neurons from the dSVZ produced in response to hypoxia. More interestingly, CHIR99021 promotes oligodendrocyte maturation and long term integration in the cortex as well as a long term increased activity of dSVZ NSCs.Altogether, my results highlighted a dynamic and lineage-specific response of dorsal NSCs cells to hypoxia and identify the early postnatal dorsal SVZ as a malleable source of stem cells for cortical repair following trauma that occur early in life. CHIR99021 (a Gsk3b inhibitor) intranasal administration promotes this cortical cellular repair with a long term activation of dSVZ NSCs which increased their production of oligodendrocytes migrating to the cortex and a short term improvement of their maturation, and might allow the integration of cortical neurons they produce
10

Chaves, Vieira Lins Luanda. « Study and development of electrospun fibers for biotechnology application ». Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI073.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Actuellement, le procédé d’électrofilage également appelé electrospinning est une des voies les plus prometteuses permettant le design et le développement de nanofibres polymères poreuses. En effet, cette technique est simple d’utilisation, unique, modulable, à faible coût et est déjà couramment utilisée dans le milieu industriel. De part ces avantages, l’electrospinning fait l’objet d’un engouement grandissant de la recherche académique et industrielle dans plusieurs domaines d’applications tels que ceux de la filtration, la cosmétique, du textile, de l’ingénierie tissulaire et du domaine médical, notamment pour le relargage de molécules actives. De plus, cette technique est applicable sur de nombreux polymères synthétiques ou naturels et il est possible de contrôler de nombreux paramètres tels que la porosité, le diamètre des fibres ou encore la surface accessible. Un des premiers objectifs de cette thèse a été de développer des scaffolds pour le domaine de l’ingénierie des tissus neuronaux afin d’imiter les propriétés biologiques, physiques et mécaniques de la matrice extracellulaire native. Dans un premier temps, l’effet de l’alignement des fibres d’une matrice fluorée (PVDF) biocompatible a été étudié sur le comportement de cellules souches neurales de singe, en particulier les morphologies, l’adhésion cellulaire ainsi que leurs différentiations en cellules gliales ou neuronales. Dans un second temps, des scaffolds bioabsorbables composés de PLA et de PEG ont été synthétisés afin d’étudier l’influence de l’équilibre hydrophile-hydrophobe sur la culture de cellules souches neurales. Et dans une dernière partie, une véritable étude exploratoire a été réalisée afin de développer des textiles intelligents à base de PBAT contenant des curli, protéine bien connue pour sa capacité à chélater des métaux
Currently, the electrospinning process is also one of the most promising routes for the design and development of polymer fibers. This technique is easy to use, unique, versatile, and low cost, which can be used to create fibers from a variety of starting materials. The structure, chemical and mechanical stability, functionality, and other properties of the fibers can be modified to match end applications. The first goal of this thesis was to develop scaffolds for the field of neural tissue engineering in order to mimic the biological, physical and mechanical properties of the native extracellular matrix. In the first time, the effect of fiber alignment of a biocompatible and fluorinated matrix denoted polyvinylidene fluoride (PVDF) was studied on the behavior of monkey neural stem cells particularly the morphology, cell adhesion and their differentiation in glial or neuronal cells. Secondly, bioabsorbable scaffolds composed of polylactide (PLA) and polyethylene glycol (PEG) polymers were synthesized to investigate the influence of the hydrophilic-hydrophobic balance on the culture of neural stem cells. Finally, an exploratory work was conducted to develop smart textiles based on poly(butylene adipate-co-terephthalate) (PBAT) containing curli as protein, well-known for its ability to chelate metals
11

Rigaud, Stephane Ulysse. « méthodologie de modélisation de la croissance de neurosphères sous microscope à contraste de phase ». Phd thesis, Université Pierre et Marie Curie - Paris VI, 2014. http://tel.archives-ouvertes.fr/tel-01001639.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
L'étude des cellules souches est l'un des champs de recherches les plus importants dans le domaine biomédical. La vision par ordinateur et le traitement d'images ont été fortement mis en avant dans ce domaine pour le développement de solutions automatiques de culture et d'observation de cellules. Ce travail de thèse propose une nouvelle méthodologie pour l'observation et la modélisation de la prolifération de cellule souche neuronale sous microscope à contraste de phase. À chaque observation réalisée par le microscope durant la prolifération, notre système extrait un modèle en trois dimensions de la structure de cellules observées. Cela est réalisé par une suite de processus d'analyse, synthèse et sélection. Premièrement, une analyse de la séquence d'images de contraste de phase permet la segmentation de la neurosphère et des cellules la constituant. À partir de ces informations, combinées avec des connaissances a priori sur les cellules et le protocole de culture, plusieurs modèles 3-D possibles sont générés. Ces modèles sont finalement évalués et sélectionnés par rapport à l¿image d¿observation, grâce à une méthode de recalage 3-D vers 2-D. A travers cette approche, nous présentons un outil automatique de visualisation et d'observation de la prolifération de cellule souche neuronale sous microscope à contraste de phase.
12

Bolz, Marianne. « Régulation du destin cellulaire pendant la neurogénèse postnatale : rôle de l'innervation dopaminergique issue du mésencéphale ». Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4098.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Le cerveau des mammifères abrite deux régions spécifiques où la neurogenèse adulte ne cesse pas après l'embryogenèse, mais persiste dans le cerveau postnatal et adulte. Ces deux régions sont la zone sous-granulaire du gyrus denté de l’hippocampe et la zone sous-ventriculaire (SVZ) des ventricules latéraux.Dans la SVZ, des cellules souches neurales génèrent des neuroblastes qui migrent jusqu’au bulbe olfactif (OB) pour coloniser les couches granulaires et glomérulaires et se différencier en différent types d’interneurones dont une petite fraction sont des interneurones dopaminergiques. La découverte de la neurogenèse postnatale et adultes a changé le point de vue de la plasticité du cerveau remarquable et ouvre de nouvelles perspectives pour la thérapie des maladies neurodégénératives. Etant donné que dans la maladie de Parkinson les symptômes moteurs principaux sont causés par la dénervation dopaminergique du striatum, la compréhension de la génération et de la différenciation des neurones dopaminergiques bulbaires a reçu une attention particulière au vu de leur intérêt potentiel pour la thérapie cellulaire. Dans ce contexte, le neuromédiateur dopamine lui-même a été suggéré d'influencer la neurogenèse olfactive et la spécification des interneurones dopaminergique.Dans ma thèse, j'ai analysé l’influence de l’innervation dopaminergique issue du mésencéphale sur la neurogenèse et le destin cellulaire des précurseurs de la SVZ. J'ai combiné un modèle 6-OHDA de dénervation dopaminergique chez la souris postnatale avec l’électroporation in vivo du ventricule latéral pour marquer spécifiquement les progéniteurs latéraux et dorsaux et suivre leur destin dans le OB
In the postnatal and adult mammalian brain neurogenesis persists in the subgranular zone of the hippocampal dentate gyrus and the subventricular zone (SVZ). In the SVZ slowly dividing stem cells give rise to neuroblasts that migrate to the olfactory bulb (OB) where they reach the granule and glomerular cell layer of the OB and differentiate into different interneuron subtypes including a small fraction of dopaminergic interneurons. The discovery of postnatal and adult neurogenesis has changed the view of the plasticity of the brain remarkably and raised the hope for new therapeutical approaches in the field of neurodegenerative diseases. Since in Parkinson’s disease the main motor symptoms are caused by the dopaminergic denervation of the striatum adjacent to SVZ, the understanding of the generation and differentiation of OB dopaminergic neurons has received special attention. Interestingly, the neurotransmitter dopamine itself has been suggested to influence olfactory bulb neurogenesis via direct innervation of SVZ by midbrain dopaminergic neurons. However, data on this topic have been contradictory. In this study, I investigated how dopaminergic innervation influences SVZ neurogenesis and the fate of SVZ progenitors. I combined a 6-OHDA model of dopaminergic denervation in postnatal mice with in vivo forebrain electroporation to specifically label lateral and dorsal SVZ progenitors and to follow their fate in the olfactory bulb
13

Acuña, Mendoza Soledad. « Sources alternatives de cellules souches pour la bio-ingénierie de la dent ». Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCB101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Les cellules de la crête neurale (CN) sont une population de cellules multipotentes que pendant le développement embryonnaire vont migrer et se différencier vers divers lignages comme mélanocytes, muscle lisse, neurones périphériques et entériques, glie ainsi que tissus mésenchymateux cranio-faciaux y compris ceux de la dent. Dans le contexte de l’étude de modèles pour l’ingénierie tissulaire de la dent, nous avons établi une nouvelle lignée de cellules souches embryonnaires (ES) à partir de blastocystes issus de croisements entre un souris Wnt1-Cre et souris rapportrices fluorescentes, les Rosa26 mT/mT. Dans ce system, les cellules qui acquièrent l’identité CN et expriment le gène Wnt1 vont devenir fluorescentes grâce à l’activation de la protéine Tomato, ce qui permet de suivre 1) leur différenciation in vitro 2) isolement et 3) devenir lorsqu’elles sont utilisées dans de modèles in vivo. En parallèle, nous avons mis au point un nouveau protocole simplifié de différenciation (monocouche et milieu défini), vers un phénotype CN. Finalement nous avons tenté de développer un protocole d’induction d’une compétence odontogénique. Notre étude montre que la lignée Wnt1 Cre/Tomato 1) présentent toutes les caractéristiques d’une lignée ES classique i.e. expression de marqueurs de pluripotence, caryotype normal, capacité à se différencier in vitro et in vivo en tissus dérivés des 3 feuillets embryonnaires 2) acquièrent une identité CN, après induction in vitro avec notre protocole de différenciation. 3) Par l’intermédiaire de réassociations tissulaires in vitro, nous avons montré que ces cellules sont capables d’interagir avec un épithélium oral pour former des tissus squelettiques oro-faciaux. Ce nouvel outil cellulaire devrait aider à la compréhension des signaux impliqués dans le dialogue ectomésenchymateux qui sous-tend la formation des tissus durs de la face mais aussi plus généralement permettre suivir le devenir de cellules CN dans des modèles d’ingénierie tissulaire
Neural crest cells are multipotent progenitor cells that, during embryogenic development, migrate and differentiate into diverse lineages such as melanocytes, smooth muscle, peripheral and enteric neurons, glial cells as well as craniofacial mesenchymatic components, including teeth. In the context of the development of an odontogenic model for tissue engineering, we have generated a new cell line of embryonic stem cells (ES) obtained from blastocysts from crossing Wnt1-CRE mice with fluorescent reporter Rosa26 mT/mT mice. In this Cre/Lox system the cells that have acquired a CN identity and thus expressing Wnt1, will become and remain fluorescent due to the activation of Tomato expression. We have generated a simplified protocol in a monolayer cell culture in defined serum-free medium in order to differentiate the cells into CN cells, named ES-CN cells. Second, we investigated the signals necessary for the odontogenic specification of these ES-CN cells. Our study provides evidence that the Wnt1-CRE/Tomato cell line 1) is a competent ES cell line with the expression of pluripotent markers, a stable karyotype and the ability to differentiate in vitro and in vivo into all the three embryonic germ layers, 2) acquires in vitro a CN identity after induction with our protocol, 3) expresses odontogenic markers in hypoxic culture conditions and 4) is able to interact with an oral epithelium in order to form orofacial skeletal tissues via the tissue reassociation in vitro. This novel cell model should facilitate the understanding of the mechanisms implicated in the ectomesenchymatic interaction, at the base for formation of orofacial skeletal tissues, and will provide the possibility to follow the fate of ES-CN cells tissue engineering models of wounded orofacial structures in general
14

Ferré, François. « Isolation et caractérisation des cellules souches gingivales : étude de leur potentiel multipotent ». Phd thesis, Université René Descartes - Paris V, 2013. http://tel.archives-ouvertes.fr/tel-01017172.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Les capacités de cicatrisation de la gencive en font un modèle de régénération tissulaire naturelle. Ces capacités sont liées en grande partie à l'activité des fibroblastes. Composante cellulaire principale du tissu conjonctif gingival, ils sont au cœur de la régulation des réponses inflammatoires et des processus de cicatrisation. Nous avons supposé que ce tissu pouvait contenir des cellules souches, pouvant expliquer en partie, ces capacités de réparation. Au cours de cette thèse, nous avons pu mettre en évidence la présence de cellules souches mésenchymateuses aux propriétés communes avec les cellules souches adultes dérivées des crêtes neurales. Ces cellules expriment des marqueurs spécifiques des cellules souches et des crêtes neurales. Par ailleurs, elles présentent des capacités d'auto-renouvellement et de multipotence. Elles sont, en effet, capables de se différencier en adipocytes, ostéocytes et chondrocytes. Nous nous sommes plus particulièrement intéressés à la différenciation chondro/endochondrale. La culture des cellules, sous forme de sphères en suspension, a permis de mettre en évidence leurs capacités de différenciation en tissus cartilagineux et articulaires. Elles s'organisent spontanément en plusieurs types cellulaires différents, générant notamment des chondrocytes hypertrophiques et des synoviocytes selon leur localisation au sein des sphères et du milieu de culture utilisé. Le comportement de ces cellules soumises à ces conditions a permis de montrer leurs facultés à reproduire, in vitro, des processus proches de ceux retrouvés au cours du développement. Ces résultats permettent une meilleure compréhension des phénomènes de différenciation des cellules souches adultes, ouvrant ainsi de nouvelles perspectives pour des applications en thérapie cellulaire articulaire et osseuse.
15

Delmouly, Karine. « Cellules Souches Neurales : modélisation et thérapie cellulaire des maladies à prions ». Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20134/document.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Les Encéphalopathies Spongiformes Subaigües Transmissibles (ESST) sont des maladies neurodégénératives caractérisées par une longue période d'incubation asymptomatique à l'issue fatale. Elles sont induites par l'accumulation, au niveau du système nerveux central (SNC), de l'isoforme pathogène de la protéine du prion (PrPSc) entraînant une dégénération des cellules neuronales ainsi qu'une astrogliogénèse. La PrPSc, qui joue un rôle central dans la transmission de la maladie, est produite par conversion de la forme physiologique de la protéine du prion (PrPC). Les mécanismes de conversion de la PrPC et de propagation de la PrPSc sont incertains ainsi que les mécanismes moléculaires à la base des maladies à prions. Dans le cadre de la création et l'amélioration de modèles de culture cellulaire, il a été montré que les Cellules Souches Neurales (CSN) issues du SNC permettent la conversion in vitro de la PrPC en PrPSc. Dans cette étude, nous avons utilisé les CSN pour optimiser et caractériser les conditions d'infection des cellules et émis l'hypothèse que la modification des conditions de culture pouvait moduler la production de PrPSc dans les CSN. Pour cela, nous avons ajouté des facteurs influençant l'identité cellulaire dans nos cultures et avons montré qu'ils étaient capables d'augmenter la propagation du prion. Ces modèles nous permettent l'étude des mécanismes moléculaires pouvant être à l'origine de l'infection. En parallèle, nous avons montré que l'ajout d'HEPES dans nos cultures inhibe la production de PrPSc dans les CSN de façon dose-dépendante. Par ailleurs, à ce jour il n'existe aucune thérapie capable de stopper la progression de la maladie chez l'homme. Ainsi, nous avons utilisé les CSN dans le but d'élaborer une approche thérapeutique permettant de distribuer des anticorps au sein du SNC pour stopper la réplication du prion. Ces cellules permettront, de plus, de réparer les zones endommagées du cerveau combinant ainsi thérapie cellulaire et génique
Transmissible Spongiform Encephalopathies (TSE) are neurodegenerative disorders with long asymptomatic incubation periods and fatal issue. They are induced by accumulation of the pathogen isoform of the prion protein (PrPSc) in the central nervous system (CNS) resulting in neuronal degeneration and astrogliosis. PrPSc, produced by the conversion of the physiological form of the prion protein (PrPC), plays a key role in the disease transmission. The mechanisms underlying the conversion of PrPC and the propagation of PrPSc are uncertain just as the molecular mechanisms giving rise to prion diseases. In the aim of creating or improving cell culture models, it has been shown that CNS Neural Stem Cells (NSC) could support PrPC conversion into PrPSc in vitro. In this project, we used NSC to improve and characterize cellular infection and hypothesized that modification of culture conditions could modulate PrPSc production in NSC. Hence, we used factors known to influence cellular identity in our culture model and showed that higher amount of prions were produced. These models also allow molecular mechanisms studies that could be at infection origin. During the course of this study, we also demonstrated that HEPES added to our culture medium could stop prion propagation in a dose-dependant manner. Moreover, to date no therapy aimed at stopping disease progression has been established in humans. We therefore used NSC with the ultimate goal to elaborate a therapeutic strategy based on the delivery of antibodies into the CNS to block prion replication. These cells will also able to repair damaged brain area thus combining cell and gene therapy
16

