Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Chain Shuttling Polymerization.

Articles de revues sur le sujet « Chain Shuttling Polymerization »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 37 meilleurs articles de revues pour votre recherche sur le sujet « Chain Shuttling Polymerization ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Martins, Roberto, Letícia Quinello, Giuliana Souza, and Maria Marques. "Polymerization of Ethylene with Catalyst Mixture in the Presence of Chain Shuttling Agent." Chemistry & Chemical Technology 6, no. 2 (2012): 153–62. http://dx.doi.org/10.23939/chcht06.02.153.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zintl, Manuela, and Bernhard Rieger. "Novel Olefin Block Copolymers through Chain-Shuttling Polymerization." Angewandte Chemie International Edition 46, no. 3 (2007): 333–35. http://dx.doi.org/10.1002/anie.200602889.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kuhlman, Roger L., and Timothy T. Wenzel. "Investigations of Chain Shuttling Olefin Polymerization Using Deuterium Labeling." Macromolecules 41, no. 12 (2008): 4090–94. http://dx.doi.org/10.1021/ma8004313.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Arriola, D. J. "Catalytic Production of Olefin Block Copolymers via Chain Shuttling Polymerization." Science 312, no. 5774 (2006): 714–19. http://dx.doi.org/10.1126/science.1125268.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Mohammadi, Yousef, Mohammad Saeb, Alexander Penlidis, et al. "Intelligent Machine Learning: Tailor-Making Macromolecules." Polymers 11, no. 4 (2019): 579. http://dx.doi.org/10.3390/polym11040579.

Texte intégral
Résumé :
Nowadays, polymer reaction engineers seek robust and effective tools to synthesize complex macromolecules with well-defined and desirable microstructural and architectural characteristics. Over the past few decades, several promising approaches, such as controlled living (co)polymerization systems and chain-shuttling reactions have been proposed and widely applied to synthesize rather complex macromolecules with controlled monomer sequences. Despite the unique potential of the newly developed techniques, tailor-making the microstructure of macromolecules by suggesting the most appropriate poly
Styles APA, Harvard, Vancouver, ISO, etc.
6

Xu, Qinwen, Rong Gao, and Dongbing Liu. "Studies on chain shuttling polymerization reaction of nonbridged half-titanocene and bis(phenoxy-imine) Zr binary catalyst system." Royal Society Open Science 6, no. 4 (2019): 182007. http://dx.doi.org/10.1098/rsos.182007.

Texte intégral
Résumé :
In this contribution, olefin block copolymers were produced via chain shuttling polymerization (CSP), using a new combination of catalysts and a chain shuttling agent (CSA) diethylzinc (ZnEt 2 ). The binary catalyst system included nonbridged half-titanocene catalyst, Cp*TiCl 2 (O-2,6- i Pr 2 C 6 H 3 ) (Cat A ) and bis(phenoxy-imine) zirconium, { η 2 -1-[C(H)=NC 6 H 11 ]-2-O-3- t Bu-C 6 H 3 } 2 ZrCl 2 (Cat B ), as well as co-catalyst methylaluminoxane (MAO). In contrast to dual-catalyst system in the absence of CSA, the blocky structure was obtained in the presence of CSA and rationalized from
Styles APA, Harvard, Vancouver, ISO, etc.
7

Urciuoli, Gaia, Antonio Vittoria, Giovanni Talarico, et al. "In-Depth Analysis of the Nonuniform Chain Microstructure of Multiblock Copolymers from Chain-Shuttling Polymerization." Macromolecules 54, no. 23 (2021): 10891–902. http://dx.doi.org/10.1021/acs.macromol.1c01824.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zhu, Lei, Haojie Yu, Li Wang, Yusheng Xing, and Bilal Ul Amin. "Advances in the Synthesis of Polyolefin Elastomers with “Chain-walking” Catalysts and Electron Spin Resonance Research of Related Catalytic Systems." Current Organic Chemistry 25, no. 8 (2021): 935–49. http://dx.doi.org/10.2174/1385272825666210126100641.