Laurenson, Anne-Sophie. « Transformation des cellules souches neurales en cellules souches cancéreuses de glioblastome : rôle de la voie de signalisation Delta-Notch ». Strasbourg, 2009. http://www.theses.fr/2009STRA6151.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Bouissac, Julien. « Rôle de la voie Notch dans la spécification des cellules souches neurales et dans la différenciation des précurseurs neuraux : Utilisation du système modèle des neurosphères ». Université Louis Pasteur (Strasbourg) (1971-2008), 2005. https://publication-theses.unistra.fr/public/theses_doctorat/2005/BOUISSAC_Julien_2005.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Notre équipe s'intéresse au rôle de la voie de signalisation Notch dans le devenir des cellules souches neurales et leur différenciation en neurones et en cellules gliales dans le système modèle des neurosphères. Les neurosphères sont des clones de cellules poussant en suspension qui dérivent de cellules souches neurales. Des neurosphères mutantes pour le gène Dll1 montrent une forte augmentation de la proportion de neurones aux dépens des cellules gliales par rapport aux neurosphère de type sauvage. Le sauvetage du phénotype mutant a permis de montrer que la voie Notch agissait sur le devenir des cellules souches neurales en deux étapes. Dans une première étape, Notch agit sur l'alternative neurone / cellule gliale en réprimant la voie neuronale et en favorisant la voie gliale. Dans une seconde étape, Notch agit sur les progéniteurs en réprimant la différenciation des neurones et oligodendrocytes et en stimulant celle des astrocytes. Parallèlement à ce travail, nous avons testé des petites molécules pour leur capacité à influencer le devenir des cellules souches neurales. L'une de ces molécules, le tCFA15 augmente les neurones aux dépens des cellules gliales selon des modalités proches de celles résultant de l'inactivation de la voie Notch. L'analyse moléculaire a montré que le tCFA15 provoquait une diminution de l'expression de Notch1 et de Hes5. L'étude du mécanisme d'action du tCFA15 a montré qu'il agissait sur la voie STAT3, suggérant un lien entre les voies Notch et STAT3. Des expériences combinant gain et de perte de fonction pour chacune des deux voies, ont permis d'établir une hiérarchie fonctionnelle entre les gènes Notch1 et STAT3 et de déterminer que dans les neurosphères, l'expression de Notch1 était contrôlée par STAT3, comme l'a confirmé la biologie moléculaire. En parallèle de ces travaux, nous avons également testé l'effet neurotrophique d'autres petites molécules non peptidiques dans le système des neurosphères
In our laboratory we are interested in the role of the Notch pathway on cell fate decision of neural stem cells and on their differentiation into neurons and glia in the model system of neurospheres. Neurospheres derive clonally for neural stem cells and proliferate in suspension in the adapted cell culture medium. Neurospheres prepared from Dll1 mutant embryos segregate more neurons at the expense of both oligodendrocytes and astrocytes, compared to the wild-type ones. Our results indicate that the Notch pathway is acting in two steps: (i) in a first step it inhibits the neuronal fate while promoting glial fate, (ii) in a second step Notch promotes the differentiation of astrocytes while inhibiting the differentiation of both neurons and oligodendrocytes. In parallel to this work we have tested the effects of small non peptidic molecules on the cell fate decision of neural stem cells. One of these molecules, referred to as tCFA15, increases the number of neurons at the expense of glial cells, in a manner reminiscent of that resulting from the inactivation of Notch through the Dll1 mutation. Molecular analysis has shown that tCFA15 consistently decreases the expression of Notch1 gene, and subsequently of Hes5, a downstream target gene of Notch activation. In addition, we have shown that tCFA15 causes a diminution of the tyr705 phosphorylation of STAT3, thereby suggesting a link between both Notch and STAT3 signalings. We established a functionnal hierarchy between Notch and STAT3 by experiments combining gain and loss of functions for these two pathways and we found that in the system of neurospheres STAT3 is an upstream regulator of Notch1. These results have been confirmed by molecular analysis. In parallel to this work we have also tested the neurotrophic effect of other non peptidic small molecules in the system of neurospheres
18

Gengatharan, Archana. « La physiologie des cellules souches dans le cerveau adulte ». Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/68740.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Les cellules souches neurales (CSNs) persistent dans la zone sous ventriculaire dans le cerveau adulte. Elles transitent d’un état quiescent à un état prolifératif afin de produire de nouveaux neurones. Les mécanismes régulant cette transition restent cependant méconnus. Les CSNs adultes étant enrichies en gènes calciques, nous avons déterminé si la transition d’un état quiescent vers un état de prolifération était calcium-dépendant. Pour ce faire, nous avons utilisé des mini-endoscopes miniatures pour observer la division cellulaire et sa régulation par la signalisation calcique chez la souris en mouvement libre. Nos données révèlent différents dynamiques calciques et niveaux intracellulaires calciques lors de la division des CSNs. Les expériences pharmacologiques et la technique d’édition génomique CRISPR-Cas9 montrent que les réserves intracellulaires calciques IP3-dépendant et les régulateurs à la protéine G régulent la transition d’un état quiescent vers l’état prolifératif. Nous avons aussi utilisé une approche optogénétique in vivo afin de mimer la dynamique calcique des CSNsquies centes pour maintenir les CSNs dans un état de quiescence et bloquer son activation vers un stade prolifératif. Nos résultats démontrent que les dynamiques calciques et le niveau intracellulaire calcique jouent un rôle important dans l’activation des CSNs. Ensuite, nous avons investigué le microenvironnement des CSNs notamment les vaisseaux sanguins et leur rôle dans la physiologie des CSNs. Les CSNs étendent un long prolongement basal et contactent les vaisseaux sanguins. Le contact direct et la libération de facteurs par les cellules endothéliales influencent le comportement des CSNs. Ici, nous avons utilisé des souris transgéniques pour altérer la communication entre les vaisseaux sanguins et les CSNs. Comme la signalisation Notch joue un rôle clé dans la signalisation des vaisseaux sanguins, nous avons inhibé in vivo la signalisation Notch spécifiquement dans les cellules endothéliales. Nous avons trouvé que l’inhibition de la signalisation Notch dans les cellules endothéliales à des stades précoces (P0) ou à des stades tardifs (P30) augmentait le nombre de CSNs. L’analyse morphologique des vaisseaux sanguins révèle aucune altération quand Notch est inhibé à des stades tardifs (P30). Ces résultats montrent que l’inhibition de la signalisation Notch maintient lesCSNs dans un état de quiescence.
Neural stem cells (NSCs) persist in the subventricular zone of adult brain and transit from the quiescent to the proliferative states to produce new neurons. The mechanisms regulating the transition froma quiescent to a proliferative state remain unclear. Since adult NSCs are enriched in genes associated with Ca2+ signalling pathways, we aimed to determine whether the transition from quiescence to aproliferative state is Ca2+ dependent. Here, we used miniature endoscopes (mini-endoscopes) to monitor NSC division and their regulation by Ca2+ signalling in freely behaving mice. Our data revealeddifferent Ca2+ dynamics and steady-state Ca2+ intracellular levels during NSC division. Pharmacological and in vivo CRISPR-Cas9 gene editing showed that IP3-sensitive intracellular stores and G-proteins regulators regulate the transition from quiescence to proliferation. We further used in vivo optogenetics to mimic Ca2+ dynamics of quiescence state to maintain NSCs in this state and prevent NSCsto transit into proliferative state. Our results demonstrate that Ca2+ dynamics and Ca2+ intracellularlevels play an important role in NSC activation. Next, we investigated NSCs microenvironmentmainly blood vessel and their role in their physiology. The NSCs contact the blood vessels by extending their basal processes. Direct cell-cell contact and the release of factors such as VEGF (vascularendothelial growth factor) by endothelial cells (EC) influence the NSC behaviour. As Notch pathwayis a key player in vasculature signalling, we inhibit in vivo the Notch signalling specifically in EC.We found that inhibition of Notch signalling in EC at early stage (P0) or later stage (P30) increasesNSC number. Morphological analysis of blood vessel reveals no alteration when Notch signalling isinhibited at later stages (P30). These finding showed that inhibition of Notch signalling in EC maintains NSC in quiescence state.
19

Denis, Jérôme Alexandre. « MODELISATION PATHOLOGIQUE DES MALADIES MONOGENIQUES PAR L'UTILISATION DES CELLULES SOUCHES EMBRYONNAIRES HUMAINES. PREUVE DE CONCEPT APPLIQUEE A LA DYSTROPHIE MYOTONIQUE DE TYPE 1 ». Phd thesis, Université d'Evry-Val d'Essonne, 2010. http://tel.archives-ouvertes.fr/tel-00545797.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Parmi leurs applications prometteuses, les lignées de cellules souches embryonnaires humaines (hES) présentent un potentiel inestimable pour améliorer la compréhension des mécanismes moléculaires et cellulaires impliqués dans le développement de maladies monogéniques. Cette application de modélisation pathologique est devenue possible grâce à l'utilisation de lignées hES porteuses de la mutation causale d'une maladie monogénique, obtenues au cours d'un diagnostique pré-implantatoire. L'équipe dans laquelle j'ai effectué mes travaux de thèse a démontré que des lignées hES et leurs progénies, porteuses de la mutation causale de la dystrophie myotonique de type 1 (DM1), exprimaient des défauts moléculaires caractéristiques de la pathologie, permettant ainsi leur analyse de façon plus pertinente par rapport à des cultures primaires dérivées de biopsies de patients et validant l'utilisation de ce modèle cellulaire. Dans ce contexte, dans la première partie de mon travail de thèse, mon objectif a été de mettre au point des conditions de culture permettant la différenciation des cellules hES normales et mutantes vers le lignage neural afin d'obtenir des populations homogènes de progéniteurs neuraux et de cellules souches neurales, puis de les caractériser sur le plan phénotypique et fonctionnel. Par une étude transcriptomique, j'ai ensuite comparé le profil d'expression de ces progéniteurs neuraux à une autre population homogène de précurseurs mésenchymateux. J'ai ainsi identifié des gènes et des voies de signalisation spécifiques à chacune de ces populations. (Article 1). Dans la seconde partie de mes travaux, ma contribution au projet de modélisation pathologique de DM1 a été d'utiliser ces progéniteurs neuraux et les cellules souches neurales mutés pour explorer les mécanismes physiopathologiques responsables des symptômes neurologiques observés dans cette pathologie. J'ai ainsi identifié une anomalie dans une voie de signalisation cellulaire perturbée, la voie la voie mTORC1, basée sur l'observation selon laquelle les cellules NSC porteuses de la mutation DM1 proliféraient plus lentement que les cellules contrôles (Article II). J'ai également étudié l'expression la protéine Tau, connue pour son implication dans la maladie d'Alzheimer, et mis en évidence des modifications suggérant une altération du transport axonal dans les neurones issus des lignées hES mutantes. Ces résultats, associés à ceux réalisés dans l'équipe, permettent d'apporter la preuve de concept de l'intérêt d'un tel modèle cellulaire pour la modélisation pathologique des maladies monogéniques.
20

Rousseau, Laure. « Réponse à l'irradiation in vivo des cellules souches neurales foetales ». Thesis, Paris 5, 2012. http://www.theses.fr/2012PA05T009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
La neurogenèse est un processus très contrôlé qui permet la production de l’ensemble des neurones en un temps limité. Toute perturbation peut alors entraîner un déficit de neurones à l’âge adulte et une instabilité génétique potentiellement oncogénique. Les rayonnements ionisants (RI) induisent, entre autres, des cassures double brin de l’ADN (CDB), un des types de dommages les plus délétères. Les RI sont couramment utilisés lors de diagnostiques médicaux et sont produits lors des catastrophes nucléaires. Le cortex en développement est particulièrement sensible aux RI. Nous avons analysé in vivo les différents aspects de la réponse aux dommages de l’ADN des cellules souches et progéniteurs neuraux (CSPN) de souris. Nous avons montré que les RI induisent des arrêts du cycle cellulaire à la transition G2/M et en intra-S mais pas à la transition G1/S, contrairement à ce qui est observé dans la plupart des lignées cellulaires. Nous avons aussi déterminé l’importance de la recombinaison homologue (RH), la plus fidèle des voies de réparation des CDB, pour la survie des cellules corticales. Ainsi les CSPN irradiés en phase S ou G2 ont besoin de la RH pour survivre à l’irradiation, contrairement à ceux irradiés en phase G1 ou aux neurones post-mitotiques. Nous avons aussi observé la reconstitution du stock de CSPN au détriment de la production de neurones, dans les heures qui suivent l’irradiation. Cette étude a permis une meilleure connaissance des mécanismes de réponse aux dommages à l’ADN des CSPN
Neurogenesis is a highly controlled process that allows the production of all the neurons during a limited time. Any perturbation may induce a loss of neurons and an eventually oncogenic genetic instability. Among various damages, ionizing radiation (IR) induces double strand breaks (DSB), one of the most serious damages. IR is commonly used for medical diagnosis and is produced during nuclear disaster. The developing cortex is particularly sensitive to ionizing radiation. We analyzed in vivo the different mechanisms of the DNA damage response of mouse neural stem cells and progenitors (NSCP). We showed that IR induces cell cycle arrests in G2/M and intra-S but not in G1/S, contrary to what is observed in most of the cell lines. We also determined the importance of homologous recombination (HR), the most accurate of DSB repair pathways for the survival of the cortical cells. So, irradiated in S or G2 phase NSCP need HR to survive, contrary to those irradiated in G1 or to post-mitotic neurons. We also observed the reconstruction of the pool of NSCP to the detriment of the neuron production, in the first hours after irradiation. This study allowed a better understanding of the DNA damage response mechanisms of NSCP
21

Rolland, Maude. « Physiopathologie de l'infection par le cytomégalovirus sur les progéniteurs neuraux humains ». Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30314/document.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
L'infection congénitale par le cytomégalovirus humain (HCMV) est la première cause de séquelles acquises du système nerveux central (CNS). Elle est responsable de surdités neurosensorielles, de paralysies cérébrales ou d'anomalies neuro-développementales graves (0,1% des naissances) telles que des microcéphalies ou des anomalies de gyration. Pour étudier les effets de l'infection par le HCMV sur le développement cérébral, nous utilisons des cellules souches neurales (NSC) humaines dérivées de cellules souches embryonnaires (ES), ainsi que des coupes histologiques de cerveaux fœtaux infectés. Notre travail a porté sur l'analyse des conséquences de l'infection sur un facteur de transcription essentiel lors du développement cérébral, le Peroxisome Proliferator-Activated Receptor gamma (PPARg). Nous avons démontré que l'infection par le HCMV diminuait la neuronogénèse, en association avec une augmentation des niveaux d'expression et d'activité de PPARg. En accord avec ces résultats, nous avons montré que le niveau d'expression de l'acide 9-hydroxyoctadecadienoique (9-HODE), un agoniste connu de PPARg était augmenté dans les NSC infectées. En outre, l'ajout de 9-HODE dans les NSC reproduit l'effet de l'infection sur PPARg conduisant à une augmentation du nombre de cellules positives pour l'antigène viral IE parmi les NSC infectées. De plus, nous avons démontré que : (1) l'activation pharmacologique ou l'expression ectopique de PPARg suffisent pour perturber la neuronogénèse de NSC non infectées ; (2) le traitement de NSC non infectées par le 9-HODE diminue la différenciation des NSC ; (3) le traitement de NSC infectées par du T0070907, un inhibiteur de PPARg restaure un taux normal de différenciation. Le rôle crucial de PPARg dans les pathologies fœtales liées à l'infection a été souligné par la mise en évidence de sa translocation nucléaire au sein des zones germinatives de cerveaux fœtaux infectés congénitalement par le HCMV (N=20), mais pas dans les cas contrôles. Nous avons également identifié un des gènes cibles de PPARg dans le cerveau infecté: LIS1, le gène de la lissencéphalie classique, dont l'expression est également augmentée dans les NSC infectées, de façon dépendante de l'activité de PPARg. Nous avons mis en évidence que l'expression de LIS1 était augmentée de façon massive dans les cerveaux fœtaux infectés congénitalement par le HCMV (N=6) par rapport aux cas contrôles (N=3). Ceci pourrait jouer un rôle central dans la physiopathologie, car il est connu que toute perturbation de l'expression de LIS1 conduit à des anomalies importantes de la migration neurale et au développement d'un phénotype dit "lissencephaly-like". L'ensemble de nos données révèle le rôle clé de PPARg dans la neuronogénèse et la pathophysiologie de l'infection congénitale par le HCMV. Elles ouvrent la voie à une meilleure compréhension des mécanismes régissant les phénotypes pathologiques, notamment concernant le rôle de LIS1 dans les anomalies de la migration neurale
Congenital infection by human cytomegalovirus (HCMV) is a leading cause of permanent sequelae of the central nervous system, including sensorineural deafness, cerebral palsies or devastating neurodevelopmental abnormalities (0.1 % of all births). To gain insight on the impact of HCMV on neuronal development, we used both neural stem cells from human embryonic stem cells (NSC) and brain sections from infected fetuses. We investigated the outcome of infection on Peroxisome Proliferator-Activated Receptor gamma (PPARg, a transcription factor critical in the developing brain. We observed that HCMV infection dramatically impaired the rate of neuronogenesis and strongly increased PPARg levels and activity. Consistent with these findings, levels of 9-hydroxyoctadecadienoic acid (9-HODE), a known PPARg agonist, were significantly increased in infected NSCs. Likewise, exposure of uninfected NSCs to 9-HODE recapitulated the effect of infection on PPARg activity. It also increased the rate of cells expressing the IE antigen in HCMV-infected NSCs. Further, we demonstrated that (1) pharmacological activation of ectopically expressed PPARg was sufficient to induce impaired neuronogenesis of uninfected NSCs, (2) treatment of uninfected NSCs with 9-HODE impaired NSC differentiation and (3) treatment of HCMV infected NSCs with the PPARg inhibitor T0070907 restored a normal rate of differentiation. The role of PPARg in the disease phenotype was strongly supported by the immunodetection of nuclear PPARg in brain germinative zones of congenitally infected fetuses (N=20), but not in control samples. We also identified LIS1 as one of the target genes for PPAR??in the infected brain. Levels of LIS1, the gene of classical lissencephaly, were strongly increased in infected NSC, presumably resulting from increased PPAR? activity. The relevance of this finding was further supported by our demonstration of a massive increase in the immunodetection in LIS1 fetal brains congenitally infected with HCMV (N = 6), relative to control cases (N = 3). Indeed, it is well known that overexpression of LIS1 is responsible for significant abnormalities of neural migration and development of a lissencephaly-like phenotype. Altogether, our findings reveal a key role for PPARg in neurogenesis and in the pathophysiology of HCMV congenital infection. They also pave the way to the identification of PPARg gene targets in the infected brain
22

Nassif, Ali. « Rôle des cellules orales dérivées des crêtes neurales dans la morphogenèse craniofaciale ». Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC0090.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
La morphogenèse crâniofaciale chez les vertébrés est un phénomène important, strictement régulé dans l’espace et dans le temps. Elle est basée sur une série complexe d'événements moléculaires et morphogénétiques qui implique un réseau interactionnel de gènes et de facteurs de transcriptions, tels les homéoboîtes. La crête neurale (CN) est au cœur de ce processus. Cette dernière fournit la principale source du mésenchyme crâniofacial. Cette population de cellules embryonnaires transitoires va subir une transition épithélio-mésenchymateuse et migrer en plusieurs vagues vers des sites prédéfinis puis se différencier en divers types cellulaires. La CN est à l’origine de plusieurs structures : une grande partie du squelette facial dont le maxillaire, la mandibule, l’os alvéolaire qui entoure les dents ainsi qu’une partie des tissus conjonctifs crâniofaciaux. Les cellules issues des CN sont pluripotentes et offrent un espoir en régénération osseuse et cartilagineuse. Ces caractéristiques ont généré un intérêt particulier des chercheurs pour les utiliser en thérapie cellulaire afin de réparer les défauts osseux des mâchoires. Parmi les tissus crâniofaciaux, nous avons choisi d’étudier plus avant la gencive et les cellules gingivales car leur accès est le plus facile et leurs capacités de différenciation autorisent l’observation d’autres phénotypes cellulaires.La gencive est un tissu kératinisé qui entoure les dents et recouvre l’os alvéolaire. Ce tissu est composé principalement de fibroblastes gingivaux (GFs). Parmi ces cellules, se trouvent des cellules souches gingivales (GSCs) caractérisées par leur auto-renouvellement et leur multipotence. Les GSCs sont facilement recueillies chez les patients adultes, elles montrent une plasticité importante et une activité immunomodulatrice qui en font un outil de choix pour la thérapie cellulaire. De plus, la biopsie se fait sans douleur et n’entraîne ni cicatrice ni problème fonctionnel.La première partie de mon travail de doctorat avait pour objectif d’évaluer le rôle de Msx1 dans la morphogenèse crâniofaciale et par la suite d’analyser l’os alvéolaire après une extraction dentaire afin d’analyser les mécanismes associés à ce processus et l’impact de Msx1 sur la cicatrisation osseuse.La deuxième partie de mon travail est axé sur la gencive et avait pour objectif de mettre en évidence l’origine embryologique des cellules souches orales, dont les GSCs, et de déterminer si elles proviennent des crêtes neurales, du mésoderme ou d’une mosaïque des deux. Enfin, pour appliquer nos connaissances sur l’origine embryologique des cellules souches gingivales, nous avons étudié le profil immunitaire des cellules dérivées des CN. Pour cela, nous avons déterminé la capacité phagocytaire des cellules souches gingivales murines dérivées des CN et comparé à des cellules de CN d’autres espèces vertébrées
Craniofacial morphogenesis in vertebrates is an important phenomenon, strictly regulated in space and in time. It is based on a complex series of molecular and morphogenetic events involving an interactional network of genes and transcription factors, such as the homeobox. Neural crest (NC) is at the heart of this process. The latter provides the main source of craniofacial mesenchyme. This transient population of embryonic cells will undergo epithelial-mesenchymal transition and migrate in waves to predefined sites and to differentiate into various cell types. NC is the source of several structures: a large part of the facial skeleton including the maxillary, mandibular alveolar bone around the teeth as well as connective tissue in craniofacial portion. Cells from NC are pluripotent and offer hope for bone and cartilage regeneration. These characteristics have generated particular interest to researchers for use in cell therapy to repair bone defects of the jaw. Among the craniofacial tissues, we decided to further investigate the gums and gingival cells because their access is easier and differentiation capabilities allow observation of other cellular phenotypes.The gum is a keratinized tissue around the teeth and covers the alveolar bone. This tissue is composed mainly of populations of gingival fibroblasts (GFs). Among these populations, there are gingival stem cells (GSCs) characterized by their self-renewal and pluripotency. The GSCs are easily collected in adult patients, they show significant plasticity and immunomodulatory activity that make it a tool of choice for cell therapy. In addition, the biopsy is painless and involves neither scar nor functional problem.The first part of my PhD work was to evaluate the Msx1 role in craniofacial morphogenesis and subsequently analyse the alveolar bone after tooth extraction to analyse the mechanisms involved in this process and the impact of Msx1 on bone healing.The second part of my work focuses on the gingiva and was intended to highlight the embryological origin of oral stem cells, including GSCs and determine if they come from the neural crest, mesodermal or mosaic two. Finally, to apply our knowledge of the embryological origin of gum stem cells, we studied the immune profile derived NC cells. For this, we determined the phagocytic capacity gingival murine stem cells derived from CN and compared to cells of CN other vertebrate species
23

Than, Trong Emmanuel. « Le rôle de la signalisation Notch3 dans le maintien des cellules souches neurales du télencéphale adulte Neural stem cell quiescence and stemness are molecularly distinct outputs of the Notch3 signaling cascade in the vertebrate adult brain her4-expressing neural stem cells are maintained through population asymmetry and embedded into a hierarchy of progenitors responsible for their life-long expansion Radial Glia and Neural Progenitors in the Adult Zebrafish Central Nervous System ». Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS541.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Un certain nombre de régions du cerveau des vertébrés, y compris chez l’homme, continuent d’être le siège de l’ajout de nouveaux neurones à l’âge adulte. Ces nouveaux neurones sont produits à partir de cellules spécialisées, appelées cellules souches neurales (CSN). Celles-ci sont capables de s’auto-renouveler et sont principalement trouvées dans un état d’arrêt transitoire du cycle cellulaire que l’on appelle quiescence. A l’heure actuelle, les mécanismes cellulaires et moléculaires permettant aux CSN de trouver un équilibre entre maintien et différentiation, ainsi que les règles générales gouvernant l’évolution de leur population, ne sont que partiellement compris. A l’échelle moléculaire, plusieurs facteurs et voies de signalisation apparaissent déterminants pour l’homéostasie des CSN. Notamment, la voie de signalisation du récepteur Notch s’avère essentielle pour maintenir à la fois l’état de quiescence et le caractère souche des CSN. Il demeure néanmoins inconnu si la signalisation Notch affecte ces deux propriétés de manière indépendante ou non. A l’échelle cellulaire, la plupart des modèles actuels suggèrent que les CSN se divisent rarement et principalement de manière asymétrique. Cette dernière propriété permettrait aux CSN de se perpétuer tout en donnant naissance à des cellules filles déterminées à se différencier en neurones. Le pallium du poisson-zèbre abrite une population particulièrement importante de CSN, que l’on appelle glies radiaires (GR), et qui possèdent les mêmes caractéristiques fondamentales que leurs homologues chez les mammifères. Notre laboratoire avait précédemment démontré que le récepteur Notch3 était nécessaire au maintien de la quiescence des GR. Le travail présenté dans ce manuscrit se décompose en deux études complémentaires dont les objectifs respectifs étaient: (1) d’améliorer notre compréhension du rôle de la voie de signalisation Notch3 dans l’homéostasie des GR et (2) d’étudier les schémas de divisions adoptés par les GR afin de maintenir leur nombre sur une longue durée. Dans la première étude, nous démontrons que le rôle de la signalisation Notch3 s’étend au-delà du simple contrôle de la quiescence des GR en contribuant également au maintien de leur caractère souche par l’intermédiaire de son gène cible hey1. Un point important de cette découverte est que l’action du facteur Hey1 sur le caractère souche des GR apparaît indépendante du rôle de Notch3 dans le maintien de leur quiescence. Dans la seconde étude, nous avons réalisé une analyse clonale du devenir des GR exprimant le gène her4.1. Ceci nous a permis de mettre en évidence que leurs choix entre différentiation, amplification et auto-renouvellement apparaissent stochastiques, mais équilibrés, ce qui leur permet de maintenir leur population dans le temps. De façon très intéressante, nous avons aussi observé que le nombre total de GR du pallium augmente au cours de la vie, ce qui, au regard du comportement homéostatique de la population de GR exprimant her4.1, nous amène à proposer que la zone neurogénique du pallium est organisée selon une hiérarchie dans laquelle une population inconnue de progéniteurs produit continuellement de nouvelles GR, qui ensuite se maintiennent grâce à un équilibre probabiliste entre leurs différents lignages
New neurons continue to be added into discrete brain regions of most adult vertebrate species, including humans. Adult born neurons arise from precursor cells, called neural stem cells (NSCs), endowed with self-renewal potential and mostly found in a state of reversible cell cycle arrest, named quiescence. Currently, the molecular, cellular and population rules allowing NSC to balance maintenance and differentiation remain incompletely understood. At the single cell level, several factors and signalling pathways were demonstrated to be essential for NSC homeostasis. Among them, the Notch signalling pathway is critically involved in the control of NSC quiescence and stemness. However, whether these two properties represent molecularly distinct or overlapping outputs of the Notch signalling pathway remains unknown. At the cellular level, current models state that NSCs divide rarely and mostly asymmetrically, allowing both self-renewal and the generation of a more committed progeny that ultimately exits the cell cycle and fulfils neuronal differentiation. The adult zebrafish pallium harbours NSCs, called radial glia (RG), which share with their mammalian counterparts the same basic properties. Previously, our laboratory demonstrated that Notch3 was necessary to maintain RG quiescence. Here, in two different and complementary works, we took advantage of the widespread neurogenic ventricular zone (VZ) of the adult zebrafish pallium to (1) explore further the role of Notch3 signalling in RG homeostasis and (2) investigate the division pattern and dynamics allowing the RG population to be maintained on the long run. In the first study, we demonstrate that the role of Notch3 signalling extends beyond the simple maintenance of RG quiescence and that Notch3 also contributes to RG stemness. By overlapping the transcriptomic profiles of both notch3 mutant RG and adult pallial VZ progenitors, we identified different sets of Notch3 target genes potentially responsible for its pleitropic effect in RG. Notably, we show that the Notch3 signalling contribution to RG stemness critically relies on the transcriptional activation of its canonical target gene hey1 and this, independently of Notch3 action on RG quiescence. In the second study, we performed a quantitative analysis of the fates of individual her4.1(Hes5)-expressing RG. We demonstrate that these cells adopt balanced stochastic fates, which allows their population to reach homeostasis. We also report that the overall RG population of the zebrafish pallium continues to grow during adulthood and that this expansion is very likely driven by a yet undefined upstream population of progenitors. As a consequence, we propose that the adult zebrafish is organised into a hierarchy of progenitors dominated by an unknown population that fuels the ongoing production of an intrinsically homeostatic population of RG which, itself, follows neutral drift dynamics
24

Morizur, Lise. « Régulation de la quiescence et de la prolifération des cellules souches neurales dans le cerveau adulte ». Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS549/document.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
La production de nouveaux neurones, un processus appelé neurogenèse, persiste à l’âge adulte et est assurée par les cellules souches neurales (CSN) au sein de niches spécialisées telle que la zone sous-ventriculaire (ZSV). Cependant, la neurogenèse adulte diminue à la suite de diverses atteintes cérébrales et au cours du vieillissement, provoquant des déclins cognitifs pour l’heure irréversibles. A l’aide d’une méthode de cytométrie en flux développée au laboratoire, nous avons montré que le déclin progressif de la neurogenèse de la ZSV au cours du vieillissement est lié, non pas à une diminution du nombre des CSN, mais à une forte réduction de leur prolifération due, notamment, à l’allongement spécifique de la phase G1 médiée par l’augmentation du TGFβ1. Par ailleurs, nous avons isolé les CSN quiescentes et les CSN en prolifération afin de caractériser leurs propriétés cellulaires et établir leur profil d'expression génique. L’analyse comparative de ces deux populations de CSN a révélé plusieurs niveaux de régulation de la balance entre quiescence et prolifération, telles que l’intégration de signaux en provenance du microenvironnement et l’existence de programmes de transcription distincts. L’ensemble de ces résultats ouvrent des perspectives pour l’utilisation des CSN quiescentes endogènes comme cibles thérapeutiques au cours du vieillissement ou pour régénérer les tissus cérébraux lésés
The production of new neurons, a process called neurogenesis, persists during adulthood and is ensured by neural stem cells (NSCs) that are located in specialized niches in the mammalian brain such as the subventricular zone (SVZ). However, adult neurogenesis declines dramatically following brain damage and during aging leading to irreversible cognitive deficits. Using a flow cytometry-based cell sorting strategy, we show that the progressive age-related decline in SVZ neurogenesis is not caused by a loss of NSCs but rather by a proliferation deficit of NSCs with the lengthening of their G1 phase due to increased levels of TGFβ1. We then sorted quiescent and proliferative NSCs to characterize their functional properties and define their gene expression profiles. Comparative analysis of the two populations of NSCs reveals that the balance between quiescence and proliferation is regulated at multiple levels with the integration of external signals from the microenvironment and distinct transcriptional programs. Taken together, our results open new vistas into the potential use of endogenous quiescent NSCs as therapeutic targets to increase neurogenesis in the aged brain and to participate to the regeneration of damaged brain tissue
25

Vargas, Hurtado Diana. « Étude des mécanismes d’assemblage du fuseau et de la fidélité mitotique dans les cellules souches neuronales du cerveau en développement ». Electronic Thesis or Diss., Paris Sciences et Lettres (ComUE), 2019. https://theses.hal.science/tel-03054330.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Le cerveau de mammifère est particulièrement vulnérable au dysfonctionnement des centrosomes et du fuseau mitotique. En effet, la mutation de gènes codant pour des protéines régulant la fonction de ces structures sont la cause génétique principale de la Microcéphalie Humaine Primaire Récessive (MCPH), une pathologie du neuro-développement où la taille du cerveau mais pas celle du corps est affectée de manière drastique. La perte des progéniteurs neuronaux apicaux, aussi appelés cellules de la glie radiaire, durant le processus de neurogenèse est à l’origine de la microcéphalie. L’équipe a précédemment montré que la présence de centrosomes surnuméraires conduisait à des erreurs mitotiques et à la perte par apoptose des cellules progénitrices. Elle a aussi mis en évidence que les erreurs mitotiques et la mort cellulaire qui en résulte étaient plus fréquentes aux stades précoces que tardifs du neuro-développement. Les mécanismes sous-jacents à cette vulnérabilité précoce des progéniteurs neuronaux mitotiques restent inconnus. Afin d’identifier ces mécanismes, j’ai caractérisé pendant ma thèse l’assemblage du fuseau mitotique durant le développement normal du cerveau de souris. De manière surprenante, j’ai observé des changements de la morphologie des fuseaux entre les stades précoces et tardifs de la neurogenèse. Aux stades précoces de la neurogenèse, les fuseaux interagissent avec le cortex de la cellule par l’intermédiaire des microtubules (MTs) astraux, au dépend de la densité des microtubules du fuseau. Aux stades plus tardifs de la neurogenèse, la densité de la population des MTs astraux décline, au profit de la densité des MTs du fuseau. De plus, j’ai identifié la protéine TPX2, un facteur impliqué dans la nucléation, la stabilisation et la fasciculation des MTs, comme un déterminant clé de la robustesse du fuseau et de la fidélité mitotique aux stades tardifs de la neurogenèse. En effet, en diminuant expérimentalement l’interaction de TPX2 avec les MTs du fuseau mitotique aux stades tardifs de la neurogenèse, j’ai montré que cette interaction était suffisante pour convertir la morphologie du « fuseau tardif » en « fuseau précoce » et pour augmenter la fréquence des erreurs d’alignement et de ségrégation des chromosomes. Ainsi, mes données ont révélé des modifications inattendues des mécanismes utilisés par les progéniteurs neuronaux pour assembler un fuseau mitotique bipolaire durant la neurogenèse, avec un impact révélé sur leur capacité à ségréger correctement les chromosomes. Mes travaux ont ainsi permis de proposer que durant la neurogenèse chez les mammifères, toutes les cellules progénitrices n’étaient pas équivalentes dans leur capacité à ségréger les chromosomes. Ils ont aussi apporté de nouveaux éléments mécanistiques concernant la vulnérabilité particulière du cerveau embryonnaire aux mutations des composants du centrosome et/ou du fuseau mitotique dans le contexte de la microcéphalie
The mammalian brain holds a peculiar vulnerability to centrosome or mitotic spindle dysfunction. Mutations in centrosome or spindle encoding genes are the leading cause of Human Primary Recessive Microcephaly (MCPH), a neurodevelopment growth disorder were the brain is drastically reduced in size yet body size is not affected. Loss of neural progenitor cells or apical Radial Glial cells (aRGCs) during brain development causes microcephaly. The lab has previously shown that the presence of supernumerary centrosomes leads to mitotic errors and consequent apoptosis of aRGCs. They also noticed a higher susceptibility to mitotic errors and cell death at early stages of neurodevelopment as compared to late stages. The underlying mechanisms that render aRGCs vulnerable are still unknown. To identify the mechanisms behind aRGC vulnerability, I characterized during my PhD mitotic spindle assembly during normal mouse brain development. Surprisingly, I found that aRGC spindle morphology changes between early and late stages of neurogenesis. At early stages, spindles are prone to interact with the cell cortex through astral MTs which comes at the expense of MT density within the spindle. In contrast, at late stages, spindles decrease astral MT numbers while reinforcing MT inner cell density. Furthermore, I identified the microtubule stabilizing and bundling factor TPX2 as one key determinant of spindle robustness and mitotic accuracy after drug treatments in aRGCs from late neurogenic stages. Indeed, by decreasing TPX2 loading on spindle MTs, which was sufficient to switch spindle morphology to an early-like architecture, I observed an increased frequency of chromosome alignment and segregation errors. The data obtained reveal unexpected modifications in the pathways used by aRGCs to build a bipolar spindle during the course of neurogenesis, which are translated into different chromosome segregation capacity. I thus propose that during mammalian neurogenesis not all aRGCs are equally competent to segregate chromosomes correctly. My work therefore provides mechanistic insights by which mutations in genes encoding centrosome or spindle components might affect specifically brain size during embryonic development
26