Texte intégral
Résumé :
In recent years, polyolefin elastomers play an increasingly important role in industry. The late transition metal complex catalysts, especially α-diimine Ni(II) and α-diimine Pd(II) complex catalysts, are popular “chain-walking” catalysts. They can prepare polyolefin with various structures, ranging from linear configuration to highly branched configuration. Combining the “chain-walking” characteristic with different polymerization strategies, polyolefins with good elasticity can be obtained. Among them, olefin copolymer is a common way to produce polyolefin elastomers. For instance, strictly
Styles APA, Harvard, Vancouver, ISO, etc.
9

Zhao, Jieming, Zhou Tian, Xixiang Zhang, Zhaoyang Duan, and Jingyi Lu. "Kinetics Parameter Identification of Chain Shuttling Polymerization Based on Physics-Informed Neural Networks." IFAC-PapersOnLine 58, no. 14 (2024): 184–91. http://dx.doi.org/10.1016/j.ifacol.2024.08.334.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Xiao, Anguo, Shibiao Zhou, and Qingquan Liu. "A Novel Branched–Hyperbranched Block Polyolefin Produced via Chain Shuttling Polymerization from Ethylene Alone." Polymer-Plastics Technology and Engineering 53, no. 17 (2014): 1832–37. http://dx.doi.org/10.1080/03602559.2014.935409.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Xiao, Anguo, Li Wang, Qingquan Liu, et al. "A Novel Linear−Hyperbranched Multiblock Polyethylene Produced from Ethylene Monomer Alone via Chain Walking and Chain Shuttling Polymerization." Macromolecules 42, no. 6 (2009): 1834–37. http://dx.doi.org/10.1021/ma802352t.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Zhang, Yuetao, Lucia Caporaso, Luigi Cavallo, and Eugene Y. X. Chen. "Hydride-Shuttling Chain-Transfer Polymerization of Methacrylates Catalyzed by Metallocenium Enolate Metallacycle−Hydridoborate Ion Pairs." Journal of the American Chemical Society 133, no. 5 (2011): 1572–88. http://dx.doi.org/10.1021/ja109775v.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Ahmadi, Mostafa, and Amin Nasresfahani. "Realistic Representation of Kinetics and Microstructure Development During Chain Shuttling Polymerization of Olefin Block Copolymers." Macromolecular Theory and Simulations 24, no. 4 (2015): 311–21. http://dx.doi.org/10.1002/mats.201500004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Liu, Bo, and Dongmei Cui. "Regioselective Chain Shuttling Polymerization of Isoprene: An Approach To Access New Materials from Single Monomer." Macromolecules 49, no. 17 (2016): 6226–31. http://dx.doi.org/10.1021/acs.macromol.6b00904.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Yin, Xiao, Huan Gao, Fei Yang, et al. "Stereoblock Polypropylenes Prepared by Efficient Chain Shuttling Polymerization of Propylene with Binary Zirconium Catalysts and iBu3Al." Chinese Journal of Polymer Science 38, no. 11 (2020): 1192–201. http://dx.doi.org/10.1007/s10118-020-2446-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Schoeneberger, Elsa M., and Gerrit A. Luinstra. "Investigations on the Ethylene Polymerization with Bisarylimine Pyridine Iron (BIP) Catalysts." Catalysts 11, no. 3 (2021): 407. http://dx.doi.org/10.3390/catal11030407.

Texte intégral
Résumé :
The kinetics and terminations of ethylene polymerization, mediated by five bisarylimine pyridine (BIP) iron dichloride precatalysts, and activated by large amounts of methyl aluminoxane (MAO) was studied. Narrow distributed paraffins from initially formed aluminum polymeryls and broader distributed 1-polyolefins and (bimodal) mixtures, thereof, were obtained after acidic workup. The main pathway of olefin formation is beta-hydrogen transfer to ethylene. The rate of polymerization in the initial phase is inversely proportional to the co-catalyst concentration for all pre-catalysts; a first-orde
Styles APA, Harvard, Vancouver, ISO, etc.
17

Bhagat, Subita, and Nikhil Prakash. "Comparative study of Metallocene catalyst propylene polymerization with different iteration rates." YMER Digital 20, no. 12 (2021): 562–68. http://dx.doi.org/10.37896/ymer20.12/53.