Zangiacomi, Vincent. « Exploration du potentiel neural des cellules du sang de cordon ombilical humain ». Besançon, 2008. http://www.theses.fr/2008BESA2060.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
La recherche de nouvelles sources de cellules souches a permis de mettre en exergue la capacité du sang de cordon ombilical humain à se différencier in vitro en cellules autres qu'hématopoïétiques, et en particulier en cellules neuronales. Cependant, aujourd'hui l'origine de ces cellules est encore floue. Grâce à des différents tris cellulaires dirigés contre des marqueurs de souchitude, nous avons mis en évidence que le compartiment cellulaire à l'origine des cellules neuronales générées in vitro était composé de cellules possédant un phénotype souche CD133+ 1 CD34-. De plus, l'initiation de la différenciation neuronale nécessite un contact cellulaire étroit avec des cellules facilitatrices CDI33-. Ainsi, le tri via le CD133 permet un enrichissement en cellules neurogéniques à partir du sang de cordon ombilical humain. Dans un deuxième temps, nous avons étudié la fonctionnalité du neurotransmetteur acide gamma- aminobutyrique (GABA) sur les cellules du sang de cordon ombilical humain. En plus d'exprimer différentes sous-unités des récepteurs au GABA, les cellules du sang placentaire sont capables de migrer activement en réponse à un gradient de GABA. La fraction cellulaire qui a migré est enrichie en cellules neurogéniques et pro géniteurs hématopoïétiques CD 133+. Cette migration préférentielle est corrélée à une expression du récepteur au GABA de type B. Nos résultats ont donc permis d'obtenir de nouvelles données phénotypiques et fonctionnelles sur les cellules souches du sang de cordon ombilical humain. Ces données montrent l'intérêt de leur utilisation dans la mise en place de protocoles de thérapie cellulaire notamment pour le traitement de maladies neurodégénératives
During the last decade treatment of malignancies bas involved stem cell transplantation premarity using a limited supply of bone marrow donors. The use of other sources of stem cells such as cord blood has indirectly led to the discovery that certain stem cells within this population can give rise to other non-haematopoietic lineages such as neuronal cells. The progenitors that give rise to these cells have not been fully characterized. In this study, we observed that the neuronal lineage is derived from CD133+ / CD34- cells fraction and furthermore, close contact is also needed with facilitating cells for the differentiation to proceed. We also investigated the function of the neurotransmitter gamma amino-butyric acid (GABA) no cord blood cells. The GABA receptors are widely expressed within cord blood cells and cells migrate along a GABA gradient. The migration capacity can also be used to enrich for both haematopoietic and neurogenic cells. In conclusion, our results shed light on phenotypic and functional properties of cord blood stem cells and may increase their utilisation in cellular therapy protocol
27

Liu, Jia Wei. « Inducteurs de différenciation des cellules souches neurales : Etudes phytochimiques et pharmacologiques ». Strasbourg 1, 2007. http://www.theses.fr/2007STR13139.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Les cellules souches neurales (CSNs) pourraient être d’excellents outils pour le traitement des maladies dégénératives du système nerveux central (SNC). Leur aptitude à induire la neurogenèse endogène est très utile pour la réparation du système nerveux. Nous nous intéressons plus particulièrement à la recherche de molécules de petit poids moléculaire contenues dans des plantes médicinales et qui sont capables d’induire la différenciation des CSNs en neurones ou en autres types de cellules nerveuses. En combinant un criblage chimique avec un bioessai basé sur la différenciation des CSNs, nous avons isolé à partir de la racine de Panax notoginseng F. H. CHEN et identifié trois glycosides panaxadiol qui induisent la différenciation de CSNs en neurones. Parmi eux, le ginsénoside Rg5 est le plus actif. Il inhibe la prolifération et la différenciation astrocytaire, et favorise la différenciation en neurones. L’incubation de Rg5 avec des CSNs déclenche l’afflux du calcium et augmente l’expression des facteurs de transcription proneuraux bHLH Mash1 et diminue les facteurs de transcription de type répresseur Hes5. De plus, Rg5 diminue le niveau de la phosphorylation de STAT3(Signal Transducer and Activator of Transcription 3) par l’intermédiaire d’une augmentation de SOCS3. En outre, les effets de la différenciation neuronale de Rg5 peuvent être inhibés par la nifedipine, une antagoniste des canaux calciques et par CNTF (Ciliary Neurotrophic Factor), un activateur de STAT3. L’étude préliminaire sur la relation entre la structure et l’activité suggère que la double liaison en C-20(21), C-20(22) et un carbohydrate en C-3 sont importants et bénéfiques pour l’activité de neurogenèse des glycosides de type panaxadiols. D’autre part, les extraits cytotoxiques ont été isolés à l’aide d’un bioessai utilisant des neuroblastomes B104. Sept molécules inhibant la prolifération des neuroblastomes, ont été identifiées dans l’Elephantopus mollis Kunth, une plante d’origine camerounaise. Parmi elles, deux molécules sont nouvelles dont une est un triterpène et une autre est lactone sesquiterpénique
The neural stem cells (NSCs) could be a promising tool for the treatment of many neurological disorders in the central nervous system (CNS). One could use neural stem cell transplantation or, even better, induce or enhance the neurogenic potentials of NSCs in situ. We are interested particularly in screening medicinal plants, to obtain small molecules that are capable to induce the neuronal differentiation of NSCs. Bioassay-guided fractionation, combined with screening based on NSCs differentiation assay, has been used to search for active molecules from Panax notoginseng F. H. CHEN. Three panaxadiol glycosides were identified as potential neurogenic molecules. Among them, Rg5 is the most potent. Rg5 inhibits the proliferation and astrocyte differentiation of NSCs, and promotes the neuronal differentiation of NSCs. Exposure of Rg5 to NSCs trigers an increase in influx of calcium, upregulates expression of proneural bHLH transcription factor Mash1 and downregulates the repressive-type transcription factor HES5. Moreover, application of Rg5 attenuates STAT3 phosphorylation level via an increase of SOCS3. In addition, the neurogenic effects of Rg5 can be reversed by nifedipine, a Ca2+ channel antagonist and by CNTF, a STAT3 activator. The preliminary study on the structure-activity relation suggests that the double bond at C-20(21) or C-20(22), and a carbohydrate at C-3 are important and beneficial factors for the neuronal differentiation of panaxadiol glycosides. In addition, the cytotoxic extracts have been further isolated using a antiproliferative assay-guided fractionation. Seven molecules against the proliferation of neuroblastoma B104 were identified from Elephantopus mollis Kunth. Among them, two are new molecules, one is triterpene and another is sesquiterpene lacton
28

Dromard, Cécile. « Caractérisation des cellules souches neurales des moelles épinières murine et humaine ». Montpellier 2, 2006. http://www.theses.fr/2006MON20031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Aucun marqueur spécifique ne permet à l’heure actuelle d’identifier les cellules souches neurales (CSN). Seul le modèle des neurosphères (NS, agrégats cellulaires autorenouvelables et multipotents) permet de les mettre en évidence in vitro. Cependant, la composition hétérogène de ce modèle est mal établie. Nous avons montré (1) que les NS médullaires sont composées de cellules au phénotype singulier OPC/CGR (Oligodendrocyte Precursor Cell/Cellules Gliales Radiales) ; (2) que les cellules « OPC-like » NG2 + des NS ont des propriétés de CSN ; mais (3) que les CSN médullaires sont initialement NG2- in vivo, et acquièrent l’expression de NG2 lors de la mise en culture, suggérant une dérégulation du phénotype des CSN par les conditions de culture. (4) Cette dérégulation a été confirmée à l’aide de NS dérivées du système nerveux périphérique présentant des potentialités de différenciation similaires à celles de la moelle épinière. D’autre part, la découverte récente de CSN dans le cerveau adulte humain ouvre des perspectives nouvelles d’autoréparation des lésions par stimulation de ces cellules endogènes, et a initié le deuxième objectif de cette thèse : la recherche de CSN dans la moelle épinière adulte humaine. Nous avons détecté des cellules immatures dans la zone sous épendymaire, et obtenu in vitro des NS prolifératives capables de générer de nouveaux neurones et de la glie. Ces résultats suggèrent pour la première fois l’existence de progéniteurs neuraux dans la moelle épinière adulte humaine
At present, no specific marker allows the identification of neural stem cells (NSC). Solely in vitro, the neurosphere model (NS, self-renewable, multipotent cellular aggregates), point them out. However, the heterogeneous composition of this model is ill-defined. We demonstrated (1) that medullar NS are composed of cells with a singular OPC/RGC phenotype (Oligodendrocyte Precursor Cell/Radial Glial Cell); (2) that “OPC-like” NG2+ NS cells are endowed with NSC properties; but (3) that, in vivo, medullar NSC are initially NG2- and acquire NG2 expression when cultured, suggesting a deregulation of the NSC phenotype in vitro. (4) This deregulation is confirmed using NS derived from the peripheral nervous system, that display similar differentiation features as spinal cord NS. Besides, the recent discovery of NSC in the adult human brain opens new ways for self-repairing treatments by stimulation of these endogeneous cells, and initiated the second objective of this work: the search for NSC in the adult human spinal cord. Immature cells were detected in the sub ependymal area, and proliferative NS could were expanded, and generated new neurons and glia. These results suggest for the first time the existence of neural progenitors in the adult human spinal cord
29

Marcy, Guillaume. « Etude des spécificités transcriptionnelles et de la compétence des progéniteurs neuraux postnataux du cerveau antérieur chez la souris ». Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEP070/document.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Lors du développement, la coordination d’évènements moléculaires et cellulaires mène à la production du cortex qui orchestre les fonctions sensori-motrices et cognitives. Son développement s’effectue par étapes : les cellules gliales radiaires (RGs) – les cellules souches neurales (NSCs) du cerveau en développement – et les cellules progénitrices de la zone ventriculaire (VZ) et de la zone sous ventriculaire (SVZ) génèrent séquentiellement des vagues distinctes de nouveaux neurones qui formeront les différentes couches corticales. Autour de la naissance, les RGs changent de devenir et produisent des cellules gliales. Cependant, une fraction persiste tout au long de la vie dans la SVZ qui borde le ventricule, perdant au passage leur morphologie radiale. Ces NSCs produisent ensuite les différents sous types d’interneurones du bulbe olfactif ainsi que des cellules gliales en fonction de leur origine spatiale dans la SVZ. Ces observations soulèvent d’importantes questions non résolues sur 1) le codage transcriptionnel régulant la régionalisation de la SVZ, 2) le potentiel des NSCs postnatales dans la réparation cérébrale, et 3) le lignage et les spécificités transcriptionnelles entre les NSCs et leur descendants. Mon travail de doctorat repose sur une étude transcriptionnelle des domaines de la SVZ postnatale. Celle-ci soulignait le fort degré d’hétérogénéité des NSCs et progéniteurs et identifiait des régulateurs transcriptionnels clés soutenant la régionalisation. J’ai développé des approches bio-informatiques pour explorer ces données et connecter l’expression de facteurs de transcription (TFs) avec la genèse régionale de lignages neuraux distincts. J’ai ensuite développé un modèle d’ablation ciblée pour étudier le potentiel régénératif des progéniteurs postnataux dans divers contextes. Finalement, j’ai participé au développement d’une procédure pour explorer et comparer des progéniteurs pré et postnataux à l’échelle de la cellule unique. Objectif 1 : Des expériences de transcriptomique et de cartographie ont été réalisées pour étudier la relation entre l’expression régionale de TFs par les NSCs et l’acquisition de leur devenir. Nos résultats suggèrent un engagement précoce des NSCs à produire des types cellulaires définis selon leur localisation spatiale dans la SVZ et identifient HOPX comme un marqueur d’une sous population biaisé à générer des astrocytes. Objectif 2 : J’ai mis au point un modèle de lésion corticale qui permet l’ablation ciblée de neurones de couches corticales définies pour étudier la capacité régénérative et la spécification appropriée des progéniteurs postnataux. Une analyse quantitative des régions adjacentes, incluant la région dorsale de la SVZ, a révélé une réponse transitoire de progéniteurs définis. Objectif 3 : Nous avons développé la lignée de souris transgénique Neurog2CreERT2Ai14, qui permet le marquage de cohortes de progéniteurs glutamatergiques et de leurs descendants. Nous avons montré qu’une large fraction de ces progéniteurs persiste dans le cerveau postnatal après la fermeture de neurogénèse corticale. Ils ne s’accumulent pas pendant le développement embryonnaire mais sont produits par des RGs qui persistent après la naissance dans la SVZ et qui continuent de générer des neurones corticaux, bien que l’efficacité soit faible. Le séquençage d’ARN sur cellule unique a révélé une dérégulation transcriptionnelle qui corrèle avec le déclin progressif observé in vivo de la neurogénèse corticale. Ensemble, ces résultats soulignent le potentiel des études transcriptomiques à résoudre mais aussi à soulever des questions fondamentales comme les changements trancriptionnels intervenant dans une population de progéniteurs au cours du temps et participant aux changements de leur destinée. Cette connaissance sera la clé du développement d’approches novatrices pour recruter et promouvoir la génération de types cellulaires spécifiques, incluant les sous-types neuronaux dans un contexte pathologique
During development, a remarkable coordination of molecular and cellular events leads to the generation of the cortex, which orchestrates most sensorimotor and cognitive functions. Cortex development occurs in a stepwise manner: radial glia cells (RGs) - the neural stem cells (NSCs) of the developing brain - and progenitor cells from the ventricular zone (VZ) and the subventricular zone (SVZ) sequentially give rise to distinct waves of nascent neurons that form cortical layers in an inside-out manner. Around birth, RGs switch fate to produce glial cells. A fraction of neurogenic RGs that lose their radial morphology however persists throughout postnatal life in the subventricular zone that lines the lateral ventricles. These NSCs give rise to different subtypes of olfactory bulb interneurons and glial cells, according to their spatial origin and location within the postnatal SVZ. These observations raise important unresolved questions on 1) the transcriptional coding of postnatal SVZ regionalization, 2) the potential of postnatal NSCs for cellular regeneration and forebrain repair, and 3) the lineage relationship and transcriptional specificities of postnatal NSCs and of their progenies. My PhD work built upon a previously published comparative transcriptional study of defined microdomains of the postnatal SVZ. This study highlighted a high degree of transcriptional heterogeneity within NSCs and progenitors and revealed transcriptional regulators as major hallmarks sustaining postnatal SVZ regionalization. I developed bioinformatics approaches to explore these datasets further and relate expression of defined transcription factors (TFs) to the regional generation of distinct neural lineages. I then developed a model of targeted ablation that can be used to investigate the regenerative potential of postnatal progenitors in various contexts. Finally, I participated to the development of a pipeline for exploring and comparing select populations of pre- and postnatal progenitors at the single cell level. Objective 1: Transcriptomic as well as fate mapping were used to investigate the relationship between regional expression of TFs by NSCs and their acquisition of distinct neural lineage fates. Our results supported an early priming of NSCs to produce defined cell types depending of their spatial location in the SVZ and identified HOPX as a marker of a subpopulation biased to generate astrocytes. Objective 2: I established a cortical lesion model, which allowed the targeted ablation of neurons of defined cortical layers to investigate the regenerative capacity and appropriate specification of postnatal cortical progenitors. Quantitative assessment of surrounding brain regions, including the dorsal SVZ, revealed a transient response of defined progenitor populations. Objective 3: We developed a transgenic mouse line, i.e. Neurog2CreERT2Ai14, which allowed the conditional labeling of birth-dated cohorts of glutamatergic progenitors and their progeny. We used fate-mapping approaches to show that a large fraction of Glu progenitors persist in the postnatal forebrain after closure of the cortical neurogenesis period. Postnatal Glu progenitors do not accumulate during embryonal development but are produced by embryonal RGs that persist after birth in the dorsal SVZ and continue to give rise to cortical neurons, although with low efficiency. Single-cell RNA sequencing revealed a dysregulation of transcriptional programs, which correlates with the gradual decline in cortical neurogenesis observed in vivo. Altogether, these data highlight the potential of transcriptomic studies to unravel but also to approach fundamental questions such as transcriptional changes occurring in a population of progenitors over time and participating to changes in their fate potential. This knowledge will be key in developing innovative approaches to recruit and promote the generation of selected cell types, including neuronal subtypes in pathologies
30

Popa, Natalia. « RAE-1, acteur et marqueur de la prolifération de cellules neurales ». Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM5061.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Les cellules neurales expriment des molécules dites immunes qui peuvent exercer des rôles différents de ceux exercés dans le système immunitaire. Les molécules du CMH-I classiques présentent des peptides représentatifs du contenu protéique de chaque cellule aux sentinelles du système immunitaire. Cependant, il est documenté que ces molécules ont aussi des fonctions « non immunes ». En effet, les molécules du CMH-I classiques jouent un rôle dans l'établissement et la plasticité des synapses. Sur divers types cellulaires, elles peuvent aussi interagir avec des récepteurs membranaires en cis, moduler leur stabilité à la membrane et en conséquence leur activité. RAE-1 est un membre de la famille des molécules du CMH-I, décrite initialement dans le système nerveux central embryonnaire. Pour le système immunitaire, RAE-1 est un ligand du récepteur activateur NKG2D, exprimé par les cellules NK, NKT, les lymphocytes T γδ et CD8+. RAE-1 est peu ou pas exprimé dans la plupart des tissus adultes. Son expression est induite par le stress génotoxique, la transformation tumorale ou l'infection virale ce qui permet au système immunitaire d'éliminer les cellules « malades » grâce à l'activation des cellules cytotoxiques exprimant NKG2D. Je décris l'expression de RAE-1 par les cellules neurales progénitrices et le rôle non immun de cette molécule dans la prolifération cellulaire. L'expression de RAE-1 est fortement corrélée au niveau de prolifération cellulaire et est dépendante du facteur de croissance EGF
Neural cells express immune molecules which roles differ from those in the immune system. Classical MHC-I molecules present peptides originated from the proteic content of each cell to patrolling immune cells. However, these molecules can also have nonimmune roles. Indeed, classical MHC-I molecules participate in the establishment of synapses and synaptic plasticity. They can also interact in cis with different membrane receptors on different cell types, and modulate the receptors' membrane stability and activity. RAE-1, a member of MHC-I family, was initially described in the embryonic central nervous system. In the immune system, RAE-1 is a ligand of the activating receptor NKG2D, expressed by NK cells and by NKT, γδT and some CD8+ T lymphocytes. RAE-1 is weakly or not expressed in most adult tissues. Its expression is induced by genotoxic stress, tumoral transformation or viral infection and triggers the elimination of transformed cells by the cytotoxic immune cells which express NKG2D. I describe here the expression of RAE-1 by neural progenitor cells and its role in cell proliferation. RAE-1 expression level is highly correlated with the rate of cell proliferation and depends on the presence of epidermal growth factor (EGF). Exposition to EGF induces the colocalization of RAE-1 and phosphorylated EGF-receptor (EGFR) inside lipid rafts and endocytosed vesicles, which supports a role of RAE-1 as a partner of EGFR. RAE-1 expression is also induced in the nervous tissue in different models of CNS pathologies. In these conditions, RAE-1 could be expressed by proliferating microglia under the control of M-CSF
31

Tarus, Dominte. « Hydrogels multi-fonctionnels à base d'acide hyaluronique pour le contrôle de l'adhésion, la prolifération et la différentiation de cellules souches neuronales ». Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAV042/document.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
RésuméLes lésions du cerveau sont un problème médical majeur, celui-ci possédant des ressources limitées pour la guérison. Les patients souffrent souvent des déficiences graves et durables, dégradant leur qualité de vie et imposant des couts importants. Des thérapies qui visent l'implantation des cellules souches neurales supportées par un biomatériau qui imite la matrice extracellulaire du cerveau sont en développement. L’ECM du cerveau a une teneur élevée en acide hyaluronique (HA). Ce glycosaminoglycane possède la biocompatibilité et l'activité biologique requises par les applications avec des cellules souches neurales.Nous avons développé des hydrogels à base de HA, possédant des propriétés mécaniques et des densités en peptide d’adhésion cellulaire (GRGDS) contrôlées, pour l'étude in vitro de la différenciation de cellules souches neurales en neurones. L'analyse de neurites en 3-D par microscopie biphotonique a montré une excroissance accrue et une densité élevée des neurites dans les hydrogels les plus élastiques (G '= 400 Pa), combinées avec l'existence d'un optimum dans l'extension des neurites en fonction de la densité des ligands dans le cas des hydrogels contenant des GRGDS. La croissance des neurites relève vraisemblablement d’une combinaison d’interactions adhésives cellule-HA, cellule-GRGDS, et cellule-molécules extracellulaires secrétées.Par la suite la dégradabilité enzymatique des hydrogels de HA a été étudiée. Les hydrogels de HA se dégradent sous l'effet de l'enzyme hyaluronidase suivant un modèle mono-exponentiel, ce qui correspond à une population homogène de chaînes de HA clivables. Les hydrogels avec des modules d'élasticité plus élevés, montrent des vitesses de dégradation enzymatique plus faibles. Le remplacement de l'agent de réticulation PEG-bis(thiol) pour un polymère HA-(SH)3 clivable par voie enzymatique conduit à une réduction du temps nécessaire à la dégradation complète des hydrogels.Dans un troisième temps, nous avons développé des gels de héparosane sans activité biologique qui pourraient révéler une meilleure compréhension du rôle joué par le HA dans la différentiation des NSCs et dans l’extension des neurites. Nous avons montré que le CD44 joue un rôle mesurable dans le processus d'adhésion des cellules MEF. Il existe d'autres procédés par lesquels ces cellules peuvent adhérer sur les hydrogels d’héparosane, cependant la force de ces interactions est plus faible
AbstractDamage caused to the central nervous system (CNS) is a major medical concern. As the CNS has limited ability to regenerate its damaged cells, patients can suffer from serious and long-term disabilities and impairments, which put strains on public healthcare systems. Therapies that aim to implant neural stem cells together scaffolds that mimic the extracellular matrix of the brain are being developed. Hyaluronic acid is an important component of the brain ECM. This glycosaminoglycan possesses the required biocompatibility and bioactivity for use in neural stem cells applications.We have developed HA-based hydrogels with controlled mechanical properties and cell adhesion peptide (GRGDS) densities for the in vitro study of neural precursor cells’ differentiation into neurons. The analysis of neurite outgrowth in 3-D by two-photon microscopy showed an increased outgrowth and density of neurites in the softest hydrogels (G’ = 400 Pa), combined with the existence of an optimum in neurite outgrowth as a function of ligand density in the case of hydrogels containing GRGDS. Neurite outgrowth in these hydrogels most likely involves a combination of adhesive interactions between cell-HA, cell-GRGDS moieties, and cell-secreted extracellular molecules.The enzymatic degradability of HA hydrogels was then investigated. The HA hydrogels degrade under the effect of the Hyaluronidase enzyme following a mono-exponential model, corresponding to a homogenous population of cleavable HA polymer chains. Hydrogels with higher elastic moduli have progressively lower enzymatic degradation rates. The substitution of the PEG-bis(thiol) crosslinker by an enzymatically cleavable HA-(SH)3 polymer led to a reduction in the time required for the complete degradation of the hydrogels.Finally we developed heparosan hydrogels that are devoid of biological functions and thus provide better insight into the role of HA in NSCs differentiation and neurite outgrowth. We showed that CD44 plays a measurable role in the adhesion process of MEF cells. There are alternative processes through which cells can attach to the heparosan hydrogels however the strength of these adhesions is weaker. Heparosan is a viable biomaterial for hydrogel synthesis that does not interact with the CD44 receptor, resulting in lower cellular adhesions
32

Montay, gruel Pierre-Gabriel. « Réponse du cerveau sain, des cellules souches neuronales et du glioblastome à une nouvelle technique de radiothérapie Flash ». Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS147.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
De nos jours, plus de 50% des patients porteurs de tumeur bénéficient d’un traitement de radiothérapie. Malgré de récentes avancées technologiques augmentant de la précision des traitements, la radiothérapie encéphalique induit toujours des effets secondaires invalidants et irréversibles. Ce constat justifie le développement de nouvelles techniques de radiothérapie. Des études précliniques réalisées sur l’irradiation FLASH ont montré la possibilité de maintenir un effet anti-tumoral tout en réduisant drastiquement les effets secondaires sur le tissu sain. Cet effet a été appelé « l’effet FLASH ». Cette technologie consistant à délivrer des doses à des débits supérieurs à 40 Gy/s a généré un intérêt important pour l’augmentation de l’index thérapeutique de la radiothérapie.Ce travail de thèse vise à étudier l’effet anti-tumoral de l’irradiation FLASH sur des modèles précliniques de glioblastome, tout en évaluant ses effets sur le tissu cérébral sain. Des modèles murins de glioblastome sous-cutané, orthotopique et transgénique ont été développés et irradiés grâce à un prototype d’accélérateur linéaire d’électrons délivrant une irradiation FLASH ou conventionnelle. De plus, des modèles murins d’irradiation encéphalique ont été mis au point afin d’investiguer les effets cellulaires et les altérations fonctionnelles induites par l’irradiation FLASH. La division cellulaire et la structure neuronale dans l’hippocampe ont été évaluées, ainsi que des aspects plus physiopathologiques comme la neuroinflammation ou l’astrogliose. Un panel de tests cognitifs a également été utilisé afin d’étudier les altérations cognitives induites par l’irradiation encéphalique. Enfin, les évènements physico-chimiques engendrés par l’irradiation FLASH et plus particulièrement le rôle de la consommation de dioxygène lors de l’irradiation, ont été analysés afin d’élucider les mécanismes qui supportent l’effet FLASH.Dans tous les modèles étudiés, l’irradiation FLASH a présenté un effet anti-tumoral au minimum similaire à celui de l’irradiation conventionnelle. Les modèles d’irradiation encéphalique ont montré une innocuité de l’irradiation FLASH sur le tissu cérébral sain, avec une absence de déficits cognitifs pour des débits de dose supérieurs à 100 Gy/s, couplée à une absence d’altération de la division cellulaire et de la structure neuronale dans l’hippocampe, une absence de neuroinflammation et d’astrogliose. De plus, des résultats similaires ont été observés avec l’utilisation de rayons X délivrés à ultra-haut débit par un rayonnement synchrotron. Sur le plan mécanistique, la réversion des effets protecteurs de l’irradiation FLASH par l’induction d’une hyperoxie, l’absence d’effet de l’anoxie sur l’effet anti-tumoral et la production de moins de radicaux libres souligne le rôle primaire du dioxygène dans l’effet FLASH.L’ensemble de ces résultats illustre la possibilité d’augmenter l’index thérapeutique de la radiothérapie en utilisant l’irradiation FLASH. En effet, cette nouvelle technologie permet de préserver le tissu sain contre les toxicités radio-induites lorsque l’irradiation est délivrée à des débits supérieurs à 100 Gy/s, tout en gardant un effet anti-tumoral équivalent à l’irradiation conventionnelle. D’après ces résultats précliniques et un transfert clinique dans un futur proche, l’irradiation FLASH pourrait devenir une technique de choix dans le traitement des tumeurs par radiothérapie
Nowadays, more than 50% of cancer patients can benefit from a radiation-therapy treatment. Despite important technological advance and dose delivery precision, encephalic radiation-therapy still induces large and irreversible side effects in pediatric and adult cancer patients, justifying the urge to develop new radiation-therapy techniques. Preclinical studies on FLASH irradiation (FLASH-RT) showed a possibility to efficiently treat the tumors, without inducing drastic side-effects on the normal tissue, by increasing the dose-rate over 40 Gy/s. This so called “FLASH effect” set off an important interest in this new irradiation technology to increase the therapeutic ratio of radiation-therapy.This PhD work aimed at investigating the antitumor effect of FLASH-RT on brain tumor models along with the assessment of the ultra-high dose-rate irradiation effects on the normal brain tissue. In this context, subcutaneous, orthotopic and transgenic glioblastoma murine models were used to investigate the curative effect of FLASH irradiation delivered with an experimental LINAC available at the CHUV, and able to deliver both conventional and FLASH irradiation. Moreover, murine models of whole brain irradiation were developed to investigate the radiation-induced cellular and functional alterations at early and late time-points post-FLASH-RT. These models were used to decipher the cellular effectors involved in the brain’s radiation response including hippocampal cell-division and neuronal responses but also more physio pathological aspects as radiation-induced reactive astrogliosis and neuroinflammation. A panel of well-defined cognitive tests was also developed to investigate the radiation-induced cognitive alterations. Eventually, the physio-chemical primary events induced by FLASH-RT, and particularly the role of dioxygen consumption, were investigated to decipher the mechanisms that underlie the FLASH effect.In all investigated tumor models, FLASH-RT displayed an efficient antitumor effect at least similar to the conventional irradiation. The whole brain irradiation models showed an innocuousness of FLASH-RT on the normal brain tissue, with an absence of cognitive deficit several months after irradiation at dose-rates above 100 Gy/s, coupled with a preservation of hippocampal cell division and neuronal structure. This protection was also observed at the physio pathological level with an absence of astrogliosis and neuroinflammation. Moreover, these results were reproduced with ultra-high dose-rate X-Rays delivered with a synchrotron light source. On the mechanistic side, the reversion of the protective effects of FLASH-RT by hyperoxia, and the absence of effect of anoxia on the antitumor effect, along with a decreased ROS production underlies the primary role of dioxygen consumption during ultra-high dose-rate irradiation.Altogether, these unique results depict the possibility to increase the therapeutic index of radiation-therapy by the use of FLASH-RT. Indeed, this new irradiation technology preserves the normal brain tissue from radiation-induced toxicities by increasing the dose-rate over 100 Gy/s, while keeping an antitumor effect equivalent to the conventional dose-rate irradiation. According to these preclinical results and an upcoming clinical translation, FLASH-RT might become a major contributor to the cancer treatment by radiation therapy
33

Omer, Attya. « Modeling human neural development and diseases using pluripotent stem cells ». Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS589.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
La microcéphalie est une maladie neurologique du nouveau-né qui se traduit par une circonférence réduite de la tête, une déficience intellectuelle et des défauts anatomiques du cerveau. La microcéphalie peut être la conséquence d’une infection, de stress environnementaux ou de mutations génétiques.Le cerveau commence à se former dès la cinquième semaine de grossesse et est majoritairement constitué de cellules souches neuronales, cellules qui conservent une capacité a se reproduire a l’identique sans se spécialiser. Cette première phase de prolifération est importante pour générer suffisamment de cellules. Suit une phase de différenciation, durant laquelle les cellules préalablement formées se différencient en deux groupes : les neurones, qui permettent de partager l’information grâce à des influx électriques, et les cellules gliales, qui soutiennent activement les fonctions des cellules neuronales.Je m’intéresse à un gène en particulier, KNL1, muté chez certains patients microcéphales. Grace aux nouvelles techniques d’édition du génome, j’ai reproduit la mutation retrouvée chez les patients dans des cellules souches pluripotentes humaines. En utilisant un modèle tridimensionnel (mini-cerveaux en culture), à partir de cellules souches neuronales, j’ai analysé de manière quantitative les étapes-clés de développement: les phases de prolifération et de différenciation.Mes travaux de recherche ont montré que les cellules souches neuronales portant la même mutation que les patients prolifèrent moins, réduisant le nombre de cellules initiales nécessaires au développement cérébral normal. Par ailleurs, les cellules souches neuronales se différencient prématurément en neurones et cellules gliales, ce qui réduit davantage le nombre le nombre final de cellules. Cette hypothèse a été confirmée par l’utilisation du modèle tridimensionnel, ou les mini-cerveaux sont plus petits que la normale.Cette étude est essentielle non seulement pour comprendre le développement de la maladie, mais également pour comprendre les étapes clés du développement du cerveau humain, et ne pourrait pas être mener à bien sur des modèles animaux. En outre, l’utilisation de cellules souches induites nous permet de ne pas utiliser de cellules embryonnaires, si nécessaire pour raisons d’éthique
Microcephaly is a neurological condition, resulting in patients having a small head circumference, intellectual impairment and brain anatomical defects. A pre-requisite for achieving a better understanding of the cellular events that contribute to the striking expansion of the human cerebral cortex is to elucidate cell-division mechanisms, which likely go awry in microcephaly. Most of the mutated genes identified in microcephaly patient encode centrosomal protein, KNL1 is the only gene that encodes a kinetochore protein, it plays a central role in kinetochore assembly and function during mitosis. While the involvement of centrosome functions is well established in the etiology of microcephaly, little is known about the contribution of KNL1.In an attempt to assess the role of KNL1 in brain development and its involvement in microcephaly, we generated isogenic human embryonic stem cell (hESC) lines bearing KNL1 patient mutations using CRISPR/Cas9-mediated gene targeting. We demonstrated that the point mutation leads to KNL1 reduction in neural progenitors. Moreover, mutant neural progenitors present aneuploidy, an increase in cell death and an abrogated spindle assembly checkpoint. Mutant fibroblasts, derived from hESC, do not have a reduced expression of KNL1 and do not present any defect in cell growth or karyotype, which highlight a brain-specific phenotype.The subsequent differentiation of mutant neural progenitors into two-dimensional neural culture leads to the depletion of neural progenitors in the favor of premature differentiation. We developed a three-dimensional neural spheroids model from neural progenitors and reported a reduced size of mutant neural spheroids, compare to control. Lastly, using knockdown and rescue assays, we proved that protein level of KNL1 is responsible of the premature differentiation and the reduced size.These data suggest that KNL1 has a brain-specific function during the development. Changes in its expression might contribute to the brain phenotypic divergence that appeared during human evolution
34

Foerster, Philippe. « Rôle du cil primaire des cellules souches neurales dans le développement cortical murin ». Paris 6, 2013. http://www.theses.fr/2013PA066207.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Les cellules souches neurales acquièrent au cours de la corticogenèse des propriétés de glie radiaire. Elles sont polarisées avec un contact ventriculaire où émane un cil primaire. Le rôle de cette antenne cellulaire durant la neurogenèse reste méconnu. Nous avons observé que l’absence de cil primaire conduit à un accroissement de la surface du domaine apical sans affecter la taille totale des glies radiaires, lié à l’augmentation de la voie mTORC1. De plus, l’utilisation de souris inductibles, nous a permis de mettre en évidence que cet agrandissement de l’aire du domaine apical est un effet cellule autonome. Ces modifications du domaine apical sont associées à une légère perturbation de l’orientation de l’axe de division des progéniteurs apicaux, à une augmentation du nombre de progéniteurs basaux et à une différentiation neuronale prématurée. L’augmentation de la surface du domaine apical peut être significativement réduite par un traitement à la Rapamycine. Cette étude met en avant un rôle nouveau du cil primaire des cellules de glie radiaire qui régule la morphogenèse et la neurogenèse corticale en agissant comme un frein de la voie de signalisation mTORC1
Neural stem cells acquire radial glia properties during corticogenesis. They are polarized cells with a ventricular contact where a primary cilium emanates. The role of this cellular antenna during neurogenesis remains unknown. We observed that the absence of primary cilium leads to an increase in the surface of the apical domain without affecting the total size of radial glia cells, linked to an increase in mTORC1 pathway. In addition, using inducible mouse we highlight that the expansion of the apical domain area is cell autonomous. These changes in the apical domain are associated with a slightly misoriented spindle of apical progenitors, an increase in the number of basal progenitors and premature neuronal differentiation. The increase in apical surface area can be significantly reduced by treatment with rapamycin. This study highlights a new role for radial glia cells primary cilium which regulates morphogenesis and cortical neurogenesis by acting as a brake on the mTORC1 signaling pathway
35

Saint-Jeannet, Jean-Pierre. « Recherches sur les étapes initiales de la détermination neurale chez un embryon de vertébré : rôle des interactions cellulaires ». Toulouse 3, 1990. http://www.theses.fr/1990TOU30033.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Au cours de ce travail de these, l'auteur a etudie l'acquisition de la determination neurale de l'ectoderme presomptif au stade jeune gastrula en correlation avec la mise en place de systemes adhesifs particuliers. Une modification experimentale des contacts intercellulaires (par privation d'ions calcium et magnesium) au sein de l'ectoderme presomptif competent, suffit a engager certaines de ces cellules, cultivees in vitro, dans la voie neurale. Par contre le retablissement des contacts intercellulaires, apres dissociation, en structure tissulaire tridimensionnelle, provoque un retour des cellules vers le phenotype epidermique. Ces resultats tendent a prouver que les contacts cellulaires au sein du tissu cible, et donc les molecules d'adherence intercellulaire qui leur sont associees, pourraient jouer un role majeur dans la modulation de la determination neurale. Ce type d'induction par dissociation qui elimine toute influence du tissu inducteur naturel (chordomesoderme) a permis d'aborder la question de l'origine embryonnaire des sous-populations neurales qui se differencient en reponse a l'induction neurale in vivo. L'auteur a pu montrer qu'au cours de cette induction sans aucune influence du chordomesoderme, les lignees neuronale et gliale peuvent se differencier in vitro. Parmi la population neuronale des sous-populations gabaergique et leu-enkephalinergique peuvent emerger. Il semble donc que le tissu cible au stade jeune gastrula ne constitue pas une structure homogene. A ce stade certaines cellules auraient deja acquis diverses predispositions, le tissu inducteur, sans reelle specificite, initiant le declenchement de ces programmes de differenciation
36