Texte intégral
Résumé :
This paper proposed a mathematical model corresponding to metallocene catalyzed propylene polymerization that uses the Me2Si [Ind]2ZrCL2 and Et [Ind]2ZrCL2. Comprehensive kinetic models consisting of mass and population balance equations, are developed based on elementary reactions proposed in the reaction mechanism. The result from the above indicates that metallocene catalysts in the presence of ethylene zirconium dichloride and methylene zirconium dichloride shows modularity and new peaks are obtained. The temperature variation from 25 to 75 also increase the rate and reason for the same co
Styles APA, Harvard, Vancouver, ISO, etc.
18

Jandaghian, Mohammad Hossein, Ahmad Soleimannezhad, Saeid Ahmadjo, Seyed Mohammad Mahdi Mortazavi, and Mostafa Ahmadi. "Synthesis and Characterization of Isotactic Poly(1-hexene)/Branched Polyethylene Multiblock Copolymer via Chain Shuttling Polymerization Technique." Industrial & Engineering Chemistry Research 57, no. 14 (2018): 4807–14. http://dx.doi.org/10.1021/acs.iecr.7b05339.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Descour, Camille, Timo J. J. Sciarone, Dario Cavallo, et al. "Exploration of the effect of 2,6-(t-Bu)2-4-Me-C6H2OH (BHT) in chain shuttling polymerization." Polymer Chemistry 4, no. 17 (2013): 4718. http://dx.doi.org/10.1039/c3py00506b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Tongtummachat, Tiprawee, Rungrueng Ma‐In, Siripon Anantawaraskul, and João B. P. Soares. "Dynamic Monte Carlo Simulation for Chain‐Shuttling Polymerization of Olefin Block Copolymers in Continuous Stirred‐Tank Reactor." Macromolecular Reaction Engineering 14, no. 6 (2020): 2000030. http://dx.doi.org/10.1002/mren.202000030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Białek, Marzena, Kornelia Bosowska, Paweł Groch, Wioletta Ochędzan-Siodłak, and Krystyna Czaja. "WYBRANE KIERUNKI W ZAKRESIE MODYFIKACJI POLIOLEFIN." Wiadomości Chemiczne 78, no. 5 (2024): 433–65. https://doi.org/10.53584/wiadchem.2024.05.1.

Texte intégral
Résumé :
Polyolefins, which include various types of polyethylene and polypropylene and, to a much lesser extent, higher polyolefins and olefin copolymers, have been the dominant group of polymers for years. This is due to both the significant development of their production technology, which has become environmentally friendly over the years, and their diverse physicochemical properties. Additionally, the properties of polyolefins, and therefore their areas of application, can be significantly extended by copolymerizaton of olefins with other vinyl compounds, changing their topology and microstructure
Styles APA, Harvard, Vancouver, ISO, etc.
22

Tongtummachat, Tiprawee, Siripon Anantawaraskul, and João B. P. Soares. "Dynamic Monte Carlo Simulation of Olefin Block Copolymers (OBCs) Produced via Chain-Shuttling Polymerization: Effect of Kinetic Rate Constants on Chain Microstructure." Macromolecular Reaction Engineering 12, no. 4 (2018): 1800021. http://dx.doi.org/10.1002/mren.201800021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Childers, M. Ian, Andrew K. Vitek, Lilliana S. Morris, et al. "Isospecific, Chain Shuttling Polymerization of Propylene Oxide Using a Bimetallic Chromium Catalyst: A New Route to Semicrystalline Polyols." Journal of the American Chemical Society 139, no. 32 (2017): 11048–54. http://dx.doi.org/10.1021/jacs.7b00194.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Mohammadi, Yousef, Mostafa Ahmadi, Mohammad Reza Saeb, Mohammad Mehdi Khorasani, Pianpian Yang, and Florian J. Stadler. "A Detailed Model on Kinetics and Microstructure Evolution during Copolymerization of Ethylene and 1-Octene: From Coordinative Chain Transfer to Chain Shuttling Polymerization." Macromolecules 47, no. 14 (2014): 4778–89. http://dx.doi.org/10.1021/ma500874h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Zheng, Wenjie, Qi Yang, Jing Dong, et al. "Neodymium-based one-precatalyst/dual-cocatalyst system for chain shuttling polymerization to access cis-1,4/trans-1,4 multiblock polybutadienes." Materials Today Communications 27 (June 2021): 102453. http://dx.doi.org/10.1016/j.mtcomm.2021.102453.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