Ghazale, Hussein. « Human and mouse spinal cord : a territory of diverse neural stem/progenitor cells, identification and functionality ». Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTT012/document.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Au cours des 10 dernières années, le laboratoire de JP Hugnot s’est concentré sur les différents pools de progéniteurs et de cellules souches trouvés dans la moelle épinière adulte, chez l’homme comme chez la souris. Ceci est important pour mener ce type de recherche car la moelle épinière est affectée par plusieurs maladies neurodégénératives telles que la sclérose latérale amyotrophique (SLA) et des lésions traumatiques pour lesquelles il n'existe pas de traitement curatif. Chez des animaux comme le poisson zèbre, la moelle épinière peut se régénérer après une lésion en raison de l'activation de progéniteurs / cellules souches endogènes. Ainsi, en recherchant la présence et les propriétés de telles cellules chez les mammifères, en particulier les humains, on pourrait exploiter ces cellules pour la régénération, y compris les neurones. Nous avons procédé au profilage de l'ARN pour comparer la niche de cellules souches humaine et de souris et la niche de cellules souches de souris de la moelle épinière lésée ou non lésée. Cette niche est particulièrement intéressante dans la mesure où, chez les anamniotes, les cellules de l'épendymoglie radiale situées dans cette région sont multipotentes et peuvent générer de nouveaux motoneurones après une lésion. et des cellules similaires, mais non identiques, sont présentes chez la souris. Chez les mammifères, après la lésion, ces cellules de niche prolifèrent et migrent activement pour générer principalement des cellules astrocytaires et peu d'oligodendrocytes qui participent à la cicatrice gliale et à la régénération en fournissant un facteur neurotrophique tel que le CNTF, le HGF et l'IGF-1. Cette niche contient au moins 5 types de cellules et un nouveau type de cellules dorsales exprimant les facteurs de transcription Msx1 et Id4 a été identifié. Ces résultats indiquent que la niche de la moelle épinière adulte chez la Souris et chez l'homme est une mosaïque de cellules ayant différentes origines développementales et conservant des niveaux élevés de gènes de développement neural. Les interactions gliales-neuronales qui soutiennent et maintiennent les neurones intacts peuvent influer sur les maladies neurodégénératives. L'une de ces cellules gliales est l'oligodendrocyte satellite ou cellules satellites périneuronales (PNC). Les PNC sont étroitement associés au soma de gros neurones et largement répandus dans la substance grise du cortex et de la moelle épinière. Cependant, les propriétés cellulaires et les rôles fonctionnels de ces oligodendrocytes non myélinisants n'ont pas encore été découverts. Dans cette étude, les cellules positives à la nestine-GFP sont associées à des neurones immunocolorés pour l'antigène nucléaire neuronal dans le cortex et la moelle épinière. Nous avons identifié les PNC comme étant des cellules positives pour la CNPase qui ne sont ni des cellules progénitrices d'oligodendrocytes (PDGFRa) ni des oligodendrocytes myélinisants (MBP). Ces données suggèrent que les PNC pourraient affecter la survie neuronale ainsi que le processus de myélinisation dans des conditions de démyélinisation. En outre, il pourrait être impliqué dans des maladies neurodégénératives telles que la sclérose en plaques et la sclérose latérale amyotrophique en raison de leur interaction avec les motoneurones
Over the last 10 years, JP Hugnot’s lab has been focusing on the different pools of progenitors and stem cells found in the adult spinal cord both in human and mouse. This is important to conduct this kind of research as the spinal cord is affected by several neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and traumatic lesions for which there is no cure. In anamniotes such as Zebrafish, the spinal cord can regenerate after lesion due to endogenous progenitors/stem cells activation. So by investigating the presence and properties of such cells in mammals especially human, one could possibly harness those cells toward regeneration including neurons. We conducted RNA profiling to compare human vs mouse stem cell niche and lesioned vs non lesioned spinal cord mouse stem cell niche. This niche is particularly interesting as in anamniotes, radial ependymoglia cells located in this region are multipotent and can generate new motoneurons after lesion. And similar, albeit non identical, cells are present in mouse. In mammals, after lesion, these niche cells actively proliferate and migrate to generate mainly astrocytic cells and few oligodendrocytes which participate to the glial scar and regeneration by providing neurotrophic factor such as CNTF, HGF, and IGF-1. This niche contains at least 5 cell types and here a new dorsal cell type expressing Msx1 and Id4 transcription factors was identified. These results indicated that the adult spinal cord niche in mouse and human is a mosaic of cells with different developmental origin and maintaining high levels of neural developmental genes. Glial-neuronal interactions supporting and keeping neurons intact can be influence neurodegenerative diseases. One of these glial cells is the satellite oligodendrocyte or so called perineuronal satellite cells (PNCs). PNCs are tightly associated to the soma of large neurons and widely spread in the grey matter of the CNS both cortex and spinal cord. However the cellular properties and functional roles of these unmyelinating oligodendrocytes are not yet discovered. In this study, nestin-GFP positive cells are associated to neurons immunostained for neuronal nuclear antigen in both cortex and spinal cord. We identified PNCs as CNPase positive cells that are neither oligodendrocyte progenitor cells (PDGFRa) nor myelinating oligodendrocytes (MBP). These data suggest that PNCs might affect neuronal survival as well as the myelination process in demyelinating conditions. Also it could be implicated in neurodegenerative diseases such as multiple sclerosis and amyotrophic lateral sclerosis due to their interaction with motor neurons
37

Lemkine, Gregory F. « Transfert de gène in vivo à l'aide de la polyéthylènimine : application à l'étude des cellules souches neurales ». Paris, Muséum national d'histoire naturelle, 2005. http://www.theses.fr/2002MNHN0026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
L'existence de cellules souches neurales dans le cerveau mammifère adulte revêt un vif intérêt aussi bien en recherche fondamentale que du point de vue des possibles applications thérapeutiques qu'elles pourraient représenter. Ainsi, il persiste dans la zone sub-ventriculaire (ZSV) des cellules capables de s'auto renouveler et de donner naissance à différents types cellulaires. Afin de comprendre la biologie de ces cellules, il est nécessaire de pouvoir les modifier génétiquement in vivo, au sein de la niche neurogénique où elles conservent leur nature souche. La polyethylènimine sous sa forme linéaire, est un polymère polycationique qui associe les avantages d'un vecteur synthétique de transfert de gène (faiblement toxique ou immunogène, souple d'utilisation, facile d'emploi. . . ) à l'efficacité in vivo. Son utilisation dans le cerveau de souris nouveau-né ou adulte donne des niveaux importants d'expression du transgène. Une analyse plus précise par immuno-histochimie et microscopie éléctronique de la nature des cellules transfectées chez la souris adulte révèle que les complexes ADN/PEI ciblent préférentiellement les cellules souches neurales et les cellules progénitrices de la ZSV. L'introduction intraventriculaire de ces complexes permet de marquer génétiquement ces cellules et de suivre les précurseurs émergeant de la ZSV au cours de leur processus migratoire vers les bulbes olfactifs. De plus, nous démontrons qu'il est possible grâce à cette méthode modifier le devenir des cellules progénitrices de la ZSV. La surexpression du facteur anti-apoptotique Bcl-XL, permet de bloquer le phénomène d'apotose qui constitue le destin majeur des cellules issues de la niche neurogénique. Enfin, la possibilité d'introduire un matériel génétique de façon privilégiée dans cette population cellulaire peut être mise à profit pour suivre l'influence de l'état thyroïdien sur la biologie des cellules souches neurales. Il est ainsi démontré que l'hormone thyroïdienne est un élément endocrinien essentiel qui active la croissance cellulaire, la différenciation et l'apoptose des cellules souches neurales du cerveau mammifère adulte
The subventricular zone (SVZ) of the adult mammalian brain harbors the neural stem cell population with potential neural regeneration and repair capacity. We describe a nonviral technique to preferentially transfect in vivo the adult neural stem cell population and its immediate progeny based on intraventricular injection of polyethyelenimines (PEl)/DNA complexes. Linear PEI is proving to be efficient, non-toxic and versatile agent for in vivo gene delivery by a number of routes. The transfected population was identified by cellular and ultra-structural evidence showing their proliferating status and expression of the specific markers GFAP and nestin. Stable activation of the lacZ reporter by cre-recombinase transfection in R26R mice demonstrated survival and migration of stem cell derivatives three months after injection. Apoptosis is thought to be the most common fate of the stem cell progeny. Introduction of a neuroprotective, antiapoptotic gene Bcl-XL can augment the number and change the histological profile of transgene-expressing cells in the SVZ. This opens up the possibility of enhancing in situ the regenerative potential of this population of cells. As well as confirming the importance of apoptosis in neural stem cell physiology, our results pave the way for further investigations of this phenomenon. This method thus provides selective targeting of the stem cell population and should allow an in-depth understanding of their biology. We thus investigated the effects of thyroid hormones on proliferation and apoptosis of stem cells in the subventricular zone as well as on migration of transgene-tagged neuroblasts out of the stem cell niche. Hypothyroidism significantly reduced all three of these processes, inhibiting generation of new cells. These data suggest that, besides the well established multiple roles of TH in early neurogenesis, TH is an essential component of the endocrine environment that activates neural stem cell growth, migration, and apoptosis. Further, the results demonstrate that the negative effects of TH on mitotic capacity have repercussion on the number of cells migrating through the RMS. Endocrine factors such as TH could be key factors to reveal regenerative potential of endogenous or grafted stem cells
38

Grandbarbe, Luc. « Rôle de la voie de signalisation Notch dans la différenciation des cellules souches neurales ». Université Louis Pasteur (Strasbourg) (1971-2008), 2002. http://www.theses.fr/2002STR13050.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Le système nerveux central est constitué de 3 types cellulaires majeurs : neurones, oligodendrocytes et astrocytes. Ces cellules dérivent toutes d'un précurseur commun capable d'auto-renouvellement, de prolifération quasi infinie in vitro et multipotentiel : la cellule souche neurale. Dans ce mémoire, nous avons étudié le rôle de la voie de signalisation Notch dans le déterminisme neurones versus cellules gliales, au cours du processus développemental qui conduit de la cellule souche neurale aux neurones, aux oligodendrocytes et aux astrocytes. Pour cela, nous avons utilisé le système in vitro des neurosphères, qui représente la descendance clonale des cellules souches neurales. La première partie de notre travail a consisté de mettre au point les cultures de neurosphères et à montrer que les neurosphères produisaient neurones, oligodendrocytes et astrocytes dans des proportions reproductibles. L'obtention de neurosphères à partir d'embryons Dll1LacZ, mutants pour le gène Delta like 1 (Dll1) a montré que Dll1 n'était pas nécessaire à la production et au maintien des cellules souches neurales. Les neurosphères mutantes Dll1Lac présentent une augmentation du nombre de neurones par rapport aux neurosphères de type sauvage. Cette augmentation a lieu aux dépens des cellules gliales, oligodendrocytes et astrocytes. Le phénotype des neurosphères mutantes peut être sauvé quand les neurosphères Dll1LacZ sont incubées en présence de milieu conditionné par des neurosphères sauvages pendant la phase de prolifération et/ou la phase de différenciation. Les expériences d'activation transitoire de la voie Notch par addition d'une forme soluble de ligand ont montré que la fonction Notch intervenait à deux stades de la neurogenèse : Dans une première étape, la voie Notch empêche les précurseurs de s'engager dans la voie de développement neuronal et les oriente irréversiblement vers la voie gliale. Dans une seconde étape, la voie Notch inhibe la différenciation neuronale et oligodendrocytaire, tandis qu'elle active la différenciation des astrocytes
The central nervous system comprises three major cell types: neurons, oligodendrocytes and astrocytes. All these cell-types derive from a common multipotential precursor cell, capable of self-renewing, and which is referred to as a neural stem cell. To elucidate the role of Notch signaling on the generation of neurons and glia, we made use of the in vitro neurosphère system which is clonally derived from neural stem cells through the selective action of EGF. Neurospheres prepared from Dll1lacZ mutant embryos display an increase of neurons at the expense of both oligodendrocytes and astrocytes. This mutant phenotype could be rescued when Dll1lacZ spheres were grown and/or differentiated in the presence of WT neurospheres conditioned medium. Time-dependant activation of Notch by soluble forms of ligands indicates that Notch acts in two steps. Initially, it acts on the cell fate choice by negatively regulating the neuronal fate and promoting the glial cell fate. In a second step, Notch promotes differentiation of astrocytes and inhibits differentiation of both neurons and oligodendrocytes
39

Nepote, Virginie. « Mécanismes moléculaires de la détermination catécholaminergique des cellules souches du sytème nerveux périphérique et central ». Paris 7, 2001. http://www.theses.fr/2001PA077224.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Segura, Stéphanie. « Contrôle des cellules-souches neurales de Rat adulte par la leptine ; application chez le Porc adulte ». Aix-Marseille 3, 2009. http://www.theses.fr/2009AIX30026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Le complexe vagal dorsal (CVD) est un centre intégrateur cérébral des réflexes neurovégétatifs, dont le réflexe de satiété. Mon laboratoire a montré que le CVD constitue un nouveau foyer de neurogenèse et de cellules-souches neurales chez le rat adulte. J’ai caractérisé in vitro une action originale de l’hormone anorexigène leptine sur les cellules-souches neurales du CVD et de la zone sous-ventriculaire (ZSV, structure neurogénique de référence du télencéphale) de rat adulte. La leptine inhibe la croissance des neurosphères issues du CVD et de la ZSV, dont j’ai montré l’expression du récepteur ObR par RT-PCR. Cette action anti-proliférative de la leptine, analysée dans les neurosphères de ZSV, implique le déclenchement d’apoptose via l’activation de la voie de transduction ERK1/2 et l’induction de cycline D1, dont j’ai montré le rôle causal à l’aide d’ARN interférant. Dans le cadre d’une recherche appliquée visant à améliorer la réparation post-lésionnelle des nerfs périphériques en clinique, j’ai réalisé la caractérisation pionnière des cellules-souches neurales de ZSV de Porc adulte par culture et phénotypage de neurosphères. Cette étude ouvre de nouvelles perspectives pour la Physiologie Neurovégétative et pour la biologie des cellules-souches neurales
The dorsal vagal complex (DVC) is a cerebral integrative center for autonomic functions, including the satiety reflex. The DVC of adult rat has been established by my host laboratory as a novel site of adult neurogenesis endowed with neural stem cells. I characterized in vitro a novel action of the anorexigenic hormone leptin on neural stem cells of adult rat DVC and subventricular zone (SVZ). Leptin inhibits the growth of neurospheres from DVC and SVZ, wherein I have shown ObR receptor expression by RT-PCR. This antiproliferative leptin action, as analyzed in SVZ neurospheres, involves apoptosis triggering via ERK1/2 pathway activation and cyclin D1 induction, the causal role of which I have shown using a RNAi approach. In the context of a preclinical research application aiming at improving post-injury repair of peripheral nerve, I realised the first characterization of neural stem cells from adult Pig SVZ by neurosphere culture and RT-PCR of phenotype markers. This study opens new cues for Autonomic physiology and neural stem cell biology
41

Cantarella, Cristina. « Promouvoir la mobilisation des cellules souches neurales adultes pour la réparation de lésions demyélinisantes : effet de l'environnement et de l'EGF ». Aix-Marseille 2, 2008. http://www.theses.fr/2008AIX22035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
La persistance de zones germinatives dans le cerveau adulte a permis de concevoir des stratégies thérapeutiques basées sur le potentiel réparateur des cellules souches adultes. En effet, il a été montré qu’en cas de lésion dans le cerveau, des cellules de la zone sousventriculaire (ZSV) augmentent leur prolifération et changent leur chemin migratoire pour rejoindre l’endroit de la lésion et se différencier dans le type cellulaire affecté. Dans le cas des lésions démyélinisantes, certaines cellules sont capables de différencier en oligodendrocytes dans une tentative de remyélinisation. Cependant leur nombre reste faible et ne permet pas d’obtenir une réparation complète de la lésion. Ainsi, une stratégie thérapeutique envisageable peut être de promouvoir la mobilisation des cellules souches de la ZSV. Mon travail de thèse a consisté à identifier des conditions et des facteurs qui peuvent stimuler le recrutement des cellules de la ZSV dans le cas des lésions démyélinisantes dans le cerveau de souris adultes. Dans une première étude, j’ai contribué à montrer que l’exercice et l’enrichissement environnemental (EE) promeuvent le recrutement des cellules de la ZSV et favorisent la récupération fonctionnelle de souris atteintes d’encéphalite expérimentale auto-immune (EAE). L’EE promeut également le destin ligodendrocytaire des cellules de la ZSV recrutées dans les lésions d’EAE. Dans le deuxième travail, nous avons montré que l’administration intra-nasale du facteur de croissance HB-EGF permet de stimuler non seulement la prolifération des cellules de la ZSV mais également leur migration vers une lésion focale de démyélinisation. En revanche, HB-EGF favorise la différenciation astrocytaire des cellules sur le site lésionnel. Dans l’ensemble ces deux études montrent qu’il est possible de modifier la prolifération et la migration des progéniteurs de la ZSV par des approches non invasives, et de favoriser ainsi leur mobilisation et le remplacement oligodendrocytaire dans des lésions de démyélinisation
The identification of neural stem cells in the adult rodent and human central nervous system opens new perspectives for self-repair of brain damage. In the adult subventricular zone (SVZ), these cells proliferate and generate progenitors that migrate along the rostral migratory stream to the olfactory bulb, where they differentiate into interneurons. These cells can also be recruited spontaneously to damaged brain areas to replace lost cells, including oligodendrocytes in demyelinated lesions. However, this process only leads to partial recovery. My Ph. D. Research has focused on the identification of conditions and factors that could enhance the self-repair capacity of endogenous SVZ cells in demyelinating lesions in the adult mouse. In a first study, I have contributed to show that exercise and environmental enrichment (EE), known to induce regional increases in neurotrophin levels in the rodent brain, promote recruitment of SVZ cells and favour recovery in demyelination models. EE also favored the oligodendrocyte fate of SVZ-recruited cells in the experimental autoimmune encephalomyelitis lesions. In a second study, I have focused on epidermal growth factor (EGF) influences on SVZ cell participation to brain repair in the context of demyelinated lesions. Indeed, previous studies have suggested that EGF is able to stimulate proliferation, migration and glial differentiation of SVZ progenitors. We induced a focal demyelinated lesion in the corpus callosum by lysolecithin injection and showed that intranasal heparinbinding epidermal growth factor (HB-EGF) administration induces a significant increase in SVZ cell proliferation together with a stronger SVZ cell mobilization towards the lesions. Besides, HB-EGF causes a shift of SVZ-derived cell differentiation towards the astrocytic lineage. These results suggest that SVZ cell proliferation and migration can be stimulated by non invasive approaches that could be part of future strategies to promote cell replacement from endogenous SVZ stem / progenitor cells, notably in demyelinated lesions
42