He, Jianghua, Yuetao Zhang, and Eugene Y. X. Chen. "Cationic Zirconocene-Mediated Catalytic H-Shuttling Polymerization of Polar Vinyl Monomers: Scopes of Catalyst, Chain-Transfer Agent, and Monomer." Macromolecular Symposia 349, no. 1 (2015): 104–14. http://dx.doi.org/10.1002/masy.201400018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Pan, Li, Kunyu Zhang, Masayoshi Nishiura, and Zhaomin Hou. "Chain-Shuttling Polymerization at Two Different Scandium Sites: Regio- and Stereospecific “One-Pot” Block Copolymerization of Styrene, Isoprene, and Butadiene." Angewandte Chemie International Edition 50, no. 50 (2011): 12012–15. http://dx.doi.org/10.1002/anie.201104011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Pan, Li, Kunyu Zhang, Masayoshi Nishiura, and Zhaomin Hou. "Chain-Shuttling Polymerization at Two Different Scandium Sites: Regio- and Stereospecific “One-Pot” Block Copolymerization of Styrene, Isoprene, and Butadiene." Angewandte Chemie 123, no. 50 (2011): 12218–21. http://dx.doi.org/10.1002/ange.201104011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Dai, Quanquan, Xuequan Zhang, Yanming Hu, et al. "Regulation of the cis-1,4- and trans-1,4-Polybutadiene Multiblock Copolymers via Chain Shuttling Polymerization Using a Ternary Neodymium Organic Sulfonate Catalyst." Macromolecules 50, no. 20 (2017): 7887–94. http://dx.doi.org/10.1021/acs.macromol.7b01049.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Tynys, Antti, Jan L. Eilertsen, Jukka V. Seppälä, and Erling Rytter. "Propylene polymerizations with a binary metallocene system—Chain shuttling caused by trimethylaluminium between active catalyst centers." Journal of Polymer Science Part A: Polymer Chemistry 45, no. 7 (2007): 1364–76. http://dx.doi.org/10.1002/pola.21908.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Mundil, Robert, Catarina Bravo, Nicolas Merle, and Philippe Zinck. "Coordinative Chain Transfer and Chain Shuttling Polymerization." Chemical Reviews, December 12, 2023. http://dx.doi.org/10.1021/acs.chemrev.3c00440.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Zintl, Manuela, and Bernhard Rieger. "Novel Olefin Block Copolymers Through Chain-Shuttling Polymerization." ChemInform 38, no. 15 (2007). http://dx.doi.org/10.1002/chin.200715236.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Yue, Tian-Jun, Yu Xiao, Bai-Hao Ren, Xiao-Bing Lu, and Wei-Min Ren. "Chain Shuttling Enantioselective Polymerization: An Effective Strategy for Synthesizing Stereoblock Polythioethers." Journal of the American Chemical Society, January 18, 2025. https://doi.org/10.1021/jacs.4c15343.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Urciuoli, Gaia, Odda Ruiz de Ballesteros, Roberta Cipullo, Marco Trifuoggi, Antonella Giarra, and Finizia Auriemma. "Thermal Fractionation of Ethylene/1-Octene Multiblock Copolymers from Chain Shuttling Polymerization." Macromolecules, June 21, 2022. http://dx.doi.org/10.1021/acs.macromol.2c00773.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Qiu, Nanting, Zhiqiang Sun, Feng Yu, et al. "Chain Shuttling Polymerization for Cycloolefin Block Copolymers: From Engineering Plastics to Thermoplastic Elastomers." Macromolecules, June 12, 2024. http://dx.doi.org/10.1021/acs.macromol.4c01029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Zhao, Wuchao, Fengchao Cui, Jianghua He, Yuetao Zhang, and Eugene Y. X. Chen. "Oscillatory adaptive catalysis: Intramolecular chain shuttling regulated by stereo-autocorrection in stereoselective polymerization of lactide." Chem, July 2024. http://dx.doi.org/10.1016/j.chempr.2024.06.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Chen, Shiyan, Lixia Peng, Yanan Liu, et al. "Conjugated polymers based on metalla-aromatic building blocks." Proceedings of the National Academy of Sciences 119, no. 29 (2022). http://dx.doi.org/10.1073/pnas.2203701119.

Texte intégral
Résumé :
Conjugated polymers usually require strategies to expand the range of wavelengths absorbed and increase solubility. Developing effective strategies to enhance both properties remains challenging. Herein, we report syntheses of conjugated polymers based on a family of metalla-aromatic building blocks via a polymerization method involving consecutive carbyne shuttling processes. The involvement of metal d orbitals in aromatic systems efficiently reduces band gaps and enriches the electron transition pathways of the chromogenic repeat unit. These enable metalla-aromatic conjugated polymers to exh
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!