Honoré, Axel. « Effet des Cellules Gliales Olfactives issues des Bulbes Olfactifs sur les cellules souches épendymaires et leur progénie après une lésion médullaire ». Thesis, Normandie, 2017. http://www.theses.fr/2017NORMR060/document.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Les lésions médullaires traumatiques (LMT) conduisent à une atteinte des voies nerveuses sensitives et motrices. Leur taux de mortalité reste très élevé, d'où la nécessité de trouver de nouveaux traitements. Les Cellules Gliales Olfactives (CGOs) représentent un candidat intéressant de par leur fonction au sein du système olfactif primaire. La découverte d'une population de cellule souche neurale bordant le canal central de la moelle spinale (MS) adulte, appelées cellules épendymaires, suscite un nouvel espoir dans le domaine des biothérapies. Ce travail de thèse a permis d'étudier l'effet d'une transplantation de CGOs sue le comportement des cellules résidentes de la moelle spinale et notamment les cellules souches épendymaires qui, en association avec les astrocytes et les péricytes, participent aux mécanismes de guérison des LMT. L'utilisation du modèle murin hFoxJ1-CreERT2::YFP (permettant le suivi spécifique des cellules épendymaires et de leur progénie), a montré que les CGOs augmentaient in vitro le potentiel d'auto-renouvellement des cellules souches de la MS et modifiaient leur voie de différenciation vers un type neural. In vivo, la transplantation de CGOs augmente la prolifération des cellules épendymaires ainsi que leur différenciation en astrocytes hypo-réactifs conduisant à la formation d'un environnement post-lésionnel bénéfique à la survie neuronal et l'établissement d'une neurogenèse. Nos travaux ont montré pour la première fois que la transplantation de CGOs après LMT permettait la génération de nouveaux neurones. Ceci constitue un nouvel espoir dans l'établissement de stratégies thérapeutiques pour le traitement des LMT chez l'Homme
The spinal cord injuries (SCI) lead to the damages of the spinal cord or nerves and often cause permanent changes in body functions leading to the death. Cell therapies have raised great hope for regenerative medicine. Clinical data showed that the olfactory ensheathing cells (OECs) enhanced functional recovery after SCI and could be a very attractive therapeutic approach. Moreover, the discovery of a new endogenous resident stem cell population, lining the central canal of the spinal cord, named ependymal stem cells, represents a new hope for the therapy. This thesis analyzed the role of OECs transplantation, on the behaviour of ependymal stem cells since these cells, together with astrocytes and pericytes significantly contribute to the recovery of SCI. The use of the mouse model hFoxJ1-CreERT2::YFP (allowing to specifically follow the ependymal stem cells ant their progeny) showed that OECs increased in vitro the self-renewal potential of spinal cord stem cells and modified their differentiation pathway towards a neural type. In vivo, OECs transplantation significantly increases the proliferation of ependymal cells and their differenciation into hypo-reactive astrocytes leading to the formation of a beneficial environment to neuronal survival and the neurogenesis establishment. Our results also showed for the first time that OECs transplantation after SCI allows the generation of new neurons by non-ependymal cell-derived progenitors. These results represent a new hope in the establishment of therapeutic strategies for the treatment of SCI in humans
43

Dirian, Lara. « Embryonic Origin of Adult Neural Stem Cells in the Zebrafish Pallium ». Thesis, Paris 11, 2014. http://www.theses.fr/2014PA11T061/document.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Les cellules souches neurales adultes (aNSCs) sont définies par des fonctions d’auto-Renouvellement et de multipotence qui leur permettent de générer dans le cerveau adulte tant des neurones que des cellules gliales. Contrairement aux mammifères, le cerveau de poisson zèbre présente de nombreuses zones de neurogenèse adulte dont la plus caractérisée est la zone ventriculaire du pallium. Elle est composée de cellules de glies radiaires qui font office de aNSCs dans cette partie du cerveau. Quels progéniteurs neuraux embryonnaires sont sélectionnés pour être à l’origine de ces aNSCs reste mal connu. Ce travail a pour objectif de déterminer la contribution relative de deux populations de progéniteurs neuraux embryonnaires, les “clusters proneuraux” (impliqués dans la neurogenèse embryonnaire) et les “pools de progéniteurs” (caractérisés par une neurogenèse tardive), dans la formation des aNSCs du pallium de poisson zèbre. Dans un premier temps, à l’aide de techniques génétiques de lignage cellulaire, nous avons pu identifier la population de progéniteurs neuraux embryonnaires à l’origine d’une sous-Population des aNSCs située dans la partie dorso-Médiane du pallium. Des expériences de lignage utilisant la lignée de poisson zèbre her4:ERT2CreERT2 combinées à des traitements inhibiteurs de la voie de signalisation Notch nous ont permis de déterminer que les progéniteurs neuraux donnant naissance aux aNSCs du pallium dorso-Médian expriment le gène « Enhancer of split » her4, qui caractérise les “clusters proneuraux”, ce dès des stades très précoces du développement. Dans un second temps, des analyses clonales ainsi que des recombinaisons spatialement contrôlées par laser nous ont permis de mettre en évidence que les aNSCs de la partie latérale du pallium de poisson zèbre ne proviennent pas de progéniteurs embryonnaires exprimant her4 et maintenus par la voie Notch, mais d’une population restreinte de cellules neuroépitheliales situées dans la plaque du toit du télencéphale embryonnaire. Ces cellules présentent des caractéristiques spécifiques des “pool de progéniteurs”, à savoir l’expression de gènes her non-Canoniques (dont l’expression n’est pas dépendante de la voie de signalisation Notch) tels que her6 et her9, l’expression de ligands de voies de signalisation telles que Wnt, BMP et FGF, et une neurogenèse tardive. Elles génèrent progressivement, à partir du stade juvénile, une grande partie des aNSCs du pallium latéral. De plus, une partie de ces cellules neuroépitheliales persistent dans le pallium latéral postérieur chez l’adulte et continuent de former de novo des aNSCs dans cette région du cerveau. Outre la vision globale que cette étude nous a permis d’avoir sur l’origine embryonnaire de la totalité des aNSCs du pallium de poisson zèbre, elle a aussi délivré des informations sur les étapes de maturation progressive des progéniteurs embryonnaires pour former les aNSCs, et les similitudes et divergences qui existent entre la population dorso-Médiane et latérale à ce sujet. Enfin, en traçant les neurones issus des cellules souches à différents stades, cette étude a pour la première fois mis en évidence la formation progressive des compartiments neuronaux du pallium de poisson zèbre, et ainsi permis d’apprécier les homologies de ces compartiments avec les régions du pallium de souris
Adult neural stem cells (aNSCs) are defined by their self-Renewal and multipotency, which allow them to generate both neurons and glial cells in the adult brain. Contrary to mammals, the zebrafish brain maintains numerous neurogenic zones in the adult, among which the most characterized is the pallial ventricular zone. It is composed of radial glial cells serving as aNSCs. Which embryonic neural progenitors are at the origin of these aNSCs is still unknown. This work aims to determine the relative contributions of two embryonic neural progenitor populations, the «proneural clusters» (involved in embryonic neurogenesis) and the « progenitor pools » (characterized by a delayed neurogenesis), to the formation of aNSCs in the zebrafish pallium. First, using genetic lineage tracing techniques, we were able to identify the embryonic neural progenitor population at the origin of a subpopulation of aNSCs located in the dorso-Medial part of the pallium. The her4:ERT2CreERT2 transgenic driver line, combined with pharmacological treatments inhibiting the Notch signalling pathway, allowed showing that neural progenitors giving rise to dorso-Medial pallial aNSCs express the « Enhancer of split » her4 gene, specifically expressed in « proneural clusters » from very early stages of development. As a second step, clonal analyses as well as spatially controlled recombinations by laser highlighted that aNSCs of the zebrafish lateral pallium do not derive from her4-Positive embryonic progenitors maintained by the Notch pathway, but from a restricted population of neuroepithelial cells located in the embryonic telencephalic roof plate. These cells display « progenitor pool » specific features, as for instance the expression of non-Canonical her genes (independent of Notch signalling) such as her6 and her9, the expression of components of signalling pathways such as Wnt, BMP, FGF, and a late neurogenesis onset. These progenitors progressively generate, from juvenile stages, the vast majority of the aNSCs of the lateral pallium. Most interestingly, a small population of these neuroepithelial cells persists in the postero-Lateral pallium at adult stage and keeps generating de novo aNSCs of this brain region. In addition to identifying the origin of pallial aNSCs in the zebrafish, this study also delivers information on the progressive maturation steps that embryonic progenitors undergo to generate aNSCs, and highlights similarities and differencies existing between the dorso-Medial and lateral progenitors. Finally, this work also permits tracing the neurons generated by stem cells at different stages. This reveals for the first time the progressive formation of the different zebrafish pallial compartements, and allows appreciating their homologies with the mouse pallial regions
44

Mathieux, Elodie. « Propriétés immunosuppressives des cellules souches et étude de la réponse humorale en xénotransplantation intracérébrale ». Nantes, 2013. https://archive.bu.univ-nantes.fr/pollux/show/show?id=30dcfe9d-43d0-4d68-9e74-616bfc29bec3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
La xénotransplantation intracérébrale est une des stratégies thérapeutiques envisagées pour le traitement de maladies neurodégénératives comme la maladie de Parkinson. Toutefois, cette approche est fortement limitée par la réponse immunitaire de l'hôte qui conduit au rejet systématique de la greffe. La première partie de ma thèse avait pour objectif d'analyser les propriétés immunosuppressives des cellules souches multipotentes et leur potentielle utilité pour la transplantation intracérébrale. Nous avons ainsi montré que la co-transplantation de cellules souches mésenchymateuses avec des neuroblastes porcins dans le striatum de rat induit l'inhibition de facteurs inflammatoires et prolonge la survie du xénotransplant jusqu'à 120 jours. Les cellules souches/progénitrices neurales (CSPN) inhibent également la prolifération des lymphocytes T, et leurs effets apparaissent dépendants de l'hème oxygénase 1. Une dernière série de travaux montre que des CSPN dérivées d'iPSC humaines sont aussi capables d'inhiber la prolifération des cellules mononucléaires humaines. La seconde partie de ma thèse a consisté à déterminer si la réponse humorale de l'hôte était impliquée dans le rejet de neurones porcins après leur implantation dans le striatum de rat. Des niveaux élevés d'IgG dirigées contre les neurones porcins ont été détectés dans les greffes en cours de rejet. Ces anticorps ont été retrouvés dans la circulation sanguine mais, essentiellement après le rejet de la greffe. Par ailleurs, la longue survie des neurones porcins dans le cerveau de rats déficients pour les immunoglobulines suggère qu'il est important de prendre en compte la réponse humorale si l'on veut maîtriser le rejet de xénogreffe intracérébrale
The intracerebral xenotransplantation of neural cells is a promising therapeutic strategy for neurodegenerative disorders such as the Parkinson's disease. However, this approach is strongly limited by a strong immune response that leads to the rejection of neural xenograft. The first part of my thesis aims at deciphering the immunosuppressive properties of multipotent stem cells and their potential utility for intracerebral transplantation. We show that the co-transplantation of rat mesenchymal stem cells with porcine neuroblasts into the rat striatum inhibits the levels of inflammatory factors, and prolongs the survival of xenotransplants up to 120 days. Neural stem/progenitor cells also have the ability to inhibit T lymphocyte proliferation, but their effects are mainly mediated by the heme oxygenase 1. Interestingly, we recently found that neural stem cells derived from induced pluripotent stem cells (iPSC) are also able to inhibit the proliferation of human mononuclear cells. The second part of my thesis aims at determining whether the host humoral response is implicated in the rejection of porcine neurons following their implantation into the rat striatum. High levels of elicited IgG directed against porcine neurons are present in the rejecting graft. These IgG are also found in the sera of host animals but predominantly, after graft rejection. The long-survival of porcine neurons in the brain of immunoglobulin-deficient rats indicates that the humoral and not only the cellular immune response should be controlled in case of intracerebral transplantation
45

Hadoux, Julien. « Modélisation des néoplasies endocriniennes multiples de type II par les cellules souches pluripotentes induites porteuses de mutations germinales du gène RET ». Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS389/document.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Les cellules souches pluripotentes induites (CSPi) permettent la modélisation de processus avec, en oncologie, un intérêt potentiel pour la modélisation de syndromes de prédisposition au cancer liés à des mutations germinales d’oncogènes. Nous avons généré des lignées de CSPi à partir de patients atteints de néoplasies endocriniennes multiples de type 2 (NEM2), porteurs de mutations germinales du gène RET : RETC620R, RETC634Y et RETM918T. Nous avons généré une CSPi RETY634C, contrôle isogénique, par correction de la mutation RETC634Y via CRSPR/Cas9. Ces CSPi présentent tous les critères de pluripotence avec un caryotype normal et expriment Ret. L’étude histologique approfondie des tératomes a mis en évidence le développement de cellules C en leur sein et également de cellules neuroendocrines exprimant la Chromogranine A mais sans aspect d’hyperplasie des cellules C ou de carcinome médullaire de la thyroïde ni de tumeur neuroendocrine réminiscente du phénotype des NEM2. L’analyse comparative de l’expression des gènes de ces CSPi a mis en évidence, dès le stade de pluripotence, une activation du réseau transcriptionnel du gène EGR1 qui pourrait constituer un des mécanismes moléculaires responsables de la mise en place du phénotype des NEM2. La différenciation en cellules souches de la crête neurale (CSCN), cellules d’origine cibles des tumeurs développées dans le cadre des NEM2, en particulier le phéochromocytome, était efficace et reproductible pour toutes nos lignées. Nous avons mis en évidence l’activation d’un programme commun invasif au niveau des CSCN avec mutation RETC634Y et RETM918T ainsi qu’une forte dérégulation du réseau des intégrines entraînant une forte dérégulation de l’adhésion cellulaire. Ceci était confirmé par une augmentation des capacités de migration CSCN avec mutation de RET par rapport aux CSCN témoins. Ainsi, la génération de CSPi avec mutation de RET a permis d’identifier des voies de signalisation potentiellement impliquées dans la physiopathologie des NEM2 et constitue une première étape vers la modélisation des NEM2 in vitro
Induced pluripotent stem cell (iPSC) offer major perspectives in disease modelling and, in the oncology field, can be used for modelling cancer predisposition syndromes. We generated IPSC lines from somatic cells of patients with multiple endocrine neoplasia type 2 (MEN2) who harboured germline mutations in the RET gene: RETC620R, RETC634Y et RETM918T. We have also generated an isogenic RETY634C iPSC control line by genome engineering using CRSPR/Cas9-mediated method to "correct” C634Y mutation. All iPSC lines exhibited all markers of pluripotency with a normal karyotype and expressed Ret. A thorough histological study of teratomas from these iPSC highlighted the development of C cells and Chromogranin A-expressing neuroendocrine cells within them but without C-cell hyperplasia, medullary thyroid carcinoma or neuroendocrine tumours reminiscent of MEN2 phenotype. Comparative gene expression analysis revealed an activation of the EGR1 transcriptional network, at the pluripotent stem cell stage which could be one of the molecular effector of the phenotype. Neural crest stem cell (NCSC), the cell of origin of some of the tumoral features of MEN2, could be differentiated in vitro from all our RET-mutated iPSC lines effectively. Gene expression analysis revealed an activation of cell invasion program in RETC634Y and RETM918T–mutated NCSC and a deregulation of integrin network causing a strong deregulation of cell adhesion which was confirmed with increased migration capabilities in vitro. Thus, the generation of the first RET-mutated iPSCs allowed the identification of signalling pathways potentially implicated in the pathophysiology of MEN2 and constitute a first step in modelling these tumours in vitro
46

Seminatore, Christine. « Transplantation de dérivés neuraux de cellules souches embryonnaires humaines dans un modèle de lésion cérébrale ischémique ». Paris 6, 2009. http://www.theses.fr/2009PA066554.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Cette étude avait pour objectif de définir les conditions dans lesquelles les cellules souches embryonnaires (CSE) pouvaient être utilisées comme produit thérapeutique pour les lésions neurovasculaires. Nous avons dans un premier temps caractérisé le profil de différenciation d’une lignée de CSE différenciées dans le lignage neural. Nous avons distingué 4 stades de différenciation, appelés progéniteurs neuraux (PGN)-précoces, -intermédiaires et-tardifs, et un dernier stade très différencié, appelé précurseurs neuronaux (PN). Les différents types de PGN et les PN ont été transplantés au niveau striatal chez des rats une semaine après occlusion unilatérale de l’artère cérébrale moyenne (OACMt). Afin d’analyser l’impact de l’environnement ischémique sur l’orientation phénotypique des cellules donnée avant la transplantation, ceux-ci ont été placés dans des lésions sévères ou modérées et chez des animaux sans lésions. Nos résultats montrent que la lésion ischémique a un faible impact sur l’évolution de la différenciation de cellules greffées. Seuls les PGN-précoces ont montré une sensibilité à la lésion qui se manifestait par une meilleure survie mais aussi par une plus grande incidence de tératomes. Dans les autres cas, le schéma de différenciation observé après greffe est celui attendu en fonction de la différenciation des cellules avant leur transplantation. Mis à part le stade PGN-précoce, qu’il est indispensable d’éviter pour la transplantation parce que générateur de tératomes, nous avons identifié un stade générateur de greffes hyperprolifératives, celui de PGN-tardifs. L’hyperprolifération peut cependant être contrôlée a posteriori par un agent anti-tumoral, le Témodal®. La deuxième partie de cette étude a porté sur l’utilisation de nouveaux types cellulaires, les « NSC », progéniteurs développés à partir des CSEh qui représentent des produits transplantables plus homogènes, et les IPS, cellules somatiques reprogrammées en CSEh. Les résultats préliminaires seront présentés en comparaison des résultats obtenus avec les CSEh.
47

Bonnamain, Virginie. « Interactions cellules souches/progénitrices neurales – lymphocytes T : étude in vitro et perspectives pour la transplantation ». Nantes, 2009. http://www.theses.fr/2009NANT36VS.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Malgré son statut immunologique particulier, le système nerveux central (SNC) entretient une communication bidirectionnelle étroite avec le système immunitaire. Ce paramètre doit donc être pris en compte pour optimiser les stratégies thérapeutiques restauratrices du SNC. En effet, en l'absence de traitement immunosuppresseur, les xénogreffes de cellules neurales porcines dans le SNC sont systématiquement rejetées, ce rejet étant principalement médié par les lymphocytes T (LT). Dans ce contexte, les cellules souches/progénitrices neurales (CSPN) décrites comme ayant une immunogénicité réduite et un pouvoir suppresseur de la réponse cellulaire T, pourraient être une alternative intéressante à la greffe de neuroblastes fœtaux. La survie prolongée du greffon et la faible infiltration lymphocytaire T après xénogreffe de CSPN dans le cerveau de rat en l’absence d'immunosuppression nous ont conduit à étudier les interactions in vitro entre les CSPN et les LT. Nous avons montré, par des expériences de co-culture, que les CSPN de porc et de rat inhibent la prolifération des LT de rat, par la libération de facteurs solubles. Les mécanismes à la base de l’effet immunorégulateur des CSPN porcines restent à déterminer, mais nos analyses ont clairement mis en évidence un rôle de l'hème oxygénase 1 (HO-1) dans l'activité suppressive des CSPN de rat. Nous avons également montré que l’interleukine-2 (IL-2), une cytokine proinflammatoire sécrétée par les LT activés, oriente le devenir des CSPN de rat vers un phénotype neuronal, in vitro. Ces résultats confirment l'importance de la communication entre le SNC et le système immunitaire et soulignent l'intérêt des CSPN en transplantation
Despite its status of immune privileged organ, the central nervous system (CNS) maintains a close bidirectional communication with the immune system. This parameter must be taken into account to optimize the therapeutic strategies aiming at restoring the neuronal loss in case of lesions or degenerative diseases in the CNS. Indeed, in the absence of immunosuppression, pig neural cells xenografted into the CNS are systematically rejected, this rejection being primarily mediated by T lymphocytes (TL). In this context, neural stem/progenitor cells (NSPC) described as having reduced immunogenicity and a potent suppressive effect on T cell responses appear as a suitable alternative cell source to fetal neuroblasts. The prolonged survival of xenografts and the low T cell infiltration following the transplantation of NSPC in the brain of non-immunosuppressed rats prompted us to study the in vitro interactions between NSPC and TL. We showed by co-culture experiments that pig and rat NSPC inhibit the proliferation of rat TL through the release of soluble factors. The mechanisms triggering the immunoregulatory effects of porcine NSPC remain to be determined, but we clearly demonstrated a role for the heme oxygenase 1 (HO-1) in the suppressive activity of rat NSPC. Interestingly, we also found that Interleukin-2 (IL-2), a proinflammatory cytokine secreted by activated TL, directs the in vitro fate of NSPC rat towards a neuronal phenotype. These results confirm the bidirectional communication between the CNS and the immune system, and highlight the interest of NSPC for cell transplantation
48

Radreau, Félicie. « Cellules souches embryonnaires et neurales humaines : quand la PrP et l'APP "s'en mêlent" ou "s’emmêlent" ». Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT045/document.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
La Protéine Prion cellulaire (PrPc) est une protéine ubiquitaire mais majoritairement présente dans le système nerveux central. Elle est plus particulièrement connue pour sa conversion conformationnelle en PrPSc dans les maladies à Prions qui sont des Protéinopathies comme la maladie d’Alzheimer (MA). La MA est en partie associée à des dépôts de peptides beta-amyloïdes (Aβ) agrégés de façon extracellulaire et issus des clivages successifs par la β- puis la γ-sécrétase de la protéine précurseur amyloïde (APP) exprimée dans les neurones. La PrPc et l’APP partagent des fonctions et des voies protéolytiques communes (α- ou β-sécrétase) les impliquant dans la prolifération, la différenciation, la synaptogenèse et la survie cellulaire. La PrPc est impliquée dans la régulation de la prolifération et la différenciation de différentes cellules souches : neurales adultes (NSC), hématopoïétiques (HSC), embryonnaires humaines (hESC). Si la PrP et l’APP partagent des fonctions communes, plusieurs publications montrent que la PrPc régule négativement le clivage de l'APP en Aβ et positivement le clivage de l’APP en sAPPα suggérant ainsi un rôle anti-amyloïdogénique de la PrPc. La PrP agirait également comme récepteur des Aβ à la surface neuronale induisant notamment l’inhibition des LTP et l’altération synaptique.Dans ce contexte, les objectifs spécifiques de la thèse sont :- L’étude de l’expression de la PrP, de l’APP et ses résidus de clivage au cours de l’induction neurale des hESC en NSC et de la différenciation neuronale- L’impact de la modulation de l’expression de la PrP sur le clivage de l’APP ainsi que sur les propriétés des cellules souches (survie, prolifération, différenciation).1. Induction neurale des hESC en NSC Pour ce projet nous avons utilisé des Cellules Souches Embryonnaires Humaines (hESC) pour lesquelles le laboratoire dispose d’une autorisation de l’Agence de la Biomédecine.Pour l’induction neurale, nous avons testé deux protocoles : l’un permet d’obtenir des neurosphères en suspension puis des «rosettes» constituées de NSC, l’autre protocole en monocouche mime quant à lui la corticogenèse. Une optimisation de ces protocoles a été nécessaire (densité de départ, méthodes de fixation des cellules pour améliorer la détection de la PrP) ainsi que la détermination des conditions d’analyse de l’expression de PrP, d’APP et ses résidus clivés (Aβ, sAPPα/β). 2. Différenciations à partir des NSC Les NSC obtenues ont ensuite été amplifiées puis différenciées en neurones et/ou astrocytes. Les cellules ont été caractérisées notamment par immunofluorescence et RT-qPCR pour l’expression des principaux marqueurs astrocytaires (GFAP) et neuronaux (BIII-tubuline, Doublecortine, Synaptophysine) et la disparition progressive des marqueurs de NSC. Là encore nous avons établi des conditions précises de densité cellulaire ainsi que les points des analyses cinétiques de nos différents paramètres.3. Modulation de l’expression de la PrPc Nous avons utilisés des vecteurs lentiviraux permettant l’expression ou l’inhibition de la PrPc humaine pour transduire des hESC au moment d’initier l’induction neurale et des NSC. Pour cela nous avons également dû réaliser des optimisations de différents paramètres : densité cellulaire, taille des supports d’ensemencement ou MOI de lentivirus afin d’avoir une transduction efficace tout en limitant la cytotoxicité. De même, les échantillons récoltés nous ont permis d’évaluer l’impact de la modulation de la PrPc sur le clivage de l’APP ainsi que sur la biologie des cellules souches (survie, prolifération, différenciation)
The cellular Prion Protein (PrPc) is a ubiquitary protein mainly expressed in the central nervous system. It is particularly known for its conformational conversion in PrPSc in Prion diseases, which are proteinopathies such as Alzheimer’s disease (AD). AD is associated with extracellular deposits of aggregated beta-amyloid peptides (Aβ) derived from successive β- and the γ-secretase cleavages of the amyloid precursor protein (APP) expressed by neurons. PrPc and APP share some common functions and proteolytic pathways (α- or β-secretase), involving them in proliferation, differentiation, synaptogenesis and cellular survival. PrPc is involved in the regulation of proliferation and differentiation of many stem cells: adult neural (NSC), hematopoietic (HSC) and human embryonic (hESC). Several publications also show that PrP downregulates the cleavage of APP in Aβ and positively regulates the cleavage of APP in sAPPα suggesting an anti-amyloïdogenic role of PrPc. PrP could also act as a receptor of Aβ at the neuronal surface inducing LTP inhibition and synaptic alteration. In this context, the specific objectives of my thesis were:- Study of the expression of PrP, APP and its cleavage residues during neural induction of hESC in NSC and neuronal differentiation.- Impact of the modulation of PrP expression on APP cleavages as well as on stem cells properties (survival, proliferation, differentiation). 1. Neural induction of hESC in NSCFor this project, we have used Human Embryonic Stem Cells (hESC) for which the laboratory has an authorization from the “Agence de la Biomédecine”.For the neural induction, we have tested two protocols, the first one allows the obtention of neurospheres in suspension and then figures of “rosettes” composed of NSC, and a “monolayer” protocol that mimics the beginning of corticogenesis. An optimization of these protocols has been necessary (starting cell density, cell fixation methods to improve PrP detection). We have also determined the best conditions to analyze the expression of PrP, APP and its derived peptides (Aß, sAPPα/β). 2. Differentiation of NSCNSC derived from hESC were amplified and differentiated into neurons and/or astrocytes. Cells were characterized in particular by immunofluorescence and RT-qPCR for the expression of the major astrocytic (GFAP) and neuronal markers (BIII-tubulin, doublecortin, synaptophysin) and the progressive decrease of NSC markers. Again we have determined the best conditions for cell density and kinetic time points for our analysis.3. Modulation of PrPC expression We have used lentiviral vectors allowing the expression of an anti-PrP shRNA, human PrP and respective controls. To achieve this task, lentiviral transductions of hESC and NSC were optimized: cell density, size of the seeding culture wells or MOI of lentivirus. Finaly, samples collected allowed us to evaluate the impact of PrPc modulation on the APP cleavages as well as on stem cells properties (survival, proliferation, differentiation)
49

Sabourin, Jean-Charles. « Les cellules souches neurales médullaires : Organisation de la niche et rôle de la molécule d’adhérence OCAM dans le contrôle de leurs propriétés ». Montpellier 2, 2009. http://www.theses.fr/2009MON20143.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
La découverte de cellules souches neurales (CSN) dans la moelle épinière a ouvert de nouvelles perspectives en matière de réparation des lésions médullaires par stimulation des cellules souches endogènes. Un pré-requis à l'établissement de telles stratégies thérapeutiques réside dans la connaissance de l'identité de ces cellules souches ainsi que des mécanismes contrôlant leur proliférant et leur différenciation. C'est dans ce but qu'à été entrepris ce travail de thèse qui s'organise en deux parties : dans un premier temps, nous avons identifié les cellules souches médullaires comme étant des cellules GFAP+ de morphologie radiaire localisées dans la partie dorsale du canal de l'épendyme. Nous avons également montré que ces cellules résidaient au sein d'une niche exprimant de nombreuses signalisations (CD15, Jag1, DAN, Hes1). Plus curieusement, cette niche présente des caractéristiques mésenchymateuses telle que l'expression du facteur de transcription Zeb1 qui s'avère nécessaire à la survie des cellules souches. Dans la deuxième partie de cette thèse, nous avons étudié le rôle de la molécule d'adhérence OCAM dans le contrôle des propriétés des cellules souches neurales médullaires. Nous avons ainsi montré que OCAM était exprimée par les CSN aussi bien in vitro dans le modèle des neurosphères qu'in vivo dans la moelle épinière embryonnaire de souris. Cette molécule est secrétée dans le milieu extracellulaire et agit comme un inhibiteur de la prolifération et de l'autorenouvellement des cellules souches. Ces résultats constituent un nouveau pas dans la compréhension des mécanismes de régulation des propriétés des CSN
50

Domenichini, Florence. « Neurogenèse adulte et déficience intellectuelle : analyse du rôle de la kinase PAK3 dans deux modèles murins représentatifs de la pathologie ». Thesis, Paris 11, 2014. http://www.theses.fr/2014PA11T038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Les p21-activated kinases (PAK) du sous-groupe I sont impliquées dans de nombreux processus cellulaires tels la prolifération, les mouvements cellulaires, l’adhérence et l’apoptose. Ces kinases sont des effecteurs des Rho-GTPases Rac1 et Cdc42 et participent à la régulation du cytosquelette d’actine. Les deux kinases neuronales PAK1 et PAK3, qui présentent de fortes identités de séquence, régulent le cytosquelette d’actine, contrôlant ainsi la dynamique des épines dendritiques, et la plasticité synaptique.Les mutations du gène pak3, localisé sur le chromosome X, sont responsables de déficience intellectuelle chez l’homme, et les mécanismes moléculaires et cellulaires associés aux défauts cognitifs sont mal connus. Il a été montré que PAK3 participe à la voie proneurale au cours de l’embryogénèse précoce du xénope en favorisant la sortie du cycle cellulaire et la différenciation neuronale. Cependant, le rôle de PAK3 dans la neurogenèse adulte n’a pas été étudié. Or depuis maintenant une quinzaine d’années, il est admis que la neurogenèse perdure à l’âge adulte et participe aux processus de mémorisation et d’apprentissage. Nous nous sommes donc intéressés à l’implication de PAK3 dans la régulation de la neurogenèse adulte, posant l’hypothèse qu’un défaut de neurogenèse serait responsable, au moins en partie, des défauts cognitifs chez les patients. Nous avons montré que PAK3 n’est pas exprimée dans les cellules souches neurales/progéniteurs prolifératifs mais son expression augmente fortement dès le retrait des facteurs de croissance, ex vivo, suggérant un rôle dans la neurogenèse adulte. Nous avons montré que l’invalidation de pak3 provoque une augmentation de la fréquence de neurosphères primaires formées ainsi qu’un accroissement de leur taille, ceci sans affecter la taille du réservoir de cellules souches ni les propriétés cardinales de celles-ci (multipotence, auto-renouvellement et prolifération). Toutefois, les cellules progénitrices pak3- poursuivent leur prolifération dans des conditions de culture induisant normalement la différenciation, suggérant un défaut de sortie du cycle cellulaire.Nous nous sommes ensuite demandé si les mutations de déficience intellectuelle du gène pak3 altèrent la neurogenèse adulte. Nous avons créé pour cela un modèle murin portant la mutation R67C, responsable chez l’homme de la forme la plus sévère de déficience intellectuelle associée aux mutations de ce gène. Nous mettons en évidence, dans cette souris knock-in, une forte diminution du nombre de cellules nouveau-nées dans les deux zones neurogéniques du cerveau (la zone sous-ventriculaire et le gyrus denté de l’hippocampe) et une augmentation de la proportion de neurones nouveau-nés immatures. Ces données suggèrent que la mutation R67C n’induit pas une perte de fonction de la kinase mais un changement de fonction dépendante d’une activation préférentielle par la GTPase Rac1.En conclusion, ce travail de thèse montre que PAK3 participe à la régulation de la neurogenèse adulte chez les mammifères, contrôle la sortie du cycle cellulaire des progéniteurs neuraux et que la mutation R67C impacte la maturation des neurones nouveau-nés. L’ensemble de ces données suggère que les défauts de neurogenèse adulte dus aux mutations de déficience intellectuelle du gène pak3 sont à l’origine de certains dysfonctionnements cognitifs
The group I p21-activated kinases (PAK) are involved in many cellular processes such as proliferation, cell movement, adhesion and apoptosis. These kinases are effectors of Rho GTPases Rac1 and Cdc42, and participate in the regulation of the actin cytoskeleton. Both neuronal kinase PAK1 and PAK3, which exhibit high sequence identities, regulate the actin cytoskeleton, thereby controlling the dynamics of dendritic spines and synaptic plasticity. Mutations of the X-linked pak3 are responsible for intellectual disability (ID) in humans, and the molecular and cellular mechanisms associated with cognitive defects are poorly described. It was shown that PAK3 participates in the proneural pathway during early Xenopus embryogenic development, by promoting cell cycle exit and neuronal differentiation of neural precursors. However, the role of PAK3 in the adult neurogenesis has not been studied in mammals. It is now generally accepted that neurogenesis persists during human adulthood and is involved in learning and memory. We are therefore interested in the involvement of PAK3 in the regulation of adult neurogenesis, on the assumption that defects in neurogenesis may be responsible, at least in part, for cognitive defects in ID patients.We showed that PAK3 is not expressed in proliferative neural stem/progenitor cells but its expression increased significantly upon growth factor removal, suggesting a role in adult neurogenesis. We showed that the invalidation of pak3 gene causes an increase in the frequency and in size of primary neurospheres. However Pak3 invalidation does not affect the size of the stem cell reservoir nor the NCS cardinal properties (pluripotency, self-renewal and proliferation). However, the pak3- progenitor cells continue their proliferation in culture conditions normally inducing differentiation, suggesting a defect in cell cycle exit. We then asked whether pak3 ID mutations affect adult neurogenesis. We created a knock-in model expressing the pak3-R67C mutation responsible in humans for a severe form of intellectual impairment. We observed in the knock-in mice, a significant decrease in the number of newborn cells in both neurogenic areas of the brain (the subventricular zone inforebrain, and the dentate gyrus of the hippocampus) and an increase in the proportion of immature newborn neurons. These data suggest that the R67C mutation does not induce a loss of function of the kinase but a change of a function dependent on preferential activation by the Rac1 GTPase.In conclusion, we show that PAK3 play an important role in the regulation of adult neurogenesis in mammals by controlling the cell cycle exit of neural progenitors. The R67C ID mutation impacts both newborn cell proliferation and their maturation. Taken together, these data suggest that defects in adult neurogenesis caused by ID mutations in the pak3 gene may be involved in some cognitive dysfunctions

Vers la bibliographie